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Lateral-torsional-roll response  
of long precast concrete girders: 
Uncracked buckling load

William D. Galik, Richard Wiebe, John F. Stanton

■ Lateral buckling of precast and prestressed concrete 
girders that are not fully restrained against twisting 
rotations at their ends may occur during lifting and 
handling.

■ Typically, the critical load at which this instability 
occurs has been estimated by ignoring torsional de-
formations, which is unconservative.

■ This study develops a series solution to include 
torsional deformations for the simplest case of an 
end-supported girder. The single-term truncation of 
the series solution provides a nearly exact solution 
form that permits analysis of practical scenarios, such 
as girders with camber and overhangs.

All girders are subject to potential lateral-torsional 
deformations, in which vertical load can cause the 
girder to bend laterally and rotate about its longi-

tudinal axis. Those deformations may lead to instability. In 
steel construction, the phenomenon is most prevalent for 
girders in their final position, at which time they are loaded 
with full dead and live load but are prevented from rotating 
at their ends. This buckling mode involves lateral deflections 
and torsional rotations and is called lateral-torsional buck-
ling. During handling of steel girders, the self-weight alone 
is generally too light to cause lateral-torsional buckling. For 
prestressed concrete bridge girders, on the contrary, lateral 
stability problems are most often associated with handling 
conditions. Such girders are typically stiffer in torsion and 
heavier than their steel counterparts. The high torsional 
stiffness means that lateral instability is unlikely to occur 
in service, when the ends are twist-restrained, despite the 
load being its highest. However, during trucking and lifting 
(Fig. 1), the girder is not fully restrained against roll and it 
may therefore buckle by bending laterally and undergoing 
rigid-body roll about the longitudinal axis. This instability 
mechanism is often called roll buckling, but it is termed 
lateral-roll buckling in this article to explicitly denote the 
deformation components assumed to be engaged in the 
buckling mechanism. It is important to distinguish between 
twist, which involves deformation of the girder, and roll, 
which is a rigid-body rotational displacement. Instability due 
to lateral-roll buckling becomes more likely as slenderness 
increases.
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In recent decades, the use of prestressed concrete girders has 
become increasingly widespread because they are initial-
ly cost-effective and need little maintenance during their 
lifetime. However, span lengths have been increasing as the 
placement of intermediate piers has become challenging due 
to both environmental considerations and urban congestion.

The recent placement of a 223 ft (68.0 m) long precast con-
crete girder in Washington state1 highlights a trend of lateral 
stability issues as longer, more slender concrete girders are 
constructed. The Washington girder was constructed with a 
WF100TDG cross section (where WF designates wide flange, 
100 represents the girder depth in inches and TDG signi-
fies thin deck girder) that was modified from the standard 
Washington State Department of Transportation (WSDOT) 
WF100G (Fig. 2)2 by increasing the top flange width by 12 in. 
(300 mm) to improve the weak-axis moment of inertia and 
hence the stability of the long girder. Despite the modifica-
tions, excessive lateral deflections and relative twist were 
observed during placement, so the girders were straightened 
and intermediate lateral bracing was installed before further 
work was undertaken. The identification of torsional deforma-
tions, which are largely ignored in design procedures, raised 
concerns about the role of torsion in precast concrete girder 
instability. Oesterle et al.,3 Rose,4 and Zureick5 provide other 
reports of precast concrete girder stability issues.

Motivated by the observations from the Washington project 
and general concerns about increasing spans, the work herein 
re-evaluates current procedures for estimating stability of 

long precast concrete girders. An important consideration is 
the relative role of the different deformation components on 
girder stability. The three important types of deformations that 
may occur are as follows:

•	 minor-axis deflection

•	 rigid-body rotation (roll) about the longitudinal axis

•	 torsional deformations (twist) about the longitudinal axis

In common cases of instability, at least two of these deforma-
tion types are coupled. During handling, the roll and lateral 
deflection nominally represent the least stiff, and therefore the 
dominant, modes of deformation. The pioneering analysis by 
Mast6 leveraged this fact to provide elegantly simple stabil-
ity equations that neglect twist deformation and major-axis 
bending. Mast’s assumption that the torsional deformations 
are small simplifies the analysis while still providing ade-
quate stability estimates for girders of lengths used in the 
past. Current design procedures7,8 are based on Mast’s work 
and neglect twist deformation. However, ignoring any source 
of deformation produces unconservative stability estimates. 
When torsional flexibility (Fig. 3) is accounted for, the critical 
condition is labeled lateral-torsional-roll buckling because all 
three deformations (lateral bending, torsional deformation, 
and rigid-body roll) are involved in the instability mechanism. 
This article demonstrates that, when roll is possible, ignoring 
twist flexibility becomes increasingly unconservative with 
increasing slenderness.

Figure 1. Schematics of conditions for which the girder may roll.

Lifting/hanging configuration

Trucking/supported configuration
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Figure 2. Standard details of Washington State Department of Transportation (WSDOT) WF-series girder. Note: 1 in. = 25.4 mm; 
1 ft = 0.305 m. Source: Adapted from WSDOT (2020).
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Figure 3. Deflection schematics.
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Objectives and scope

The work reported herein forms part of a broader study. 
This part addresses the effect of torsional deformations and 
major-axis deflections on the elastic buckling load of un-
cracked girders as a function of the span, support conditions, 
and cross-sectional properties. The elastic buckling load of a 
perfect structural element is not necessarily a failure condi-
tion because the behavior of real members is complicated by 
geometric imperfections and inelastic behavior. It is more im-
portant to find the largest deformations that could be accom-
modated without the prior occurrence of some undesirable 
behavior, such as cracking or inelastic collapse. Further work, 
now ongoing, focuses on building a numerical tool to capture 
the effects of concrete cracking and symmetry-breaking im-
perfections (such as sweep, wind, or lifting loop eccentricity) 
on deflection amplification. As a necessary step, the present 
analytical study develops a closed-form solution to the later-
al-torsional-roll buckling problem. The long-term goal is to 
develop design procedures based on the parameter groupings 
from the closed-form solution that are adjusted by coefficients 
produced during the ongoing numerical work.

The scope of this paper includes the following:

•	 a review of the present methods (primarily based on the 
pioneering work of Mast) for calculation of buckling 
loads (lateral-roll buckling) of long-span girders

•	 a unification of the treatment of hanging and truck-sup-
ported configurations (Fig. 1)

•	 an extension of Mast’s approach to include the following 
practical scenarios:

	– effects of major-axis deflections

	– prestress-induced upward displacement (camber)

	– asymmetric overhangs

•	 the development of a closed-form equation for the later-
al-torsional-roll buckling load in the simplest case of an 
end-supported girder for which the centroid and shear 
center are nearly coincident (the solution is in the form of 
a series solution)

•	 the extension of the closed-form lateral-torsional-roll 
buckling formulation to include the already listed practi-
cal scenarios

Previous research on buckling load  
of concrete girders

For concrete components, some of the earliest investigations 
of what is herein termed lateral-torsional-roll buckling were 
those of Lebelle9 and Swann and Godden.10 Both of those 
studies included torsional deformations but did not result in a 

simple equation suitable for design because they used numeri-
cal methods. Thus, the findings from those investigations have 
not been widely used. Furthermore, the prestressed concrete 
girders of the time were short enough that lateral stability was 
seldom a problem.

The level of concern about lateral stability changed in 1971 
when Anderson11 reported incipient girder instability when 
a girder was lifted from the casting bed. That report was a pre-
cursor to work by Mast,6,12 who greatly simplified the analysis 
by ignoring torsional deformations. He provided an approx-
imate analysis to show that the torsionally rigid assumption 
was justified for the girders of that era. That work has formed 
the basis for much of PCI’s published information on lateral 
stability.7,13

Stratford and Burgoyne14 used nonlinear finite element anal-
ysis, including torsional flexibility and warping, to evaluate 
buckling loads. They presented the results in the form of 
dimensionless design charts. The usefulness of those charts 
in the present context is questionable because the longest 
beam commercially available to them at the time in 1999 was 
132 ft (40 m), which colors Stratford and Burogyne’s find-
ing that torsional deformations could reasonably be ignored. 
Moreover, the beams analyzed (SY beams used in the United 
Kingdom) had cross sections different from those used today 
in the United States. Those beams consisted of narrow bottom 
flanges, no top flange (to save weight) and thick webs. There-
fore, they had a relatively low ratio of minor axis-bending 
stiffness EI

yy
 (where E is the modulus of elasticity and I

yy
 is 

the minor-axis second moment of area) to torsional stiffness 
GJ (where G is the shear modulus and J is the second polar 
moment of area). Stratford and Burgoyne investigated three 
conditions:

•	 simply supported on supports from below that prevented 
end rotations about the longitudinal axis (herein termed 
z-rotation)

•	 transportation by truck with infinitely rigid suspension, 
but a roller at the rear trailer that allowed free z-rotation 
at that end

•	 hanging from yoked, inclined cables

They found that hanging was the most critical condition. 
The trucks in the United Kingdom that they considered were 
about an order of magnitude stiffer against roll than the trucks 
mentioned by Mast. Stratford and Burgoyne15 subsequently 
simplified the analysis for the purportedly critical hanging 
condition by ignoring the torsional deformations. Stratford, 
Burgoyne, and Taylor16 presented design equations based on 
the lateral-roll buckling (that is, no torsion) simplification, 
which simplify to the expressions proposed by Mast6 for the 
case of vertical lifting cables.

Later, Cojocaru17 and Plaut and Moen18 included torsion but 
based their analyses on a doubly symmetric, curved beam. 
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The resulting equations are not user-friendly as a basis for 
simplified design equations and result in a singularity if the 
radius of curvature of the beam is infinite (that is, if the beam 
is straight). This is a disadvantage in the present circumstanc-
es.

The effect of overhangs has been investigated by several 
researchers. Mast,6 Peart et al.,19 and Stratford and Burgoyne14 
all found that bringing in the lifting points from the girder 
ends greatly increased the buckling load. However, all authors 
assumed equal overhangs at each end, whereas trucking 
configurations for contemporary long girders often necessitate 
unequal overhangs. In review of the literature, no work was 
found that considered unequal overhangs.

The effects of major-axis deflection and camber have been 
studied by a few authors. Pi and Trahair20 and Trahair and 
Woolcock21 showed that when neither EI

yy
 nor GJ is negligibly 

small compared with major-axis flexural rigidity EI
xx

 (where 
I

xx
 is the major-axis second moment of area), the buckling 

load is increased due to prebuckling self-weight deflection. 
Peart et al.19 used an infinite series solution (and includ-
ed torsion) to show that the opposite was true for hanging 
components with net upward camber, such as usually occurs 
in prestressed concrete girders. For the special case of girders 
with twist restraint at their ends (that is, classical lateral-tor-
sional buckling) and negligible warping, Peart et al. suggested 
that camber has no practical effect on the buckling load.

The separation between the shear center and centroid was 
mentioned by Stratford and Burgoyne14 and Cojocaru17 as a 
parameter that affects the response of lifted beams. Neither 
author explained the significance of this parameter, nor did 
they provide equations to illustrate its effect. The effect has 
been explored for lateral-torsional buckling of monosymmet-
ric sections, where it has been shown22 that the buckling load 
can be calculated via an effective GJ that increases with the 
relative contribution of the beam’s compression flange to the 
weak-axis moment of inertia. Because traditional precast con-
crete sections in the United States are nearly doubly symmet-
ric, this paper foregoes the consideration of monosymmetry 
effects, although that factor should potentially be considered 
in future work.

Lateral-roll buckling

The exact uniformly distributed line load that causes lat-
eral-roll buckling q

LRB
 is approximated in this section for 

several levels of refinement. When appropriate, the level of 
refinement is explicitly denoted with additional subscripts. 
For example, q

LRB,0
 is the classical lateral-roll buckling load 

by Mast, whereas q
LRB,vpα is the lateral-roll buckling load of a 

girder with asymmetric overhangs (subscript α) and major-ax-
is deflections due to gravity (subscript v) and prestressing 
(subscript p). Throughout this work, consideration of these 
practical scenarios (subscripts v, p, α) is referred to as increas-
ing the fidelity level of the buckling load approximation. A 
higher-fidelity approximation accounts for more of the influ-

ential parameters, indicated by the subscripts, and so relies on 
fewer assumptions.

