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■ A study of the effect of time-dependent cracking 
behavior of prestressed concrete is presented.

■ A continuous-damage approach is applied to a tool 
for modeling cracking behavior in prestress concrete 
related to prestress losses caused by steel stress  
relaxation, concrete creep, and concrete shrinkage.

■ The tool developed using a three-dimensional finite- 
element method model will allow better understand-
ing of the behavior of these members.

Concrete is a common construction material, ow-
ing to the low costs of its materials, production, 
and maintenance. Concrete is known to have high 

compressive strength but low tensile strength, which neces-
sitates the use of strengthening steel in the tension zones 
of concrete structures. Modern concrete structures can be 
strengthened either passively with mild-steel reinforcing 
bars, which is known as reinforced concrete, or actively 
with high-strength prestressing tendons (or alloy bars), 
which is known as prestressed concrete. Although the uses 
of prestressed concrete members aim to minimize tensile 
cracking of concrete, reinforced concrete members often 
work with cracks allowed in tension zones. Moreover, new-
er construction practices tend to use prestressed concrete 
members more economically by including reinforcing bars 
in tension areas to control concrete cracking, producing 
partially prestressed concrete members.

Prestressed concrete and partially prestressed concrete mem-
bers are more popular than reinforced concrete for building 
long-span and small-cross-section structures. With concrete 
cracking well controlled, partially prestressed concrete 
members have the advantage of significantly enhanced load-
ing capacity compared with prestressed concrete members. 
Concrete cracking not only reduces sectional capacity but 
also causes many durability problems, such as steel rein-
forcement corrosion and accelerated chemical degradation 
of the concrete matrix, in structures that cannot easily be 
fixed. Currently, design of concrete structures is governed by 
codes that mandate conservative strength-reduction factors. 
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Considering the ubiquitous occurrence of microcracking or 
cracking in concrete structures, more research is needed to 
study the mechanism and extent of cracking and to develop 
more-effective strategies to control concrete cracking. This is 
particularly necessary for prestressed concrete and partially 
prestressed concrete structures that are more sensitive to con-
crete cracking than reinforced concrete structures.

In prestressed concrete and partially prestressed concrete 
structures, before service load is applied, prestressed steel 
tendons exert compressive stress in the concrete around the 
tendons while causing tensile stress in the opposite side 
of the structures. Prestressed concrete and partially pre-
stressed concrete structures can be made by pretensioning 
or post-tensioning the tendons, depending on whether the 
tendons are stressed before or after concrete is cast. Due to 
the prestressing techniques used or the rheological proper-
ties of the concrete and steel materials, part of the applied 
prestressing force in the tendons will be lost and unavailable 
for use. This is known as prestress loss, and it can be cate-
gorized into instantaneous losses and time-dependent losses. 
While instantaneous losses, such as elastic shortening of the 
concrete and friction loss, can be effectively controlled by 
prestress compensation when the tendons are stressed, the 
three major types of time-dependent losses (relaxation of 
steel, creep of concrete, and shrinkage of concrete) occur 
over time. A time-dependent prestress loss has two concur-
rent but opposite effects on the concrete of a structure. First, 
the prestress loss reduces the prestress in steel, thereby re-
ducing the stress, strain, and cracking tendency of concrete. 
Alternatively, as concrete creeps and/or shrinks, the concrete 
material yields extra deformation (in addition to instan-
taneous elastic deformation) in the direction of prestress, 
enhancing the strain level in concrete and causing further 
concrete cracking.1

Mechanistic-based analysis of the cracking process in the 
concrete matrix is a complex process characterized by non-
linear elasticity, small-deformation plasticity, or quasi-brittle-
ness, depending on the extent of cracking and discontinuity 
inside the concrete matrix.2–4 For researchers and designers 
to effectively monitor prestress and predict the remaining 
service lives of prestressed concrete and partially prestressed 
concrete structures, the authors have developed a tool that 
can accurately depict the process of time-dependent prestress 
losses as well as clearly display the initiation and propagation 
of concrete cracks at any point in time. Substantial though 
inadequate research has been conducted to study the prestress 
losses and evolution of cracks in concrete. Pioneering under-
standing of concrete creep behavior can be found in works 
by Bažant,5–8 in which a large number of formulas of creep 
were proposed for concrete under different conditions. Some 
of the proposed formulas have been simplified and adopted 
in the current design codes. Concrete shrinkage is a process 
involving factors of ambient relative humidity, temperature, 
used admixtures, and the geometry of concrete structures. 
Ayano and Wittmann9 formulated a shrinkage coefficient of 
cement-based material in terms of relative humidity and time. 

