Title: A Review of Headed-Stud Design Criteria in the Sixth Edition of the PCI Design Handbook
Date: January-February, 2007
Volume: 52
Issue: 1
Page number: 82-100
Author(s): Neal S. Anderson, Donald F. Meinheit
https://doi.org/10.15554/pcij.01012007.82.100

Click here to access the full journal article

Abstract

The Precast/Prestressed Concrete Institute (PCI) is sponsoring a comprehensive research program to assess the shear capacities of groups of headed-stud anchors. This program was initiated in response  to new provisions introduced in ACI 318–02, which were based on an extensive database dominated by results of post-installed anchor tests. Tests of headed-stud anchors loaded in shear, as used in  precast concrete construction, are not prevalent in the literature. This test program, conducted by Wiss, Janney, Elstner Associates Inc., examines headed-stud connections in several geometric configurations and  edge conditions. This paper provides a summary of the background studies and the  research work that culminated in the design equations presented in Section 6.5 of the sixth edition of the PCI Design  Handbook.

References

1. Industry Handbook Committee. 1971. PCI Design Handbook: Precast and Prestressed Concrete. 1st ed. Chicago, IL: Prestressed Concrete Institute (PCI).

2. American Concrete Institute (ACI) Committee 318. 2002. Building Code Requirements for Structural Concrete (ACI 318- 02) and Commentary (ACI 318R-02). Farmington Hills, MI: ACI.

3. ACI Committee 318. 2005. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R- 05). Farmington Hills, MI: ACI.

4. ACI Committee 349. 1983. Proposed Revisions to: Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-76). Journal Proceedings. V. 80, No. 2 (March): pp. 79-84.

5. ACI Committee 349. 1978. Addition to Commentary on Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-76). ACI Journal, V. 75, No. 8 (August): pp. 329-347.

6. Eligenhausen, R., and W. Fuchs. 1988. Tragverhalten von Dübelbefestigungen bei Querzug-, Schrägzug-, und Biegebeanspruchung [Load-Bearing Behavior of Anchor Fastenings under Shear,  Combined Tension and Shear or Flexural Loading]. [In German and English.] Betonwerk + Fertigteil-Technik, V. 54, No. 2: pp. 48-56.

7. Industry Handbook Committee. 1999. PCI Design Handbook: Precast and Prestressed Concrete. 5th ed. MNL-120-99. Chicago, IL: PCI.

8. Industry Handbook Committee. 2004. PCI Design Handbook: Precast and Prestressed Concrete. 6th ed. MNL-120-04. Chicago, IL: PCI.

9. Anderson, N. S., and D. F. Meinheit. 2000. Design Criteria for Headed Stud Groups in Shear: Part 1- Steel Capacity and Back Edge Effects. PCI Journal, V. 45, No. 5 (September-October): pp.  46-75.

10. Anderson, N. S., and D. F. Meinheit. 2001. Steel Capacity of Headed Studs Loaded in Shear. In Connections between Steel and Concrete: International RILEM Symposium, proceedings Pro21, ed. R.  ligehausen, pp. 202–211. Cachan, France: RILEM Publications S.A.R.L.

11. Anderson, N. S., and D. F. Meinheit. 2005. Pryout Capacity of Cast-In Headed Stud Anchors. PCI Journal, V. 50, No. 2 (March-April): pp 90-112.

12. Fuchs, W., R. Eligehausen, and J. E. Breen. 1995. Concrete Capacity Design (CCD) Approach for Fastening to Concrete. ACI Structural Journal, V. 92, No. 1 (January-February): pp. 73-94.

13. International Conference of Building Officials (ICBO). 1979. Uniform Building Code. Whittier, CA: ICBO.

14. Cruz, R. D. 1987. Effect of Edge Distance on Stud Groups Loaded in Shear and Torsion. Masters thesis. Oklahoma State University, Stillwater, OK.

15. Wong, T. L. 1988. Stud Groups Loaded in Shear. Masters thesis. Oklahoma State University, Stillwater, OK.

16. Courtois, P. 1969. Industrial Research on Connections for Precast and In-Situ Concrete. In Mechanical Fasteners for Concrete, SP-22, pp. 123-38. Detroit, MI: ACI.

17. Industry Handbook Committee. 1978. PCI Design Handbook: Precast and Prestressed Concrete. 2nd ed. Chicago, IL: PCI.

18. McMackin, P. J., R. G. Slutter, and J. W. Fisher. 1973. Headed Steel Anchor under Combined Loading. AISC Engineering Journal, V. 10, No. 2: pp. 43-52.