Coordinate system

The chosen coordinate system (Fig. 4) consists of two 
right-handed coordinate sets: a fixed global coordinate set 
(x

glo
,y

glo
,z

glo
) that remains oriented with the undeformed beam 

and a local coordinate set (x
loc

,y
loc

,z
loc

) that travels with the 
cross section as it displaces. Associated displacements are 
(u

glo
,v

glo
,w

glo
) and (u

loc
,v

loc
,w

loc
) for the global and local coor-

dinate sets, respectively. The origin is placed at the center of 
gravity of the concrete of the cross section. For the nearly 
doubly symmetric beam sections considered in this work, the 
center of gravity of the concrete practically aligns with the 
shear center. Coordinate directions are defined such that y

glo
 is 

vertical and positive downward (meaning self-weight is posi-
tive), while rotation about the z

glo
 axis θ is positive clockwise 

as the z
glo

 axis is oriented into the page.

Treatment of boundary conditions

Most investigators have separately considered the two cases 
(Fig. 1), which represent a hanging girder and a girder sup-
ported from below by a rotationally flexible bearing or truck. 
However, for analysis of the uncracked condition, the material 

Figure 4. Coordinate systems, with positive sense of rotation 
and deflections shown. Note: uglo = x displacement com-
ponent in the global reference frame; uloc = x displacement 
component in the local reference frame; vglo = y displacement 
component in the global reference frame; vloc = y displace-
ment component in the local reference frame; xglo = x position 
coordinate in the global reference frame; xloc = x position co-
ordinate in the local reference frame; yglo = y position coordi-
nate in the global reference frame; yloc = y position coordinate 
in the local reference frame; zloc = z position coordinate in the 
local reference frame; θ = girder rotation about longitudinal z 
axis.

xglo	,uglo

yglo	,vglo

yloc	 ,vloc

xloc	 ,uloc

θ
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models are linear, and both cases can be modeled as having 
a total rotational stiffness located at the center of gravity due 
to stiffness at supports and lifting loops Kθ. Figure 5 (cross 
section at one support of a symmetric girder) shows that the 
external restoring torque T is calculated by Eq. (1).

	                 T = -Ry
r
sinθ + Kθ,sup

θ� (1)

where

R	 =	vertical reaction at girder support (positive down-
ward, in other words, it typically takes negative 
values)

y
r
	 =	vertical distance from the center of gravity of con-

crete to the support point (positive downward)

Kθ,sup
	 =	support rotational stiffness due to rotational bearing 

or truck stiffness (equal to zero for a hanging gird-
er)

For girders without imperfections (as in this study), small 
rotations can be assumed for loads below the buckling load 
so that the moment equilibrium equation can be simplified to 
Eq. (2).

		      T = -(Ry
r
 – Kθ,sup

)θ� (2)

Equation (3) defines the term in parentheses as the total rota-
tional stiffness Kθ.

		       Kθ = Ry
r
 – Kθ,sup

� (3)

The same moment equilibrium equation can be used regard-
less of the support conditions, provided that an appropriate 
value is assigned to Kθ. This work focuses on the hanging 
girder case, but the same analysis is valid for the supported 
girder by defining an equivalent hanging distance y

r,eq
, that 

is valid for both a hanging girder or a girder supported from 
below (Eq. [4]).

		  yr ,eq =
Kθ

R
= yr −

Kθ ,sup

R
� (4)

In Eq. (4), y
r
 is positive for a girder supported from below 

because vertical distance is taken as positive downward. The 
restoring torque is written in general form as Eq. (5).

		            T = -Ry
r,eq
θ� (5)

The equivalent hanging distance y
r,eq

 will be used throughout 
the remainder of the paper.

Equilibrium configuration  
of an imperfect system

Mast6 evaluated lateral-roll buckling of hanging girders by 
considering the equilibrium of a girder with an eccentric 
lifting loop placement e

x
. Figure 6 shows the geometry of the 

system in its displaced configuration, where the full girder 
weight W is collinear with the lifting loop position. The initial 
eccentricity is used here simply as a tool for determining 
the buckling load. A study of the effects of imperfections of 
different types is beyond the scope of this work.

A component of the girder’s self-weight acts in the x
loc

 direc-
tion, so the girder bends laterally and the center of gravity of 
the concrete of the entire girder is displaced. It is useful to 
introduce the displacement of a prismatic simply supported 
beam subject to a distributed load.

		  Δ ζ( ) = qL
4

EI
ζ 4 − 2ζ 3 +ζ

24
⎛
⎝⎜

⎞
⎠⎟

� (6)

where

Δ	 = displacement of a prismatic simply supported beam 
subjected to a distributed load

ζ	 = normalized measure of distance along girder length 
= z/L

z	 = measure of distance along girder length 

L	 = total girder length

q	 = distributed load on girder (positive downward)

E	 = modulus of elasticity

I	 = second moment of area

Figure 5. Torsional restoring moment. Note: Arrows are drawn 
according to positive sign convention, with negative sup-
port reactions noted accordingly. Kθ,sup = support rotational 
stiffness due to rotational bearing or truck stiffness; R = shear 
reaction at girder support (positive downward); yr = vertical 
(hanging) distance from the center of gravity of concrete to 
the support point; zloc = z position coordinate in the local ref-
erence frame; θ = girder rotation about longitudinal z axis.

R < 0

R < 0

yr < 0
θ

yr > 0

(Kθ,sup)θ 
   < 0

θ

Hanging girder Girder supported 
on rotationally 

flexible pad
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Taking the average over the span of Eq. (6) results in a coeffi-
cient of 1/120 for the case of no overhangs. The average beam 
deflections in the x

loc
 and y

loc
 directions due to a unit distribut-

ed load are specialized as the compliance coefficients (where 
overbars are used to indicate average values) calculated in Eq. 
(7) and (8).

		             cx =
L4

120EIyy
� (7)

where

cx =
L4

120EIyy
	 =	compliance coefficient for minor-axis deflection

		              cy =
L4

120EIxx
� (8)

where

cy =
L4

120EIxx
	 =	compliance coefficient for major-axis deflection

The applied distributed load q acts downward and is positive. 
For the rotated beam, the load magnitudes acting in the x

loc
 and 

y
loc

 directions are q(sin θ) and q(cos θ), respectively. While the 
load of interest for these problems is typically the self-weight, 
the equations are developed for a distributed load of arbitrary 
magnitude. Equations (9) and (10) calculate the center-of-mass 
displacements in the x

loc
 and y

loc
 directions, respectively, of a 

torsionally rigid, end-supported girder subjected to a uniform 
distributed line load, in the absence of camber.

		  uloc = cxqsinθ = qL4

120EIyy
sinθ � (9)

where

uloc = cxqsinθ = qL4

120EIyy
sinθ	 =	center-of-mass displacement in x

loc
 direction of a 

torsionally rigid, end-supported girder subjected 
to a uniform distributed line load in the absence of 
camber

	         vloc,v = cyqcosθ = qL4

120EIxx
cosθ � (10)

where

vloc,v = cyqcosθ = qL4

120EIxx
cosθ	 =	center-of-mass displacement in y

loc
 direction of a 

torsionally rigid, end-supported girder subject to 
uniform distributed line load in the absence of  
camber

The subscript v is included in Eq. (10) to distinguish the 
vertical deflection due to applied loads from the vertical 
deflections due to internal cambering loads. (This distinction 
is discussed later.)

Equations (9) and (10) include three unknowns: the two 
coordinates of the center of mass of the girder, and the roll 
angle. The system is solved by enforcing moment equilibrium 
as a third equation, which is satisfied when the self-weight 
and lifting loop reactions are collinear. This is done at several 
different levels of fidelity in the following sections. 

Development of Mast’s critical load

Mast6 ignored the component of major-axis deflection and 

Figure 6. Lateral-roll deformation of a beam with a positive roll angle due to a negative lifting-loop eccentricity. Note: ex = lifting 
loop eccentricity (positive in +x direction); L = total girder length; uloc = x displacement component in the local reference frame; 
u

loc
 = x displacement component of girder center of mass; vloc = y displacement component in the local reference frame;  

W = total girder weight; yr = vertical (hanging) distance from the center of gravity of concrete to the support point; zglo = z posi-
tion coordinate in the global reference frame; zloc = z position coordinate in the local reference frame; α1 = overhang ratio at end 
1; α2 = overhang ratio at end 2; θ = girder rotation about longitudinal z axis.

Lifting LoopBeam center mass
W
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zglo 

xloc

α1L
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x
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obtained Eq. (11), a collinearity equation (Fig. 6 with vloc,v = cyqcosθ = qL4

120EIxx
cosθ 

equal to 0 and y
r,eq

 less than 0).

		  -y
r,eq

tanθ = uloc – e
x
� (11)

This equation allows the girder rotation about the longitu-
dinal axis θ to be computed for a known section and given 
lifting loop eccentricity in the absence of twist deformations. 
Because the girder rotates as a rigid body, this displacement 
is colloquially called roll. In the equation, θ is not limited to 
being small.

The initial girder roll angle due to eccentric lifting-loop sup-
port θ

i
 may be defined as the rigid-body roll angle for a girder 

that has initial imperfections but is undeformed by the loads. 
An expression for the initial roll angle is provided in Eq. (12).

		          tanθ =
ex
yr ,eq

� (12)

Combining Eq. (9), (11), and (12) and rearranging gives Eq. 
(13).

		  tanθ =
tanθ i

1+ q
yr ,eq / cx

cosθ
� (13)

If θ is taken to be small, cos θ equals 1.0 and Eq. (13) takes 
the form of a magnification factor, similar to the one often 
used for column buckling. Any initial roll angle becomes 
magnified without bound when q approaches -y

r,eq
/cx =

L4

120EIyy
. It 

follows that Eq. (14) defines the lateral-roll buckling load 
derived by Mast6 q

LRB,0
.

	          qLRB,0 = −
yr ,eq
cx

= −
120EIyy yr ,eq

L4
� (14)

The presence of the average compliance coefficient in 
Eq. (14) indicates that only the net displacement of the center 
of mass is relevant for calculating the lateral-roll buckling 
load (for prismatic girders).

Incorporation of downward major-axis 
deflection

This section extends the results of Mast’s work6 to include 
downward major-axis deformation. Figure 6 shows the de-
formed girder configuration when major-axis gravity deflec-
tions are included. Again, applying the collinearity assump-
tion yields Eq. (15).

	          (vloc,v – y
r,eq

)tanθ = uloc  – e
x
� (15)

Substituting the average deflections in the local reference 
frame (Eq. [9] and [10]) and rearranging gives Eq. (16).

	        − yr ,eq tanθ = uloc 1−
I yy
Ixx

⎛

⎝
⎜

⎞

⎠
⎟ − ex � (16)

This expression is identical to Eq. (11) except for the added 
factor of (1 – I

yy
/I

xx
).

Again, following the procedure of Mast6 (that is, buck-
ling-load-by-magnification) produces Eq. (17), which defines 
the lateral-roll buckling load of a girder with major-axis 
deflections due to gravity.

qLRB,v = −
120EIyy yr ,eq

L4 1−
I yy
Ixx

⎛

⎝
⎜

⎞

⎠
⎟

= qLRB,0
1

1−
I yy
Ixx

� (17)

The subscript v indicates that this result incorporates 
strong-axis deflection. As the ratio I

yy
/I

xx
 increases, the critical 

load increases. This agrees with the findings of Trahair and 
Woolcock.21 When I

yy
/I

xx
 is greater than or equal to 1.0, the 

buckling load transitions through a pole from positive to 
negative infinity, implying that buckling is impossible. This 
unconditional stability is reflected in the fact that the Ameri-
can Institute of Steel Construction’s Specification for Struc-
tural Steel Buildings (AISC 360)23 allows, without giving 
reasons, lateral buckling to be ignored for a steel beam bent 
about its minor axis. A double tee is an example of a member 
with I

yy
/I

xx
 greater than or equal to 1.0. It is inherently stable 

during lifting.