The moisture loss in the study was measured using sliced sol-
id specimens. Sant et al.10 studied the impact of shrinkage-re-
ducing admixtures. Based on continuous damage theory , a 
smeared crack model for concrete was developed by Ngo and 
Scordelis11 and Rashid.12 Chen and Mahadevan13 used local 
relative crack density to describe the evolution of concrete 
cracking based on continuous damage theory. Menin et al.14 
applied the continuous damage theory to reinforced concrete 
and found that the results of smeared cracks are consistent 
with experimental observations.

Time-dependent prestress losses

Within this paper, time-dependent prestress losses for pre-
stressed concrete are reviewed, specifically as they relate to 
steel stress relaxation, concrete creep, and concrete shrinkage. 
Steel stress relaxation, concrete creep, and concrete shrinkage 
have been widely recognized to be the three primary causes of 
time-dependent prestress losses of prestressed concrete. The 
following section first quantifies the prestress loss by each 
cause, which will be used later for determining total prestress 
losses and incurred concrete cracking.

Steel stress relaxation

Steel stress relaxation, a major contributing factor of pre-
stress loss in prestressed concrete and partially prestressed 
concrete, refers to the continuous decreasing of prestressing 
force originally applied in steel tendons. Steel stress relax-
ation stems from the rearrangement of the metallic atoms in 
steel along the direction of the externally applied prestressing 
force. Because the applied prestress stress often exceeds 70% 
of the yield strength of steel, prestressed tendons continue 
relaxing in concrete, leading to significant prestress loss. 
Steel stress relaxation in tendons is analogous to the creepage 
behavior of general solid materials and depends on the type 
of steel used and environmental factors such as temperature. 
Improper estimation of prestress loss due to steel relaxation 
in tendons may result in serious design problems. Trevino 
and Ghali15 proposed a formula to describe tendon relaxation, 
which is adopted in the PCI Design Handbook: Precast and 
Prestressed Concrete.16 For commonly used low-relaxation 
tendons, Eq. (1) determines the prestress loss due to steel 
stress relaxation ∆σ

pR
.1

 Δσ pR =σ pi
' log t2 − log t1
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 = yield strength of steel tendon
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Concrete creep

Creep is a behavior involving continuously increasing strain 
in solid materials under sustained load. Numerous experi-
mental data have demonstrated that creep in concrete mate-
rial is a time-dependent rheological process that depends on 
temperature, concrete type, and stress level. In prestressed 
concrete and partially prestressed concrete structures, creep 
occurs mainly in hydrated cement paste, owing to the rheol-
ogy of calcium silicate hydrates, and plays an important role 
in concrete cracking. Pioneering efforts in studying concrete 
creep effects were made by Bažant5 and his group as summa-
rized in a compliance function. The compliance function can 
be expanded with Dirichlet series per Eq. (2) and has been 
applied in works of many other researchers.17 At each time 
step, an updating stress was used for replacing the stress of 
the previous step to calculate creep strain. The compliance 
function was then multiplied by stress to obtain creep strain.

J t,σ( ) = 1
E0 1− e

−ασ( )
+ Ai + Biσ

−Gi( )∑ 1− e−Si t−σ( )( )+D eS3σ − eS3t( ) (2)

 J t,σ( ) = 1
E0 1− e

−ασ( )
+ Ai + Biσ

−Gi( )∑ 1− e−Si t−σ( )( )+D eS3σ − eS3t( )
where

J(t, σ) = compliance function

E   
0
 = initial elastic modulus

α = experimentally measured fitting parameter

σ = stress 

A
i
 = experimentally measured fitting parameter

B
i
 = experimentally measured fitting parameter

G
i
 = experimentally measured fitting parameter

S
i
 = experimentally measured fitting parameter

t = time

D = experimentally measured fitting parameter

Because creep strain is a long-term effect that causes concrete 
deformation under sustained load (such as prestressing force), 
the prestress in tendons can be reduced by the creep strain of 
concrete due to the strain compatibility at the steel-concrete 
interface. Although Eq. (2) can readily describe creep behav-
ior in concrete, in engineering practice simpler formulas are 
commonly used. Nawy provides a simple formula as Eq. (3) 
to calculate creep loss in term of stress,1 which depends on 
time and load magnitude.