19. Industry Handbook Committee. 1985. PCI Design Handbook: Precast and Prestressed Concrete. 3rd ed. Chicago, IL: PCI.

20. Cannon, R. W., E. G. Burdette, and R. R. Funk. 1975. Anchorage to Concrete. Report No. CEB 75-32. Knoxville, TN: Civil Engineering Branch, Tennessee Valley Authority.

21. Klingner, R. E., J. A. Mendonca, and J. B. Malik. 1982. Effect of Reinforcing Details on the Shear Resistance of Anchor Bolts under Reversed Cyclic Loading. ACI Journal, V. 79, No. 1 (January- February): pp. 3-12.

22. TRW Inc. Nelson Stud Welding Division. 1988. Embedment Properties of Headed Studs. Elyria, OH: TRW Inc.

23. Shaikh, A. F., and W. Yi. 1985. In Place Strength of Welded Headed Studs. PCI Journal, V. 30, No. 2 (March-April): pp. 56-81.

24. Ollgaard, J. G., R. G. Slutter, and J. W. Fisher. 1971. Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete. AISC Engineering Journal, V. 8, No. 2: pp. 55-64.

25. Martin, L. D., and W. J. Korkosz. 1982. Connections for Precast Prestressed Concrete Buildings, Including Earthquake Resistance. Technical Report No. 2. Chicago, IL: PCI.

26. Industry Handbook Committee. 1992. PCI Design Handbook: Precast and Prestressed Concrete. 4th ed. MNL-120-92. Chicago, IL: PCI.

27. American Society for Testing and Materials (ASTM). 2004. Standard Specification for Carbon Steel Bolts and Studs. ASTM A307-04. Volume 01.08. West Conshohocken, PA: ASTM.

28. Rong, A.  Y., and A. Fafitis. 1989. Tensile and Shear Strength of Single and Group Studs. Tempe, AZ: Civil Engineering Department, Arizona State University.

29. Comité Euro-International Du Béton (CEB). 1994. Fastenings to Concrete and Masonry Structures. Lausanne, Switzerland.

30. Mindess, S., and J. F. Young. 1981. Concrete. Englewood Cliffs, N.J.: Prentice-Hall Inc.

31. Kuhn, D. P., and A. F. Shaikh. 1997. Pilot Study on Headed Anchor Studs: A Comparison between PCI and CCD. Milwaukee, WI: Department of Civil Engineering, University of Wisconsin– Milwaukee.

32. ASTM. 2005. Standard Specification for Carbon Structural Steel. ASTM A36-05. V. 01.04. West Conshohocken, PA: ASTM.

33. ASTM. 2004. Standard Specification for Structural Steel Shapes. ASTM A992-04a. V. 01.04. West Conshohocken, PA: ASTM.

34. ASTM. 2003. Standard Specification for Annealed or Cold- Worked Austenitic Stainless Steel Sheet, Strip, Plate, and Flat Bar. ASTM A666-03. V. 01.03. West Conshohocken, PA: ASTM.

35. Goble, G. G. 1968. Shear Strength of Thin Flange Composite Specimens. Engineering Journal, V. 5, No. 2: pp. 62-65. 36. Perry, T. C., R. R. Funk, and E. G. Burdette. 1983. Effect of Plate  Flexibility on Anchor Loads. Symposium on Anchorage to Concrete. Farmington Hills, MI: ACI.

37. American Welding Society (AWS). 2004. Structural Welding Code-Steel. AWS D1.1/D1.1M. 20th ed. Miami, FL: AWS.

38. ASTM. 2003. Standard Specification for Steel Bars, Carbon, Cold-Finished, Standard Quality. ASTM A108-03. V. 01.05. West Conshohocken, PA: ASTM.

39. AWS. 2002. Structural Welding  Code-Steel. AWS D1.1/ D1.1M. 18th ed. Miami, FL: AWS.

40. Chambers, H. A. 2001. Principles and Practices of Stud Welding. PCI Journal, V. 46, No. 5 (September-October): pp. 46-58.

41. Zhao, G. 1994. Tragverhalten von randfernen Kopfbolzenverankerungen bei Betonbruch [Load-Carrying Behavior of Headed Stud Anchors in Concrete Breakout Away from an Edge]. [In German.]  Report 1994/1. Stuttgart, Germany: Institut für Werkstoffe im Bauwesen, Universität of Stuttgart.

42. Cook, R. A., J. Kunz, W. Fuchs, and R. C. Konz. 1998. Behavior and Design of Single Adhesive Anchors under Tensile Load in Uncracked Concrete. ACI Structural Journal, V. 95, No. 1 (January):  pp. 9-26.

43. Bickel, T. S., and A. F. Shaikh. 2002. Shear Strength of Adhesive Anchors. PCI Journal, V. 47, No. 5 (September-October): pp. 92-101.