Figure 7, which plots Eq. (17) normalized by q
LRB,0

, illus-
trates the effect of major-axis deformation on the lateral-roll 
buckling load. For prestressed concrete bridge girders, the 
value of I

yy
/I

xx
 varies among different section shapes but is 

generally less than about 0.25. The specific values for several 
example shapes are shown in the figure for illustration, where 
gravity deflections have a stabilizing effect (in the absence of 
camber). Upward camber produces an offsetting destabilizing 
effect, as will be discussed in the next section.

Incorporation of draped prestressing 
effects

Long prestressed concrete girders will typically display a net 
upward camber under the combined effects of prestress and 
self-weight. For the analysis of simply supported girders, 
bottom tendons are herein idealized as being draped parabol-
ically such that they produce an upward deflection equal to 
what would be caused by an upward uniform load q

p
 (which is 

negative-valued because it points upward). Although the true 
cable layout is not strictly parabolic for a typical pretensioned 
girder, an equivalent q

p
 can be calculated for other tendon 

profiles (for example, straight or harped) without loss of 
generality. This is done by taking advantage of the net center 
of mass location observation that accompanied Eq. (14). Thus, 
an equivalent uniform q

p
 can always be obtained, provided 

that it produces an average deflection that is the same as that 
caused by the actual strand pattern.

Note that the nominal prestressing load q
p
 remains oriented 

with the major axis as the girder rotates. For reference, girders 
long enough to require stability analysis typically have the 
following condition:

−2.5 ≤
qp
qsw

≤ −1.5
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where

q
sw

	 =	uniformly distributed girder self-weight

In practice, the term camber is usually taken to mean net 
camber, that is, the difference between the deflections due 
to self-weight (downward) and prestressing (upward). Here, 
the two loadings cause slightly different deflections when θ 
does not equal zero because the prestressing remains oriented 
with the major axis; therefore, the two loadings are treated 
separately. Considered independently from gravity loads, the 
nominal prestressing load q

p
 causes a deflection v

loc,p
(z) that 

varies as a function of the longitudinal position. The center of 
mass displacement in the y

loc
 direction of a torsionally rigid, 

rotated girder due to the prestressing load, vloc,p  is calculated 
using Eq. (18).

		              vloc,p = qpcy � (18)

In this case, a trigonometric term does not appear because q
p
 

rotates with the girder. Equation (10) can then be generalized 
to include both the prestressing and gravity effects to produce 
Eq. (19).

	        vloc,vp = vloc,v + vloc,p = cy qcosθ + qp( ) � (19)

where

vloc,vp  	 =	center of mass displacement in y
loc

 direction of a 

torsionally rigid, end-supported girder due to gravi-
ty and prestressing

Again, insertion of the appropriate center-of-mass deflections 
into the moment equilibrium triangle of Fig. 6 produces an 
equilibrium expression Eq. (20).

	 − yr ,eq tanθ = uloc 1−
I yy
Ixx

⎛

⎝
⎜

⎞

⎠
⎟ − vloc,p tanθ − ex � (20)

Reorganizing Eq. (20) and solving buckling-load-by-mag-
nification give the lateral-roll buckling load of a girder with 
major-axis deflections due to gravity and prestressing q

LRB,vp
.

	 qLRB,vp = qLRB,0

1−
vloc,p
yr ,eq

⎛

⎝
⎜

⎞

⎠
⎟

1−
I yy
Ixx

⎛

⎝
⎜

⎞

⎠
⎟

� (21)

In Eq. (21), both vloc,p  and y
r,eq

 are negative, so the effect of 
upward prestressing is to destabilize the girder and reduce the 
buckling load.

While Eq. (17) showed that girders without prestressing can 
avoid buckling unconditionally only if I

yy
/I

xx
 is greater than or 

equal to 1.0, this critical ratio increases to the combined con-
ditions I

yy
/I

xx
 ≥ -q

LRB,0
/q

p
 and I

yy
/I

xx
 ≥ 1.0 when prestressing de-

flections are included. This phenomenon occurs because when 
q + q

p
 is less than 0.0, the girder has a net upward camber and 

Figure 7. Critical load for girders with flexible major axis, relative to Mast’s lateral roll buckling prediction, which assumes the ma-
jor-axis second moment of area Ixx is rigid. The values for four specific girder cross sections are placed on the curve. Note: Iyy = 
minor-axis second moment of area; qLRB,0 = classical lateral-roll buckling load derived by Mast; qLRB,v = lateral-roll buckling load of 
a girder with major-axis deflections due to gravity; U78G4 = tub girder with 84 in. depth and 48 in. soffit width; WF50G = wide-
flange girder with 50 in. depth; WF69DG = wide flange deck girder with 69 in. depth; PCIBT-72 = bulb tee with 72 in. depth.

Iyy
Ixx

q L
RB
,v

q L
RB
, 0
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thus is susceptible to simple inverted pendulum instability 
even if I

yy
 approaches infinity. In the absence of prestressing, 

q
p
 equals 0, and Eq. (20) collapses to Eq. (16). If the magni-

tudes of the prestressing load q
p
 and the classical lateral-roll 

buckling load q
LRB,0

 are equal and opposite, the equilibrium 
equation (Eq. [20]) can be rearranged to show that the critical 
girder load matches Mast’s classical result. This is because 
the upright girder immediately prior to the onset of buckling 
is exactly straight with no major-axis deflection, regardless of 
I

yy
/I

xx
.

Incorporation of overhangs

The equilibrium expression for the simplest scenario without 
major-axis deflection or camber (Eq. [11]) can be generalized 
to include the effect of overhangs (which are shown in Fig. 1). 
The result takes the form of a stabilizing overhang factor that 
decreases the center-of-mass deflection (thereby increasing 
the critical load). After the development of the overhang fac-
tor for the simple case, the same factor can be used with the 
more general equations presented in the previous section.

Mast6 as well as Stratford and Burgoyne15 have shown that the 
compliance coefficients in Eq. (7) and (8) are multiplied by a 
lateral-roll buckling overhang factor for symmetrically sup-
ported, torsionally rigid girder f

LRB
(α), which is less than 1.0.

		  cx ,a =
L4

120EIyy
fLRB α( ) � (22)

where

cx,a 	 = compliance coefficient for minor-axis deflection of 
a beam with overhangs

		  cy ,a =
L4

120EIxx
fLRB α( ) � (23)

where

cy,a 	 = compliance coefficient for major-axis deflection of 
a beam with overhangs

		  fLRB α( ) = bLRB, jα
j

j=0

4∑ � (24)

α	 = ratio of overhang distance to total length of girder L

b
LRB,j

	 = coefficients for polynomial order j in the lateral-roll 
buckling overhang factor = [+1, -10, +30, -20, -10]

j	 = index representing the polynomial degree of α in 
each term of the overhang factor

Equations (22), (23), and (24) are obtained by evaluating the 
average deflection, relative to the chord between supports, of 
a beam with equal overhangs subject to a uniform load. By 
the same method, the equations are extended here to include 
unequal overhangs, for which the overhang factor becomes 
Eq. (25).

	          fLRB α ,t( ) = bLRB, js j t( )αm
j

j=0

4∑ � (25)

where

f
LRB

(α,t)	=	overhang factor for an asymmetrically supported, 
torsionally rigid girder

s
j
(t)	 =	fourth-order polynomial in t, representing the ef-

fects of asymmetry

t	 =	girder’s degree of asymmetry, as a function of the 
two end-overhang ratios = (α

1
 − α

2
)/(α

1
 + α

2
)

α
1
	 = overhang ratio at end 1

α
2
	 = overhang ratio at end 2

α
m
	 = mean overhang ratio = (α

1
 + α

2
)/2

The overhang coefficients are defined by Eq. (26).

           sj t( ) = 1,1, 1− t
2

3
⎛
⎝⎜

⎞
⎠⎟
, 1− 3t2( ), 1− t2( ) 1+ 3t2( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� (26)

The representation of Eq. (25) separates the effect of mean 
overhang length and asymmetry relative to that mean. The 
value of t varies from 0.0 (equal overhangs) to 1.0 (no over-
hang one end). For t equal to 0.0, f

LRB
(α,t) condenses to the 

expression in Eq. (24). 

When the effects of major-axis deflections and prestressing 
are included, the lateral-roll buckling condition for a hanging 
girder with overhangs is solved by substituting Eq. (9), (18), 
(22), (23), (24), and (25) into Eq. (20). Following the proce-
dure from the earlier section “Development of Mast’s Critical 
Load,” it is shown that the beneficial effect of overhangs 
can be expressed as a stabilization factor. For the load, that 
expression is Eq. (27).

		
qLRB,vpa
qLRB,vp

= 1
fLRB α ,t( ) � (27)

where

q
LRB,vpa

	 = lateral-roll buckling load of a girder with asym-
metric overhangs and major-axis deflections due to 
gravity and prestressing

Figure 8 plots Eq. (27) against the mean overhang value 
for various degrees of asymmetry. For the symmetric case (t 
equals 0), the support location that maximizes the overhang 
factor is 0.23L, which corresponds approximately to the point 
(0.207L) at which the absolute values of the negative support 
moment and the peak positive moment are equal. This value 
represents a shift in behavior, beyond which overhangs trend 
toward unfavorable cantilever behavior. With unequal over-
hangs, which may occur in transportation because of trucking 
vehicle limitations, the peak effectiveness, and the α

m
 value at 

which it occurs, reduce as the degree of asymmetry increases.
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For completeness, Fig. 8 shows the overhang stabilization 
factor for the full range of overhangs (0 ≤ α

m
 ≤ 0.5). Higher 

α
m
 values represent configurations that are impractical for 

hanging girders, although they may be applicable to other 
applications, such as spreader beams.24 Individual overhang 
values (for example, α

1
, α

2
) are unlikely to exceed 0.15 to 

avoid excessive top-flange tension due to prestressing or a 
large number of top strands. Net top tension reduces the roll 
angle needed to cause top-flange cracking, which constitutes 
an important criterion used in safety evaluation of girders. For 
α

m
 less than 0.15, the stabilization factor 1/f

LRB
(α,t) is always 

slightly higher than the stabilization factor for the symmetric 
case. This allows safe use of the average overhang distance 
with the simpler Eq. (24) for any realistic prestressed concrete 
girder, regardless of the asymmetry degree.

If a girder has unequal overhangs, the vertical reaction at each 
support will be different. If the y

r,eq
 distance is also different 

at each end, the total resisting torque will be affected, and the 
buckling load will change. For a prismatic, torsionally rigid, 
asymmetrically supported girder, the results are the same as 
for a symmetric girder if the effective hanging distance in 
Eq. (28) is used.

	 yr ,eff =
yr1,eq 0.5−α 2( ) + yr2,eq 0.5−α1( )

1−α1 −α 2

� (28)

where

y
r,eff

	 = effective hanging distance for asymmetrically 
supported, torsionally rigid girder with different 
equivalent hanging distances at each support

y
r1,eq

	 = equivalent hanging distance at end 1

y
r2,eq

	 = equivalent hanging distance at end 2

Incorporation of torsional 
deformation

The approach presently used to analyze lateral stability of 
long precast concrete girders in practice was summarized and 
extended in the previous section on lateral-roll buckling. That 
approach relies on the simplifying assumption that girders 
are stocky enough to be treated as torsionally rigid. These 
methods are typically derivative of Mast’s approach, which 
decouples the deformation components to find the center 
of gravity of the concrete. That direct equilibrium approach 
is more challenging for torsionally flexible girders, so this 
section instead starts from the governing differential equation 
for beam twist. 

First, a modal approach is used to solve the coupled later-
al-torsional-roll buckling problem for the simplest case of 
a girder hanging from its ends. As is done for the classical 
lateral-roll buckling7 and lateral-torsional buckling25 solu-
tions, the governing equation ignores major-axis flexibility. 
A one-mode approximation provides insight into a near-ex-
act lateral-torsional-roll buckling solution, in the form of an 
interaction between lateral-roll buckling and lateral-torsional 
buckling behavior. Then, the solution form is used to develop 
a more general lateral-torsional-roll buckling solution that 
captures major-axis deflections, prestressing, and overhangs. 
This progression follows the development of the lateral-roll 

Figure 8. Effect of mean overhang ratio αm and asymmetry factor t on lateral-roll stabilization factor. Note: fLRB(α, t) = overhang 
factor for an asymmetrically supported, torsionally rigid girder.