   Δσ pCR =Ct
Eps
Ec

σ cs  (3)

   εCR =CtεEL  (4)

   Ct =
t0.6

10+ t0.6
Cu  (5)

where

∆σ
pCR

 = prestress loss due to concrete creep

C
t
 = creep coefficient as a function of time

E
ps

 = elastic modulus of prestress steel tendon or wires

E
c
 = elastic modulus of concrete

σ
cs
 = stress in concrete at the location of the centroid of 

steel tendon

ε
CR

 = concrete creep strain

ε
EL

 = linear elastic strain

C
u
 = ultimate creep coefficient

To obtain the creep coefficient, Branson18 proposed a model 
per Eq. (5) that was based on rheological theory and adopted 
by PCI. The ultimate creep coefficient C

u
 varies from 2 to 4 

according to experimental data. PCI suggests that the values 
of the ultimate creep coefficient center around 2.35. Concrete 
cracking by concrete creep is primarily due to compression 
creep; however, the continuous damage tool used in this study 
captures the maximal principal strain in each element as the 
cracking criteria, whether or not it is caused macroscopically 
by compression creep or tensile creep.

Concrete shrinkage

Shrinkage is an inherent property of concrete related to 
the moisture loss in curing or cured concrete. Shrinkage of 
concrete can be classified differently into plastic shrink-
age, drying shrinkage, autogenous shrinkage, and carbon-
ation shrinkage.19 The autogenous and carbonation types of 
shrinkage usually are not considered for most engineering 
applications. The plastic shrinkage occurs as fresh concrete 
sets in the mold, while drying shrinkage is a long process in 
hardened concrete that depends on factors such as average 
ambient temperature, moisture, and curing conditions. Both 
phenomena were reviewed. Experimental data indicate that 
the average ultimate shrinkage strain of typical concrete is 
780 × 10-6,1 regardless of curing and service conditions. For 
typical prestressed concrete, most shrinkage loss takes place 
within the first year of the structure life. Branson18 proposed 
several equations for shrinkage strain (Eq. [6] and [7]), where 
the ultimate shrinkage strain of concrete ε

SH,u
 is equal to 780 

× 10-6, according to Nawy.1 Equations (6) and (7) apply to the 
moist-curing conditions and steam-curing conditions, respec-
tively. Equation (8) gives the PCI-specified prestress loss by 
shrinkage strain.
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   εSH =
t

35+ t
εSH ,u  (6)

   εSH =
t

55+ t
εSH ,u  (7)

   Δσ pSH = εSH × Eps  (8)

where

ε
SH

 = concrete shrinkage strain

∆σ
pSH

 = prestress loss due to concrete shrinkage

Continuous damage of concrete

Mathematical modeling of time-dependent prestress loss and 
evolution of concrete cracks is rather challenging. The highly 
nonlinear equations generally require a numerical solution 
for these problems formulated as a continuous or discrete 
crack model. De Borst et al.20 compared and explained the 
applications of the continuous and discrete crack models im-
plemented using the finite element method (FEM). Explicitly 
modeling the time-dependent prestress loss and evolution 
of discrete concrete cracks by FEM is challenging because 
the FEM model must keep remeshing the discontinuous 
surface and generating the mesh of a singularity geometry, 
which is time consuming. To simplify the process of crack 
development, the continuous damage theory, in which cracks 
are nucleated into vicinal elements, has commonly been 
used. Vicinal elements of an element in this study refer to 
the neighborhood elements that are located not far from the 
element. Also, the mechanical properties, such as moduli and 
Poisson ratio, can be reduced by retention factors when using 
the continuous crack approach.

In this study, the constitutive relation of plasticity was 
implemented to calculate the strain and stress needed to 
formulate the continuous damage of concrete as a solid 
continuum. In the plasticity theory of solid mechanics, stress 
increments associated with plastic strain and elastic strain 
are linked by a fourth-order elasticity modulus tensor and 
a plasticity modulus tensor.19 In this study, the total strain 
in prestressed concrete was decomposed into linear elastic 
strain ε

EL
, plastic strain ε

PL
, shrinkage strain ε

SH
, and creep 

strain ε
CR

 (Eq. [9]). The Kronecker delta δ is involved to 
calculate the shrinkage strain and creep strain as a compo-
nent of the total strain, as both shrinkage and creep can only 
result in volumetric deformation rather than deviatory strain. 
The shrinkage in aggregate and the creep in steel are signifi-
cantly small compared with creep and shrinkage in mortar. 
Therefore, the aggregate phase and steel phase of concrete 
structures generally only involve linear elastic ε

EL
 and plastic 

strain ε
PL

.