1
t = 0.00
t = 0.25
t = 0.50
t = 0.75
t = 1.00
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buckling load described in the previous section for various 
fidelity levels.

Development of the lateral-torsional-roll 
buckling design equation

The equation governing the twist angle for an end-supported 
girder with a uniformly distributed vertical line load, negligi-
ble major-axis bending, and no end restraint of warping, writ-
ten in terms of the unitless variable ζ (equal to z/L) is given by 
Eq. (29). The appendix provides the derivation.

	
d 2θ ζ( )
dζ 2

+κ
2L6

4
ζ 2 1−ζ( )2θ ζ( ) = 0 � (29)

where

θ(ζ)	 = girder rotation about the z axis (twist), along the 
girder length

κ	 = load parameter = q GJEIyy

For the classical analysis of lateral-torsional buckling, the 
boundary conditions are typically twist fully restrained (θ 
equals 0) or torsionally free (dθ/dζ equals 0). For the later-
al-torsional-roll buckling problem, both ends are free to rotate 
but have a nonzero end torque dictated by the total torsion-
al support stiffness Kθ given in Eq. (3). For the equivalent 
hanging girder with uniform line load q and no overhangs, the 
boundary conditions are given in Eq. (30) and (31).

		  Mz .loc ζ = 0( ) = − qL
2
yr ,eqθ0 � (30)

where

M
z,loc

	 = internal girder moment about the z
loc

 direction

θ
0
	 = rigid-body roll at supports

		  Mz ,loc ζ = 1( ) = + qL
2
yr ,eqθ0 � (31)

Using the net-section relationship below in combination with 
Eq. (30) and (31) gives Eq. (32) and (33).

Mz .loc = GJ
dθ
dz

= GJ
L
dθ
dζ

.

		  GJ
L
dθ
dζ ζ=0 = − qL

2
yr ,eqθ 0( ) � (32)

		
GJ
L
dθ
dζ ζ=1 =

qL
2
yr ,eqθ 1( ) � (33)

where

θ(0)	 = rotation angle at end 1, equal to the rigid-body roll 
θ

0
 if girder is symmetric

θ(1)	 = rotation angle at end 2, equal to the rigid-body roll 
θ

0
 if girder is symmetric

The shear center may be separated from the center of grav-
ity of the concrete for a singly symmetric girder. The effect 
is to alter the torsional rigidity GJ as done, for example, by 
Anderson and Trahair.26 For cross sections that are reasonably 
approximated as doubly symmetric (as in this study), the error 
in ignoring this effect is small.

To keep the results tractable, a Ritz-Galerkin representation 
is used for the solution of Eq. (29). This starts from the weak 
form of the governing equation as illustrated in Eq. (34).

         θ ζ( )
0

1

∫
d 2θ̂ ζ( )
dζ 2

+κ
2L6

4
ζ 2 1−ζ( )2 θ̂ ζ( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dζ = 0 � (34)

where

θ ζ( ) 	 = weight function

θ̂ ζ( ) 	 = approximation of the girder twist along the length

The twist approximation function is assumed to have the form 
of Eq. (35).

	 θ̂ ζ( ) = θ0 + âmNm ζ( )m=1

M∑ =θ0 + N⎡⎣ ⎤⎦ â{ } � (35)

where

M	 = number of shapes functions employed in the twist 
approximation

âm 	 = coefficients of the mth twist shape approximation 
function

N
m
(ζ)	 = set of twist shape functions that are zero at the gird-

er ends

[N]	 = twist shape functions collected into a row matrix

â{ } 	 = coefficients of the mth twist shape approximation 
function collected into a column vector

The function approximation may be refined by increasing the 
number of shape functions used. 

The θ
0
 term of Eq. (35) captures the rigid-body roll at the 

supports, while the scaled shape functions approximate the 
torsional deformations between supports. Although not done 
here, this approximation could be extended to allow θ

0
 to 

vary linearly between the two ends. Doing so would extend 
the solution to cover asymmetric girders but would result in 
more complex equations. Substituting Eq. (35) into Eq. (32) 
(equivalently into Eq. [33]) allows for the elimination of θ

0
 

as a function of the derivative dθ/dζ. This yields Eq. (36), a 
version of the approximate twist function. 

θ̂ ζ( ) =
−2GJ

dθ 0( )
dζ

qL2yr ,eq
+ N⎡⎣ ⎤⎦ â{ } = − 2GJ

qL2yr ,eq
B0⎡⎣ ⎤⎦ â{ }+ N⎡⎣ ⎤⎦ â{ }

� (36)
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where

[B
0
]	 = derivative of the girder-twist shape function matrix 

[N] with respect to ζ, evaluated at ζ = 0 (If Eq. [33] 
were used, this would be evaluated at ζ = 1 but the 
result would be the same.)

To apply the Galerkin assumption, the weight function in the 
weak form of the twist-governing equation θ  is constructed 
from the same shape functions as the approximation function, 
which gives Eq. (37).

		  θ z( ) = N⎡⎣ ⎤⎦ a{ } = a{ }T N⎡⎣ ⎤⎦
T

� (37)

where 

a{ } 	 = weighting coefficients of the mth weight function, 
collected into a column vector

Finally, substituting the assumed solution form of Eq. (36) 
and the weight function from Eq. (37) into Eq. (34) yields 
Eq. (38), an eigenvalue expression for the buckling load (con-
tained within the parameter κ).

a{ }T
N

T d 2N
d 20

1
d

+
2L6

4
2 1( )2

N
T 2GJ

qL2 yr ,eq

B0 + N d
0

1
â{ }

= 0{ }, a{ }
 

� (38)

Equation (38) is satisfied for arbitrary values of the weighting 
coefficients a{ }, so the result is a homogeneous system of 
equations of the form in Eq. (39).

		  Ktot⎡⎣ ⎤⎦ â{ } = 0{ } � (39)

where

[K
tot

]	 =	weak-form coefficient matrix for M-mode approx-
imation of girder twist (bracketed expression in 
Eq. [38])

Rewriting κ in terms of q from Eq. (29) and collecting the 
three matrix integrals ([K

1
], [K

2
], [K

3
]) from the bracketed 

term of Eq. (38) gives Eq. (40) to (43).

         Ktot⎡⎣ ⎤⎦ = K1⎡⎣ ⎤⎦ −
qL4

2EIyy yr ,eq
K2⎡⎣ ⎤⎦ +

q2L6

4GJEIyy
K3⎡⎣ ⎤⎦ � (40)

where

		  K1⎡⎣ ⎤⎦ = N⎡⎣ ⎤⎦
T d 2N
dζ 2

⎡

⎣
⎢

⎤

⎦
⎥0

1

∫ dζ � (41)

	         K2⎡⎣ ⎤⎦ = ζ 2 1−ζ( )2 N⎡⎣ ⎤⎦
T
B0⎡⎣ ⎤⎦dζ0

1

∫ � (42)

	          K3⎡⎣ ⎤⎦ = ζ 2 1−ζ( )2 N⎡⎣ ⎤⎦
T
N⎡⎣ ⎤⎦dζ0

1

∫ � (43)

The critical load can be determined by finding the values of 
q that produce a singular matrix K

tot
. In such cases, Eq. (39) 

would permit arbitrarily large deflections. This defines the 
buckling load. For the symmetric problem considered herein, 
the family of odd sine functions provides a basis that captures 
the exact response (in which case the superscript hat could be 
removed) in the limit and still produces a good approxima-
tion with short truncations. This work leverages a one-mode 
approximation to avoid computational solutions, which are 
less tractable for use in design. The one-mode solution leads 
to a closed-form representation, which allows the relevant 
dimensionless parameter groupings to be identified. The one-
mode shape function N

1
 equals sin πζ and results in a scalar 

K
tot

 (Eq. [44]).

         Ktot = −k1 −
k2L

4

EIyy yr ,eq
q̂LTRB,0 +

k3L
6

GJEIyy
q̂LTRB,0
2 = 0 � (44)

where the bracketed expressions of Eq. (41), (42) and (43) are 
also simplified to scalar values

k
1
	 =	k1 =

π 2

2

k
2
	 =	k2 =

24− 2π 2( )
π 4

k
3
	 =	k3 =

π 4 + 45( )
240π 4

and where

q̂LTRB,0 	 =	one-mode approximate lateral-torsional-roll buck-
ling load of a girder without major-axis deflection, 
prestressing, or overhangs 

Subscript 0 indicates the same fidelity level as Mast’s classical 
lateral-roll buckling solution.

Equation (44) can be rearranged algebraically in terms of 
two special case solutions, namely the one-mode lateral-roll 
buckling and lateral-torsional buckling solutions, to give 
insight into a solution form that can be useful for design. The 
lateral-roll buckling solution is found by setting GJ → ∞ and 
solving Eq. (44). Similarly, lateral-torsional buckling is solved 
by setting y

r,eq
 → ∞ (that is, infinite roll resistance at sup-

ports). The two results are given in Eq. (45) and (46).

           q̂LRB,0 = −
k1
k2

⎛

⎝⎜
⎞

⎠⎟
EIyy yr ,eq
L4

⎛

⎝
⎜

⎞

⎠
⎟ = −113

EIyy yr ,eq
L4

⎛

⎝
⎜

⎞

⎠
⎟ � (45)

where

q̂LRB,0 	 = one-mode approximation of classical later-
al-roll-buckling load

           q̂LTB,0 =
k1
k3

⎛

⎝⎜
⎞

⎠⎟
GJEIyy
L6

⎛

⎝
⎜

⎞

⎠
⎟ = 28.4

GJEIyy
L3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ � (46)

where
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q̂LTB,0 	 = one-mode approximation of classical lateral-tor-
sional buckling load

Again, y
r,eq

 is less than 0 for the equivalent hanging case, and 
hence the critical lateral-roll buckling load is positive. In these 
expressions, the hat indicates the result of a truncated modal 
approximation whereas the subscript denotes that these results 
do not include major-axis deflection, prestressing, or over-
hangs. The one-mode lateral-torsional buckling coefficient of 
28.4 is close to the classical solution,25 which is approximate-
ly 28.3. This is because the assumed sinusoidal shape is close 
to the true lateral-torsional buckling mode shape for a simply 
supported beam with a distributed load.25 The one-mode lat-
eral-roll buckling coefficient of 113 is not as close to Mast’s 
classical coefficient6 of 120 from Eq. (11). Though the one-
mode solution does not yield exact results, the Ritz-Galerkin 
method allows for the development of a solution form that is 
nearly exact, as follows.

A combination of Eq. (44), (45), and (46), with some rear-
rangement (and the fact that the center of gravity and center 
of twist align for doubly symmetric cross sections), produces 
Eq. (47).

		
q̂LTRB,0
q̂LTB,0

⎛

⎝
⎜

⎞

⎠
⎟

2

+
q̂LTRB,0
q̂LRB,0

= 1 � (47)

where

q
LTB,0

	 = classical lateral-torsional buckling load derived by 
Timoshenko and Gere

q
LRB,0

	 = classical lateral-roll buckling load derived by Mast

This interaction equation represents the transition of the 
one-mode approximate lateral-torsional-roll buckling load 
between roll-dominated behavior and twist-dominated behav-
ior. It is hypothesized that the form of the interaction equation 
will prove sufficiently accurate for the exact, as opposed to 
the modal approximate, solution; and the inclusion of features 
such as major-axis bending, prestressing, and overhangs. The 
converged solution obtained using additional modes24 shows 
that this hypothesis is not identically correct but that the 
error is small. Hence, the superscript hats indicating a modal 
approximation and the subscripts indicating the limited model 
fidelity can both be dropped to make Eq. (48), a generic inter-
action equation.

		
qLTRB
qLTB

⎛

⎝⎜
⎞

⎠⎟

2

+
qLTRB
qLRB

= 1 � (48)

where

q
LTRB

	 = exact lateral-torsional-roll buckling load

q
LTB

	 = exact lateral-torsional buckling load

q
LRB

	 = exact lateral-roll buckling load

Figure 9 plots this interaction equation, which shows that tor-
sional flexibility only reduces the buckling load slightly when 
lateral-roll buckling-type boundary conditions prevail (that is, 
q

LTRB
/q

LTB
 is less than 0.1). The generic interaction equation 

can be used at any desired level of fidelity.

Figure 9. Effect of interaction between rigid-roll and relative twist on the lateral-torsional-roll buckling load. Note: qLRB = exact 
lateral-roll buckling load; qLTB = exact lateral-torsional buckling load; qLTRB = lateral-torsional-roll buckling load from the near-ex-
act interaction equation solution form.

qLTRB
qLTB

q L
TR
B

q L
RB



36 PCI Journal  | May–June 2024

Baseline lateral-torsional-roll buckling 
load without major-axis deformation, 
prestressing, or overhangs

If the classical lateral-roll buckling solution q
LRB,0

6 and the 
classical lateral-torsional buckling solution q

LTB,0
25 are used in 

the interaction Eq. (48), the quadratic interaction equation can 
be solved for the corresponding “basic” lateral-torsional-roll 
buckling load for an end-supported girder with no major-axis 
deflections q

LTRB,0
. This can be rearranged as a torsion knock-

down factor g(η
0
) that multiplies the well-known q

LRB,0
 result. 

The knockdown factor isolates the effect of torsion on the 
buckling load and follows the same subscript convention 
already outlined for q. In other words, the functional forms of 
Eq. (49) and (50) do not change with higher levels of fidelity 
(to be introduced in the subsequent section).

		       qLTRB,0 = g η0( )qLRB,0 � (49)

		    g η0( ) = 2η0
1+η0 −1( ) � (50)

where

η
0
	 = torsion parameter for end-supported girder with 

rigid major axis

Equations (51) and (52) provide calculations for η
0
.

			   η
0
 = 71.0β2� (51)

		     =
yr ,eq

L

2
EI yy

GJ
β � (52)

The knockdown version of the lateral-torsional-roll buckling 
equations is particularly useful because the critical lateral-roll 
buckling load is easy to calculate and is already extensively 
used in current design procedures. Furthermore, the ef-
fects of roll and twist are separated and the dimensionless 
cross-sectional parameter β is easy to calculate. A β value of 
zero produces the lateral-roll buckling solution while large β 
values tend toward to the lateral-torsional buckling solution. 
Figure 10 plots the basic case buckling loads (q

LRB,0
, q

LTB,0
,  

q
LTRB,0

) normalized by the classical lateral-roll buckling 
solution, so that the blue curve represents the torsional 
knockdown factor. The figure indicates that β equal to 2 can 
practically be taken as the lateral-torsional buckling condition. 
Most precast concrete girders that require stability checks are 
characterized by a β value less than 0.1 while steel girders 
have a higher EI

yy
/GJ ratio and will be characterized by larger 

β values. Practical considerations will be discussed in more 
detail in the “Example Application” section.

Incorporation of downward major-axis 
deflection and draped prestressing 
effects

As indicated by the subscript 0 in Eq. (49), the knockdown fac-
tor plotted in Fig. 10 is specific to end-supported girders where 
the major-axis bending and prestressing upwards displacement 
are negligible. These approximations permitted a tractable 

Figure 10. Effect of unitless cross-sectional parameter β on the level of interaction between lateral-roll buckling and lateral-tor-
sional buckling basic solutions. Note: qLRB,0 = classical lateral-roll buckling load derived by Mast; qLTB,0 = classical lateral-torsional 
buckling load derived by Timoshenko and Gere; qLTRB,0 = basic lateral-torsional-roll buckling load.

q L
RB
,0

q

qLRB,0

qLTRB,0

qLTB,0

β
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Ritz-Galerkin formulation (that is, formulation with one-mode 
shape function approximation). However, the usefulness of the 
interaction equation in Eq. (48), which is nearly general, is that 
it can also accommodate higher fidelity lateral-roll buckling 
and lateral-torsional buckling solutions. Although some of these 
lateral-roll buckling solutions were summarized previously, 
the higher-fidelity lateral-torsional buckling solutions can be 
difficult to find and are often in the form of a series solution, 
giving the corresponding knockdown equation a form that is 
unsuitable for presentation here. For demonstration’s sake, the 
interaction form is specialized here with an approximate form 
of the higher-fidelity lateral-torsional buckling component. (Ul-
timately, the user should exercise discretion to choose appro-
priate and consistent lateral-roll buckling and lateral-torsional 
buckling solutions to be used within the interaction equation.)

To include the effects of major-axis deflections and prestressing 
upwards displacement in the lateral-torsional buckling com-
ponent, the solution of Vacharajittiphan et. al28 is used, plus 
the additional assumption of no warping restraint. Further, if 
GJ/EI

xx
 is taken as zero (Table 1), then Eq. (53) provides the 

lateral-torsional buckling load of an end-supported girder with 
major-axis deflections due to gravity and prestressing q

LTB,vp
.

		  qLTB,vp ≅ qLTB,v = qLTB,0
1

1−
I yy
Ixx

� (53)

where

q
LTB,v

	 = lateral-torsional buckling load of an end-supported 
girder with major-axis deflections due to gravity

The approximation that q
LTB,vp

 is equal to q
LTB,v

 relies on anal-
ysis by Peart et al.19 that indicates a limited effect of camber 
on the lateral-torsional buckling load, although it is not clear 

that this should always be the case. For prestressed concrete 
girders, the lateral-torsional buckling load is typically much 
higher than the lateral-roll buckling load, in which case minor 
errors in the lateral-torsional buckling load have little effect 
on the critical (lateral-torsional-roll buckling) load.

Using q
LRB,vp

 from Eq. (21) and q
LTB,vp

 from Eq. (53) within the 
interaction equation, the resulting knockdown equation is of the 
same form as Eq. (49), (50), (51), and (52) but with a modified 
torsion parameter for an end-supported girder with major-axis 
deflections due to gravity and prestressing η

vp
, given in Eq. (54).

		      vp = 0

1
vloc,p

yr ,eq

2

1
I yy

Ixx

� (54)

Substituting Eq. (54) into Eq. (50) yields the knockdown 
expression for the lateral-torsional-roll buckling load of an 
end-supported girder with major-axis deflections due to  
gravity and prestressing, q

LTRB,vp
 = g(η

vp
)q

LRB,vp
, where g(η

vp
)  

is the torsion knockdown factor for an end-supported girder 
with major-axis flexibility and prestress upwards deflection =

2
ηvp

1+ηvp −1( ) .

Incorporation of overhangs

In this section, the critical load will be extended to incorpo-
rate overhangs, again using the interaction equation. From 
Eq. (27), the effect of overhangs on the lateral-roll buckling 
load is given by Eq. (55).

		  qLRB,vpα =
qLRB,vp
fLRB α ,t( ) � (55)

Table 1. Section properties and torsional parameters for various Washington State Department of Transportation 
wide flange series girders

h, in. LLTRB,vpα, ft L/h J, in.4 Iyy, in.4 Iyy/Ixx EIyy/GJ GJ/EIxx yr,eq, in. ryy, in. β g(ηvpα)

74 210 34.0 18,400 72,370 0.09883 9.45 0.0105 -38.4 8.85 0.0467 0.942

83 215 31.1 19,100 72,550 0.07499 9.13 0.0082 -43.0 8.61 0.0499 0.924

95 221 27.8 19,900 72,770 0.05420 8.74 0.0062 -49.2 8.31 0.0546 0.899

100 223 26.7 20,400 72,870 0.04791 8.58 0.0056 -51.8 8.20 0.0565 0.890

120 228 22.8 21,900 73,250 0.03086 8.03 0.0039 -62.0 7.79 0.0640 0.854

150 232 18.5 24,200 73,830 0.01796 7.32 0.0025 -77.3 7.29 0.0749 0.804

Note: Torsional parameters and buckling length are calculated for a consistent safety factor of 1.5. qp/qsw = -2.0. 1 in = 25.4 mm; 1 ft = 0.305 m; 1 lb = 

4.448 N. EIxx = major-axis flexural rigidity; EIyy = minor-axis flexural rigidity; g(ηvpa) = torsion knockdown factor with major-axis flexibility, prestress uplift, 

and overhangs; GJ = torsional rigidity; h = girder depth; Ixx = major-axis second moment of area; Iyy = minor-axis second moment of area; J = second 

polar moment of area; L = total girder length; LLTRB,vpα = lateral-torsional-roll buckling length for asymmetrically supported girder with major-axis deflec-

tions from gravity and prestressing; qp = nominal prestressing load, idealized as uniformly distributed load (typically upward, and therefore negative); 

qsw = uniform (prismatic) girder self-weight; ryy = minor-axis radius of gyration; wc = concrete density = 155 lb/ft3; yr,eq = equivalent hanging distance; β = 

unitless cross-sectional parameter.
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Likewise, a function f
LTB

(α,t) should respect the form of 
Eq. (56).

		  qLTB,vpα =
qLTB,vp
fLTB α ,t( ) � (56)

where

q
LTB,vpα	 = lateral-torsional buckling load of a girder with 

asymmetric overhangs and major-axis deflections 
due to gravity and prestressing

Substituting the above two expressions into the interaction 
expression in Eq. (48) gives Eq. (57).

             
qLTRB,vpα

qLTB,vp fLTB α , t( )
⎛

⎝
⎜

⎞

⎠
⎟

2

+
qLTRB,vpα

qLRB,vp fLRB α , t( )
⎛

⎝
⎜

⎞

⎠
⎟ = 1 � (57)

where

q
LTRB,vpα	 = lateral-torsional-roll buckling load of a girder with 

asymmetric overhangs and major-axis deflections 
due to gravity and prestressing

f
LTB

(α,t)	= overhang factor for girder with full twist-restraint at 
supports

A near-exact approximation for the overhang factor for girder 
with full twist-restraint at supports f

LTB
(α,t) can be obtained by 

assuming that overhangs provide minimal warping restraint 
so that the girder with overhangs can be treated as an equiv-
alent simply supported girder of length (1 – α

1
 – α

2
)L. This 

assumption should be valid for overhangs less than about 
0.2 times the span, which approximately corresponds to the 
critical point already noted for lateral-roll buckling overhangs 
in Fig. 8. For larger overhangs, cantilever-type behavior 
dominates, and it is unclear what form the true lateral-tor-
sional buckling overhang factor takes. However, for moderate 
overhangs the lateral-torsional buckling uniform load q

LTB
 is 

proportional to 1/span3.

		    qLTB,vpα =
qLTB,vp

1−α1 −α 2( )3
� (58)

Equating Eq. (56) and (58) and keeping with the form of 
Eq. (25) gives Eq. (59).

		  fLTB α ,t( ) = bLTB, jαm
j

j=0

4∑ � (59)

where

b
LTB,j

	 = coefficients for polynomial order j in the lateral-tor-
sional buckling overhang factor = [+1, -6, +12, 
-8, 0] (calculated by expanding the denominator of 
Eq. [58])

Solving the quadratic Eq. (57), and with significant reorga-
nization, it can be shown that the torsion knockdown factor 
g(η

vpα) has the same functional form already derived for lower 
fidelity levels, giving Eq. (60).

		  q
LTRB,vpα	 = g(η

vpα)qLRB,vpα� (60)

where

g(η
vpα)	 = torsion knockdown factor of a girder with ma-

jor-axis flexibility, prestress uplift, and asymmetric 
overhangs

Equation (61) calculates the torsion parameter of a girder 
with asymmetric overhangs and major-axis deflections due to 
gravity and prestressing η

vpa
.

		   ηvpα =ηvp
fLTB α ,t( )
fLRB α ,t( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

� (61)

If desired, the overhang factor for an asymmetrically sup-
ported, torsionally flexible girder f

LTRB
(α,t) can be determined 

from the definition of the overhang factor in Eq. (62).

		     qLTRB,vpα =
qLTRB,vp
fLTRB α ,t( ) � (62)

Noting the equivalency of Eq. (60) and (62), plus the substitu-
tion of Eq. (27) gives Eq. (63).

	     fLTRB α ,t( ) = fLTB
2 α ,t( )
fLRB α ,t( )

⎛

⎝
⎜

⎞

⎠
⎟

1+ηvp −1

1+ηvpa −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

� (63)

Equation (63) collapses to the lateral-roll buckling or later-
al-torsional buckling subcase for the associated limiting β 
values. Unlike f

LRB
(α,t) and f

LTB
(α,t), the lateral-torsional-roll 

buckling overhang factor depends not only on the overhang 
distances but also on the dimensionless parameter β, the ma-
jor-axis flexibility ratio I

yy
/I

xx
, and the cambering ratio vloc,p/yr,eq

 
(included within η). For the special case of q

p
 equal to -q

sw
, η

vp
 

collapses to η
0
 and f

LTRB
(α,t) is bounded by the lateral-roll buck-

ling and lateral-torsional buckling limit cases only as a function 
of β. Figure 11 shows this, where the overhang stabilizing 
effect 1/f

LTRB
(α,t) is plotted against the symmetric overhang 

ratio. The orange lateral-roll buckling curve corresponds to the 
t equals 0 curve of Fig. 8. For real girders (β greater than 0), the 
influence of torsion reduces the stabilizing effect of overhangs. 
The results closely match those by Peart et al.17 for α values 
up to 0.15. However, the results of Peart et al. are presented as 
a sixth-order truncation, which appears to perform poorly for 
larger overhang values. Peart et al.’s values do not converge 
to the lateral-roll buckling solution when β equals 0. Unlike 
the result from Peart et al., Eq. (63) is not limited to symmet-
ric overhangs. It is, however, limited by the assumption on 
lateral-torsional buckling overhang behavior, which becomes 
less valid for long overhangs. To reflect this, the curves in Fig. 
11 are dashed beyond α

m
 equal to 0.2, which is also a practical 

upper limit for overhangs.

Example application: stability during 
handling of WSDOT WF girders

To give readers a sense of the effects of torsional deformations 
on lateral stability, this discussion focuses on the lateral-torsion-



39PCI Journal  | May–June 2024

al-roll buckling conditions for real girder profiles. To this end, 
the common WSDOT WF (wide-flange) girder series is studied 
because it is among the most structurally efficient prestressed 
concrete girder shapes used in the United States. All girders in 
the WF series have the same flange dimensions, allowing iden-
tical flange formwork to be used for any girder depth. Deeper 
girders are formed simply by adding an extra piece to the web 
form. Figure 2 shows a typical WF girder cross section.

Stability analysis is performed for a hanging girder with 10% 
overhangs at each end, and with a tendon profile that produces 
an equivalent uniform prestressing load q

p
 equal to -2.0q

sw
. 

Analysis is performed for a range of girder depths to evaluate 
the trend in the torsional knockdown factor as deeper girders 
are used on longer spans. For a given section depth, the girder 
length is determined by maintaining a consistent safety factor 
of 1.5 against buckling.

Consideration is also given to the effect of using light-
weight concrete, which may be needed to satisfy weight 
limits when hauling long girders. Relative to a normalweight 
155 lb/ft3 (2490 kg/m3) concrete girder, a lightweight 125 lb/ft3 
(2000 kg/m3) concrete girder will have lower self-weight but 
will also be characterized by a lower modulus of elasticity. The 
decrease in self-weight and reduction of the modulus of elas-
ticity will produce opposite effects for the lateral-torsional-roll 
buckling load and length. Concrete modulus of elasticity E

c
 is 

derived from the concrete density w
c
 according to the American 

Association of State Highway and Transportation Officials’ 
AASHTO LRFD Bridge Design Specifications,29 where Eq. (64) 
shows that the modulus decay outpaces the weight savings. 
This would indicate that the use of lightweight concrete will 
decrease stability, all else remaining equal.

		  Ec = 120,000wc
2 ′fc

  0.33 � (64)

where

′fc 	 = concrete cylinder compressive strength at 28 days, 
with units of ksi in Eq. (64)

w
c
	 = concrete density, with units of kip/ft3 in Eq. (64)

A concrete strength of 9 ksi (62 MPa) is used in this example. 
The ratio of the concrete modulus of elasticity to concrete 
shear modulus E

c
/G

c
 is 2(1 + υ), where υ is Poisson’s ratio and 

is assumed to equal 0.2 for concrete.

Girder section properties are calculated for a range of section 
depths from 74 to 150 in., even if such girders are not current-
ly used in practice. (The deepest section commonly available 
is 100 in. [2540 mm].) In the calculation of y

r,eq
, any extension 

of the lifting loops above the top flange is ignored. Calcula-
tion of the second polar moment of area J is performed ac-
cording to the procedure of Martin,30 who subdivided a cross 
section into several trapezoidal regions and summed their 

Figure 11. Overhang stabilization effect is reduced from the pure lateral-roll buckling case due to torsional influence. Results 
shown here are for the special case for which qp equals -qsw (color plot online). Note: fLTRB(α,t) = overhang factor for asymmet-
rically supported, torsionally flexible girder ; LRB = lateral-roll buckling; LTB = lateral-torsional buckling; LTRB = lateral-torsion-
al-roll buckling ; qp = nominal prestressing load, idealized as uniformly distributed load (typically upward, and therefore nega-
tive); qsw = uniform (prismatic) girder self-weight; t = girder’s level of asymmetry; αm = mean overhang ratio; α1 = overhang ratio 
at end 1; α2 = overhang ratio at end 2; β = unitless cross-sectional parameter. 
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contributions. If more-accurate calculations are required, the 
Prandtl membrane analogy can be implemented in a computer 
program, as outlined by Yoo.31 Some cross-section parameters 
are tabulated in Table 1 for commonly available WF sections 
(WF74G, WF83G, WF95G, WF100G) as well as some hy-
pothesized deeper sections (WF120G, WF150G). Spot checks 
showed that, for results in Table 1, J values are within 5% of 
the Prandtl solution.

Table 1 also shows the output of the buckling calculations 
for the WF girders. For the consistent safety factor condition, 

the knockdown factor g(η
vpα) decreases with increasing span. 

This means that torsional deformations cause a relatively 
greater reduction in the critical load for longer spans. In an 
approximate sense, this can be seen by expanding Eq. (49) 
(or analogous) in a Taylor series and truncating (because η is 
much less than 1.0 for practical configurations). For the basic 
case, this gives Eq. (65).

g η0 β( )( ) ≈1−18β 2 = 1−18 yr ,eq
L

⎛

⎝
⎜

⎞

⎠
⎟

2
EIyy
GJ

⎛

⎝
⎜

⎞

⎠
⎟ � (65)

For girders such as the WSDOT series, which use the same 

Figure 12. Lateral-torsional-roll buckling of Washington State Department of Transportation WF series girders. Note: h = girder 
depth; L = total girder length; qLTRB,vpα = lateral-torsional-roll buckling load of a girder with asymmetric overhangs and major-axis 
deflections due to gravity and prestressing; qp = nominal prestressing load, idealized as uniformly distributed load (typically up-
ward, and therefore negative); qsw = uniform (prismatic) girder self-weight; wc = concrete density; α = ratio of overhang distance 
to total girder length. 1 in = 25.4 mm; 1 ft = 0.305 m; 1 lb = 4.448 N.
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(Top left) Lateral-torsional-roll buckling load for 
normalweight girders of various slenderness ratios 

and a constant safety factor of 1.5

(Bottom left) Lateral-torsional-roll buckling length, 
normalweight result (red) emphasized

(Top right) Lateral-torsional-roll buckling load for 
lightweight girders of various slenderness ratios and 

a constant safety factor of 1.5

(Bottom right)  Lateral-torsional-roll buckling length, 
lightweight result (blue) emphasized
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top and bottom flange forms for several girder depths, EI
yy

 and 
GJ change little with depth. Most of the reduction in g(η

0
) (or 

analogous) therefore comes from the change in the span-to-
depth ratio, and consequently the ratio y

r,eq
/L.

The critical load is calculated using the torsion knockdown 
factor via Eq. (60). The load is then normalized by the self-
weight and plotted against the girder depth h in Fig. 12 for 
normalweight concrete (in red). Results are plotted for various 
L/h ratios and are overlayed with a horizontal line at 1.5, 
indicating a consistent safety factor constraint. Values report-
ed in Table 1 would lie along this line (but are not directly 
indicated). Figure 12 shows that deeper, and hence longer, 
girders require lower ratios of L/h (that is, shorter spans) to 
satisfy the consistent safety factor constraint. Many precast 
and prestressed concrete girders in practice have L/h ≈ 25, 
based on service stresses; however, for deeper sections, this 
ratio must be limited because such a section will be controlled 
by stability during handling rather than by allowable stresses 
under initial and service loads. Figure 12 shows (in red) the 
girder lengths at buckling by directly translating from the 
intersection points in the top figure. There are diminishing 
returns on the critical length as the depth of the WF sections is 
increased. In other words, added section depth is ineffective in 
preventing stability issues.

Some insight can be gained into the key cross-sectional 
parameters that control girder stability, therefore indicating 
parameters that improve stability more efficiently than depth. 
Because complexities due to camber are not at the cross-sec-
tion level, the basic lateral-torsional-roll buckling Eq. (49), 
(50), (51), and (52) suffice for this discussion; they are rear-
ranged along with Eq. (14) via the substitutions:

qsw = Awc , I yy = Aryy
2 , yr ,eq ≅

h
2

where

A	 = girder cross-sectional area

r
yy

	 = minor-axis radius of gyration

This results in Eq. (66), an approximate expression for the 
lateral-torsional-roll buckling length for the basic case with 
symmetric overhangs.

	
qLTRB,0
qsw

≈ 60
L

⎛
⎝⎜

⎞
⎠⎟
Ec
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⎛

⎝⎜
⎞

⎠⎟
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L

⎛
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⎞
⎠⎟
ryy
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⎛

⎝
⎜

⎞

⎠
⎟

2
g η0( )
fLRB α( )
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⎤

⎦
⎥
⎥

� (66)

In Eq. (66), the units must be consistent. The variables are 
grouped for ease of evaluation. To a first approximation, if the 
material properties (embedded in E

c
/w

c
), span-to-depth ratio 

L/h, and overhang ratio α are kept the same, then the safety 
factor against lateral-torsional-roll buckling is proportional to 
ryy
2 / L3. To maintain a consistent safety factor for longer spans, 

r
yy

 would therefore have to be proportional to L1.5, or the over-
hang ratio would have to be increased. The former implies a 
significant increase in top-flange width, which would increase 
trucking weight, whereas the latter would at least require 

more temporary top strand and may also pose challenges at 
particular phases in the erection sequence. For example, when 
the girder is first set on the pier cap it might become end-sup-
ported with no overhang. In a more precise estimate, r

yy
 

should be proportional to L raised to a power slightly higher 
than 1.5, because the factor g

0
(η

0
) decreases (the torsional de-

formations exact a greater toll) as the span increases. The best 
girder profile for longer girders needs to be investigated and 
will need to account for many criteria in addition to stability, 
but such an investigation lies outside the scope of this study.

The effect of using lightweight concrete can be deduced from 
the ratio E

c
/w

c
, which appears in Eq. (66). According to the 

AASHTO LRFD specifications,29 E
c
 is proportional to w

c
2, 

in which case the ratio E
c
/w

c
 is proportional to w

c
. The safety 

factor against buckling then increases for heavier concretes 
and decreases for lightweight concrete. Figure 12 shows this 
finding, where a lightweight concrete curve (blue) is overlaid 
on the normalweight concrete (red) results. Thus, if light-
weight concrete is used, the design must compensate for the 
reduction in safety against buckling.

Summary

This study represents the first step in a reexamination of cur-
rent methods for lateral stability analysis of long prestressed 
concrete girders. An important step in stability analysis is the 
evaluation of initial imperfection amplifications, but to do that, 
the critical load must be known. This article addresses the 
critical load, focusing on the elastic buckling load of girders in 
the hanging condition, which is the most critical scenario due to 
the lack of end-twist restraint. Girders that are supported from 
below can be evaluated as equivalent hanging girders.

The classical lateral-roll buckling analysis by Mast6 was 
augmented to include the effect of major-axis deflections 
and asymmetric overhangs. Although asymmetric overhangs 
are most likely to occur during girder trucking, the problem 
boundary conditions were formulated so that the trucking con-
dition can easily be transformed into an equivalent hanging 
girder. For practical lifting-point locations, the asymmetric 
formulation can safely be replaced by the simpler, symmetric 
equation, using the average overhang length.

Torsional deformations were included in the solution of the 
classical governing differential equation for twist of a simply 
supported beam by enforcing compatibility between support 
rotations and torque reactions. No closed-form solution exists 
for this problem, but a near-exact solution with all deforma-
tions included was found for the lateral buckling load of an 
end-supported beam by employing a Ritz-Galerkin solution 
technique. From a single-term approximation for the twist 
shape function, it was possible to develop a buckling equation 
in the form of an interaction equation between two special 
cases: lateral-roll buckling and lateral-torsional buckling. 
Consideration of torsional deformations reduces the buck-
ling load when all other parameters remain the same. The 
reduction increases with length (for a consistent safety factor 
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against buckling) and can be calculated as a knockdown factor 
that is separable from lateral bending.

A simplified form of this equation shows the variables at play 
in lateral-torsional-roll buckling, in their appropriate powers, 
from which it is seen that lightweight concrete reduces lateral 
buckling stability.

Conclusion

The advent of high-performing concrete materials along with 
urban congestion has led to prestressed concrete girders that 
need to span longer distances and so are increasingly slender. 
Traditionally, a designer’s recourse against stability problems 
is to increase the lateral resistance, either through cross-sec-
tion modifications or by reducing the effective span via over-
hangs. These remediation measures may not be as effective 
as suggested by the existing design equations. This concern is 
related to torsional flexibility, which has the following effects 
on lateral stability:

•	 Torsional deformations reduce the buckling load when all 
other parameters remain the same. The reduction increas-
es with length.

•	 Major-axis bending affects lateral-torsional-roll buckling 
stability slightly. Similar to lateral-roll buckling, down-
ward gravity deflections raise the buckling load while net 
upward camber lowers it. These major-axis effects are 
amplified in the presence of torsion.

•	 Although bringing the lifting points in from the ends 
(that is, producing overhangs) greatly improves lateral 
stability, this benefit is tempered by torsional flexibility. 
In other words, the classical lateral-roll buckling over-
hang stabilization factor is slightly unconservative for the 
torsional case. The difference is small for overhangs less 
than 10%, but it becomes apparent for longer girders with 
larger overhangs.

•	 The minor-axis radius of gyration r
yy

 is the most import-
ant cross-sectional parameter controlling stability. For 
a constant safety factor, it must be proportional to L1.5. 
As girder spans continue to increase, new cross-section 
shapes that respect this relationship may be desirable. 

•	 The use of lightweight concrete reduces the applied load 
(the girder weight) but also reduces the buckling load. The 
net effect is to reduce the safety factor against buckling.
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a{ } 	 = weighting coefficients of the mth modal weight 
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âm{ }	 = coefficients of the mth modal twist shape approxi-
mation function

A	 = girder cross-sectional area

b
LRB,j

	 = coefficients for polynomial order j in the lateral-roll 
buckling overhang factor

b
LTB,j

	 = coefficients for polynomial order j in the lateral-tor-
sional buckling overhang factor

[B
0
]	 = derivative of the girder-twist shape function matrix 

[N] with respect to ζ, evaluated at ζ = 0

cx 	 = compliance coefficient for minor-axis deflection

cx,a 	 = compliance coefficient for minor-axis deflection of 
a girder with overhangs

cy 	 = compliance coefficient for major-axis deflection

cy,a 	 = compliance coefficient for major-axis deflection of 
a girder with overhangs

e
x
	 = lifting loop eccentricity (positive in + x direction)

E	 = modulus of elasticity

E
c
	 = concrete modulus of elasticity
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EI
xx

	 = major-axis flexural rigidity

EI
yy

	 = minor-axis flexural rigidity

f
LRB

(α)	 = overhang factor for symmetrically supported, tor-
sionally rigid girder

f
LRB

(α,t)	= overhang factor for an asymmetrically supported, 
torsionally rigid girder

f
LTB

(α,t)	= overhang factor for girder with full twist-restraint at 
supports

f
LTRB

(α,t)	 = overhang factor for asymmetrically supported, 
torsionally flexible girder

'
cf 	 = concrete cylinder compressive strength at 28 days

g(η
vp

)	 = torsion knockdown factor of an end-supported gird-
er with major-axis flexibility and prestress uplift

g(η
vpα)	 = torsion knockdown factor of a girder with ma-

jor-axis flexibility, prestress uplift, and asymmetric 
overhangs

g(η
0
)	 = torsion knockdown factor for an end-supported 

girder with rigid major axis

G	 = shear modulus

G
c
	 = concrete shear modulus

GJ	 = torsional rigidity

h	 = girder depth

I	 = second moment of area

I
xx

	 = major-axis second moment of area

I
yy

	 = minor-axis second moment of area

j	 = index representing the polynomial degree of α in 
each term of the overhang factor

J	 = second polar moment of area

k
1
	 =	k1 =

π 2

2

k
2
	 =	k2 =

24− 2π 2( )
π 4

k
3
	 =	k3 =

π 4 + 45( )
240π 4

K
tot

	 = special case of [K
tot

] for one-mode result

[K
tot

]	 = weak-form coefficient matrix for M mode approxi-
mation of girder twist

Kθ	 = total rotational stiffness (at the center of gravity) 
due to stiffness at the support and the lifting loops

Kθ,sup
	 = support rotational stiffness due to rotational bearing 

or truck stiffness

[K
1
]	 = integral of the product of the shape function trans-

pose matrix and its second derivative

[K
2
]	 = integral of the product of the shape function 

transpose matrix, its first derivative evaluated at the 
girder end, and the square of the major-axis bending 
moment shape

[K
3
]	 = integral of the product of the shape function matrix, 

its transpose, and the square of the major-axis bend-
ing moment shape

L	 = total girder length

L
LTRB,vpα	= lateral-torsional-roll buckling length for asymmet-

rically supported girder with major-axis deflections 
from gravity and prestressing

M	 = number of mode shapes included in the twist ap-
proximation 

M
z,loc

	 = internal girder moment about the z
loc

 direction

[N]	 = twist shape functions collected into a row matrix

N
m
(ζ)	 = set of twist shape functions that are zero at the 

beam ends

q	 = distributed load on girder (positive downward)

q
LRB

	 = exact lateral-roll buckling load

q
LRB,0

	 = classical lateral-roll buckling load derived by Mast

q̂LTB,0 	 = modal approximation of classical lateral-roll-buck-
ling load

q
LRB,v

	 = lateral-roll buckling load of a girder with major-axis 
deflections due to gravity

q
LRB,vp

	 = lateral-roll buckling load of a girder with major-axis 
deflections due to gravity and prestressing

q
LRB,vpa

	 = lateral-roll buckling load of a girder with asym-
metric overhangs and major-axis deflections due to 
gravity and prestressing

q
LTB

	 = exact lateral-torsional buckling load
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q
LTB,0

	 = classical lateral-torsional buckling load derived by 
Timoshenko and Gere

⌢qLTB,0 	 = modal approximation of classical lateral-torsional 
buckling load

q
LTB,v

	 = lateral-torsional buckling load of an end-supported 
girder with major-axis deflections due to gravity

q
LTB,vp

	 = lateral-torsional buckling load of an end-supported 
girder with major-axis deflections due to gravity 
and prestressing

q
LTB,vpα	 = lateral-torsional buckling load of a girder with 

asymmetric overhangs and major-axis deflections 
due to gravity and prestressing

q
LTRB

	 =	near-exact lateral-torsional-roll buckling load, from 
the near-exact interaction equation solution form

q
LTRB,0

	 =	basic lateral-torsional-roll buckling load for an 
end-supported girder with no major-axis deflections

q̂LTRB,0	 =	one-mode approximate lateral-torsional-roll 
buckling line load of a girder without major-axis 
deflection, prestressing or overhangs

q
LTRB,vp

	 =	lateral-torsional-roll buckling load of a girder with 
major-axis deflections due to gravity and prestress-
ing

q
LTRB,vpα	 = lateral-torsional-roll buckling load of a girder with 

asymmetric overhangs and major-axis deflections 
due to gravity and prestressing

q
p
	 =	nominal prestressing load, idealized as uniformly 

distributed load (typically upward, and therefore 
negative)

q
sw

	 =	uniformly distributed girder self-weight

r
yy

	 =	minor-axis radius of gyration

R	 =	shear reaction at girder support (positive down-
ward)

s
j
(t)	 =	fourth-order polynomial in t, representing the ef-

fects of asymmetric overhangs

t	 = girder’s level of asymmetry, as a function of the two 
end-overhang lengths

T	 = external restoring torque

u
glo

	 = x displacement component in the global reference 
frame

u
loc

	 = x displacement components in the local reference 

frame

uloc 	 = center-of-mass displacement in x
loc

 direction of a 
torsionally rigid, end-supported girder subjected 
to a uniform distributed line load in the absence of 
camber

v
glo

	 = y displacement components in the global reference 
frame

v
loc

	 = y displacement components in the local reference 
frame

v
loc,p

	 = displacement in y
loc

 direction due to prestress (that 
is, uplift)

vloc,p 	 = center-of-mass displacement in y
loc

 direction of a 
torsionally rigid, end-supported girder with pre-
stressing load

vloc,v 	 = center-of-mass displacement in yloc direction of a 
torsionally rigid, end-supported girder subject to 
uniform distributed line load

vloc,vp 	 = center-of-mass displacement in yloc direction of a 
torsionally rigid, end-supported girder due to gravi-
ty and prestressing

w
c
	 = concrete density

w
glo

	 = z displacement components in the global reference 
frame

w
loc

	 = z displacement components in the local reference 
frame

W	 = total girder weight

x
glo

	 = x position coordinate in the global reference frame

x
loc

	 = x position coordinate in the local reference frame

y
glo

	 = y position coordinate in the global reference frame

y
loc

	 = y position coordinate in the local reference frame

y
r
	 = vertical (hanging) distance from the center of gravi-

ty of concrete to the support point

y
r,eff

	 = effective hanging distance for asymmetrically 
supported, torsionally rigid girder with different 
equivalent hanging distances at each support

y
r,eq

	 = equivalent hanging distance (valid for a hanging 
girder or a girder supported from below)

y
r1,eq

	 = equivalent hanging distance at support 1
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y
r2,eq

	 = equivalent hanging distance at support 2

z	 = measure of distance along girder length

z
glo

	 = z position coordinate in the global reference frame

z
loc

	 = z position coordinate in the local reference frame

α	 = ratio of overhang distance to total girder length 
(that is, overhang ratio)

α
1
	 = overhang ratio at end 1

α
2
	 = overhang ratio at end 2

α
m
	 = mean overhang ratio

β	 = dimensionless cross-sectional parameter

Δ	 = displacement of a prismatic simply supported beam 
subject to a distributed load

κ	 = load parameter = q GJEIyy

η
0
	 = torsion parameter of an end-supported girder with 

rigid major axis

η
vp

	 = torsion parameter of an end-supported girder with 
major-axis deflections due to gravity and prestress-
ing

η
vpα	 = torsion parameter of a girder with asymmetric over-

hangs and major-axis deflections due to gravity and 
prestressing

υ	 = Poisson’s ratio

θ	 = rotation about longitudinal z axis

θ
i
	 = initial girder roll angle due to eccentric lifting-loop 

support

θ
0
	 = rigid-body roll at supports

θ(0)	 = rotation angle at end 1, equal to the rigid-body roll 
θ

0
 if girder is symmetric

θ(1)	 = rotation angle at end 2, equal to the rigid-body roll 
θ

0
 if girder is symmetric

θ ζ( ) 	 = approximation of the beam twist along the length

θ̂ ζ( ) 	 = weight function in the weak form of the twist-gov-
erning equation

ζ	 = normalized measure of distance along girder length 
[0,1]
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Typically, the critical load at which this instability oc-
curs has been estimated by ignoring torsional deforma-
tions. Although that approach permits a closed-formed 
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torsional deformations and develops a series solution for 
the simplest case of an end-supported girder. The solu-
tion is then extended to include overhangs. A balance 
between accuracy and usability is struck by truncating 
to a one-mode solution. By comparing with two known 
special cases, the first term is found to be sufficiently 
accurate while clearly illustrating the effect of torsional 
flexibility on girder stability.

Accounting for torsional deformations reduces the 
predicted buckling load by an amount that can be 
conveniently defined with a knockdown factor applied 
to the traditional buckling load that ignores torsion. In 
this sense, the effect of torsion is separated from lateral 
bending. Downward (major-axis) deflection improves 
stability, whereas that net upward camber does the op-
posite. Use of lightweight concrete reduces the safety 
factor against lateral buckling.
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Appendix: Formulation of governing equation

Equation (29) governs the twist of girders under distributed loads in the major-axis plane. Multiple versions of this equation for 
special cases (for example, point loads and uniformly distributed loads) can be found in research articles and textbooks, such 
as Timoshenko and Gere.1 Although not new, the formulation is included here to ensure a more self-contained description with 
a consistent sign convention and notation. Due to the assumptions used to develop the equation, it is limited to the prediction 
of the onset lateral-torsional buckling and lateral-torsional-roll buckling for girders with negligible major-axis deflection, no 
upwards prestressing deflection, and no overhangs. Various alternative sign conventions are used in the literature; however, the 
result seen in Eq. (29) is unchanged.

	        
d 2θ ζ( )
dζ 2

+κ
2L6

4
ζ 2 1−ζ( )2θ ζ( ) = 0 � (29)

where

θ	 = girder rotation about longitudinal z axis, along 
length

ζ	 = normalized measure of distance along girder length 
(0,1)

κ	 = load parameter = q GJEIyy

q	 = distributed load on girder (positive downward)

GJ	 = torsional rigidity

EI
yy

	 = minor-axis flexural rigidity

L	 = total beam length

General formulation for small 
deformations

The main components of the governing equation are the 
global-to-local moment transformation; the net cross-section 
action relationships (kinematic and constitutive laws); and 

the moment-shear relationships (equilibrium). The moment 
transformation matrix for small angles can be obtained by 
reference to Fig. A.1, and is given by Eq. (A.1).
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where

M
x,loc

	 = internal girder moment about the x
loc

 direction

x
loc

	 = x position coordinate in the local reference frame

M
y,loc

	 = internal girder moment about the y
loc

 direction

y
loc

	 = y position coordinate in the local reference frame

M
z,loc

	 = internal girder moment about the z
loc

 direction

z
loc

	 = z position coordinate in the local reference frame

uglo 	 = girder slope in the x
glo

–z
glo

 plane

Figure A.1. Three perspectives of global and local moment sign convention displayed on a deformed girder segment. Note: 
Mx,glo = internal beam moment in xglo direction; Mx,loc = internal beam moment in xloc direction; My,glo = internal beam moment in 
yglo direction; My,loc = internal beam moment in yloc direction; Mz,glo = internal beam moment in zglo direction; Mz,loc = internal beam 
moment in zloc direction; uglo  = girder slope in xglo–zglo plane; vglo  = girder slope in yglo-yglo plane; zloc = z position coordinates in 
the local reference frame; θ = girder twist about longitudinal z axis.
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x
glo

	 = x position coordinate in the global reference frame

z
glo

	 = z position coordinate in the global reference frame

vglo 	 = girder slope in the y
glo

–z
glo

 plane

y
glo

	 = y position coordinate in the global reference frame

M
x,glo

	 = internal girder moment about the x
glo

 direction

M
y,glo

	 = internal girder moment about the y
glo

 direction

M
z,glo

	 = internal girder moment about the z
glo

 direction

The global and local subscripts are consistent with the ap-
proach for deformations in Fig. 4.

The benefit of having the moments written in the local 
cross-section axes is the direct application of the well-known 
net cross-section action-deformation relationships given by 
Eq. (A.2).

	

Mx ,loc

M y ,loc

Mz ,loc

⎧

⎨
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⎩
⎪
⎪
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⎬
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⎭
⎪
⎪

=

−EIxx ′′vloc
EI yy ′′uloc
GJ ′θ
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⎨
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⎩
⎪
⎪
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⎭
⎪
⎪

≈

−EIxx ′′vglo
EI yy ′′uglo
GJ ′θ

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

� (A.2)

EI
xx

	 = major-axis flexural rigidity

′′uglo 	 = girder curvature in the x
glo

–z
glo

 plane

uloc 	 = girder curvature in the x
loc

–z
loc

 plane

vglo 	 = girder curvature in the y
glo

–z
glo

 plane

vloc 	 = girder curvature in the y
loc

–z
loc

 plane

′θ 	 = girder twist gradient 

The negative sign in the M
x,loc

 expression is a consequence of 
the sign convention chosen in Fig. A.1. The torsion com-
ponent here assumes St. Venant torsion behavior, which is 
reasonable as warping restraint is insignificant in hanging 
girders. The approximation of local curvatures by global 
values limits the suitability of the resulting equation for pre-
dicting the onset of buckling (not postbuckling behavior) with 
negligible prebuckling deformation in the loaded major axis. 
In addition, the local and global twist gradients not identical 
in the large deformation sense, though the global quantity ′θ  
is assumed to be representative of the local quantity.

Equating the two M
y,loc

 expressions in Eq. (A.1) and (A.2) 
yields the relationship in Eq. (A.3), which will be used to 
arrive at the final result.

	    EI yyuglo = Mx ,glo + M y ,glo vglo M y ,glo � (A.3)

The moment equilibrium equations can be obtained from the 
free-body diagram in Fig. A.2. The distributed loads are not 
shown; however, they appear as higher-order terms in the mo-
ment equilibrium expressions. Applying moment equilibrium 
results in Eq. (A.4) to Eq. (A.6).

		         ′Mx ,glo =Vy ,glo � (A.4)

where

′Mx ,glo =Vy ,glo	 = differentiation of M
x,glo

 by the global longitudinal 
coordinate z

glo

Figure A.2. Two perspectives of free-body diagram of a deformed girder segment. Note: distributed loads are not shown for 
brevity. Mx,glo = internal beam moment in xglo direction; My,glo = internal beam moment in yglo direction; Mz,glo = internal beam 
moment in zglo direction; Vx,glo = internal beam shear in xglo direction; Vy,glo = internal beam shear in yglo direction; ΔMx,glo = change 
in internal beam moment in xglo direction, along differential element; ΔMy,glo = change in internal beam moment in yglo direction, 
along differential element; ΔMz,glo = change in internal beam moment in zglo direction, along differential element; Δuglo = change 
in xglo displacement along differential element; Δvglo = change in yglo displacement along differential element; ΔVx,glo = change in 
Vx,glo along differential element; ΔVy,glo = change in Vy,glo along differential element.
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z
glo

	 = measure of distance along girder length

V
y,glo

	 = internal girder shear in y
glo

 direction

		            M y ,glo = Vx ,glo � (A.5)

where

V
x,glo

	 = internal girder shear in x
glo

 direction 

		  ′Mz ,glo =Vx ,glo ′vglo −Vy ,glo ′uglo � (A.6)

where

′Mz ,glo 	 = differentiation of M
z,glo

 by the global longitudinal 
coordinate z

glo

Eliminating the local moments from the left-hand side of 
Eq. (A.1) using Eq. (A.2), and differentiating both sides 
(including the product rule on the right-hand side) yields 
Eq. (A.7).

	

EIxxvglo
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0 uglo
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uglo vglo 1
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=
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M y ,glo

Mz ,glo

+

1 uglo

1 vglo

uglo vglo 1

Mx ,glo

M y ,glo

Mz ,glo

� (A.7)

where

vglo 	 = rate of change of beam curvature in y
glo

–z
glo

 plane

uglo 	 = rate of change of beam curvature in x
glo

–z
glo

 plane

	 = girder twist curvature

Thereafter applying Eq. (A.4) through Eq. (A.6) to eliminate 
the moment gradients on the right-hand side, and neglecting 
higher-order terms (small-deformation assumption) gives 
Eq. (A.8), for which several terms cancel out in the third 
expression.

          

EIxxvglo

EI yyuglo

GJ

=

0 uglo

0 vglo

uglo vglo 1

Mx ,glo

M y ,glo

Mz ,glo

+

Vy ,glo − Vx ,glo

Vy ,glo −− Vx ,glo

0

�  

		

EIxxvglo

EI yyuglo

GJ

=

0 uglo

0 vglo

uglo vglo 1

Mx ,glo

M y ,glo

Mz ,glo

+

Vy ,glo − Vx ,glo

Vy ,glo −− Vx ,glo

0

� (A.8)

where

V
x,glo

	 = girder internal shear in the x
glo

 direction

Special case: global major-axis 
moment only

The scenario of interest in this work, and in many other 
applications, is beams and girders predominantly loaded in 
their major axis. In this case, M

y,glo
 equals M

z,glo
 equals 0 and 

V
x
 equals 0. The governing equations therefore simplify to 

Eq. (A.9).

	

−EIxx ′′′vglo
EI yy ′′′uglo
GJ ′′θ

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

=

Vy ,glo
− ′θ Mx ,glo −θVy ,glo

′′ugloMx ,glo

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

� (A.9)

The first, uncoupled, equation governs the major-axis bend-
ing. The latter two describe the interaction between lateral 
deformation and twist. Finally, Eq. (A3) (again with M

y,glo
 

equals M
z,glo

 equals 0) can be used to eliminate uglo  from the 
twist expression, giving Eq. (10), the final equation governing 
the girder rotation (letting z

glo
 equal the distance along girder 

length z, for brevity).

		  ′′θ +
Mx ,glo

2 z( )
GJEIyy

θ = 0 � (A.10)

This equation is well known; however, it is often derived for 
the special case of a constant moment. Hence, it is less well 
known that this expression is general for any moment gradi-
ent. For a simply supported beam with distributed load q:

Mx ,glo z( ) = q2 L− z( )z
Making this substitution, along with the change of variables (ζ 
equals z/L) yields the expression in Eq. (29).
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Notation

EI
xx

	 = major-axis flexural rigidity

EI
yy

	 = minor-axis flexural rigidity

GJ	 = torsional rigidity

L	 = total beam length

M	 = number of mode shapes included in the twist ap-
proximation

M
x,glo

	 = internal beam moment in x
glo

 direction
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′Mx ,glo =Vy ,glo	 = differentiation of M
x,glo

 by the global longitudinal 
coordinate z

glo

M
x,loc

	 = internal beam moment in x
loc

 direction

M
y,glo

	 = internal beam moment in y
glo

 direction

M
y,loc

	 = internal beam moment in y
loc

 direction

M
z,glo

	 = internal beam moment in z
glo

 direction

′Mz ,glo 	 = differentiation of M
z,glo

 by the global longitudinal 
coordinate z

glo

M
z,loc

	 = internal beam moment in z
loc

 direction

q	 = distributed load on girder (positive downward)

uglo 	 = girder slope in the x
glo

–z
glo

 plane

′′uglo 	 = girder curvature in the x
glo

–z
glo

 plane

uglo 	 = rate of change of beam curvature in x
glo

–z
glo

 plane

uloc 	 = girder curvature in the x
loc

–z
loc

 plane

vglo 	 = girder slope in the y
glo

–z
glo

 plane

vglo 	 = girder curvature in the y
glo

–z
glo

 plane

vglo 	 = rate of change of beam curvature in y
glo

–z
glo

 plane

vloc 	 = girder curvature in the y
loc

–z
loc

 plane

V
x,glo

	 = girder internal shear in the x
glo

 direction

V
y,glo

	 = girder internal shear in the y
glo

 direction

x
glo

	 = x position coordinate in the global reference frame

x
loc

	 = x position coordinate in the local reference frame

y
glo

	 = y position coordinate in the global reference frame

y
loc

	 = y position coordinate in the local reference frame

z	 = measure of distance along girder length

z
glo

	 = z position coordinates in the global reference frame

z
loc

	 = z position coordinate in the local reference frame

ΔM
x,glo

	 = change in internal beam moment in x
glo

 direction, 
along differential element

ΔM
y,glo

	 = change in internal beam moment in y
glo

 direction, 
along differential element

ΔM
z,glo

	 = change in internal beam moment in z
glo

 direction, 
along differential element

Δu
glo

	 = change in x
glo

 displacement along differential ele-
ment

Δv
glo

	 = change in y
glo

 displacement along differential ele-
ment

ΔV
x,glo

	 = change in V
x,glo

 along differential element

ΔV
y,glo

	 = change in V
y,glo

 along differential element

θ	 = girder twist about longitudinal z
glo

 axis

′θ 	 = girder twist gradient

	 = girder twist curvature

κ	 = load parameter = q GJEIyy

ζ	 = normalized measure of distance along girder length 
[0,1]