 ε total( )ij = ε EL( )ij + ε PL( )ij + εSH( )ij δ ij + εCR( )ij δ ij  (9)

where

δ
ij
 =  element of Kronecker delta matrix at the ith row 

and the jth column 

Concrete is a quasi-brittle material that tolerates small plastic 
deformation before cracking. There are two general methods 
to model concrete cracks: the discrete method and the extend-
ed method. Based on classical fracture mechanics, the discrete 
method involves modeling cracks as a stress singularity with 
fracture energy release in a crack-tip zone. To track the crack 
propagation and locate crack tips in consecutive steps, it is 
necessary to remesh the local domain of the FEM model 
to adjust geometry variety at the crack tips and calculate 
the released fracture energy. Pan and Wang21 used a cohe-
sive surface approach to simulate the evolution of concrete 
cracks. A J-integral was used by Pan and Wang to track the 
propagation of cracks and calculate the crack distance close 
to the crack tips. In classical FEM, however, it is difficult to 
apply the discrete method to remeshing crack-tip elements. 
In addition, the numerical computation is unstable and does 
not easily converge at crack tips because of the discontinuity 
of displacement and singularity of stress. The development of 
the extended FEM (XFEM), with the partition of unity, offers 
a new approach to overcome stress singularity and displace-
ment discontinuity.22 For microcracking of concrete, however, 
it is still challenging to simulate the development of a large 
number of cracks with the XFEM.13

.Similarly to material hardening and softening, the elastic 
modulus tensor was calculated from the stress and strain ten-
sor; that is, the modulus tensor matrix depended on the prin-
cipal stress and strain and its orientation.25 Alternatively, the 
rotating-crack model hypothesis is that the crack direction is 
orthogonal to the principal tensile strain, which is introduced 
a transformation matrix T (Eq. [10]) to update stress-strain 
direction and elastic modulus from the principal direction to 
the global direction.25–27 In Eq. (10), l, m, and n denote the di-
rections of principal stresses, where the subscripts 1, 2, and 3 
denote the cosine angle between the principal stress direction 
and the x, y, or z axis in the global coordinate system. The 
multidirectional fixed-crack model allows for an intermediary 
performance between the single-crack model and the rotat-
ing-crack model, such that multiple cracks can develop from 
the same point.14,27

T =

 l1
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 (10)

In rotating and multidirectional fixed-crack models, the deteri-
orated stiffness matrix Ds in the global coordinate system is 
calculated from the elastic modulus matrix in the crack plane 
Dcr by Eq. (11). However, the numerical resolution does not 
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easily converge and it is necessary to introduce two fac-
tors, μ and β, to simplify and improve the FEM calculation 
(Eq. [12]).28,29 The factors μ and β are known as the coeffi-
cient of normal reduction and shear retention factor, respec-
tively.30 The coefficient of normal reduction depends on the 
stress-strain curve of concrete obtained in experiment data, 
accounting for material hardening and softening properties. 
The shear retention factor varies from 0 to 1.
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      DS =
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where

E = elastic modulus

G = shear modulus

The total strain obtained from Eq. (9) was then linked to the 
stress status by a fourth-order stiffness tensor per Eq. (13). The 
stiffness tensor is symmetric, which indicates that the tensor 

can be reduced to a second-order tensor and expressed as a 6 
× 6 matrix in the 3-D space. Once the total strain exceeds the 
limit strain of the material, the deteriorated stiffness matrix Ds 
derived from Eq. (11) replaces the original stiffness matrix.

   σ ij = Dijkl ε total( )kl  (13)

where

σ
ij
 = stress status

D
ijkl

 = fourth order stiffness tensor

ε
total

 = total strain

FEM model of prestressed  
concrete slab

The time-dependent cracking damage process of a preten-
sioned concrete slab was modeled in this study. Simple 
supports are applied on the two end sides of the slab, and 
the boundaries of the other two sides are left open. The 
volume-to-surface ratio equals 0.13 for the slab. A 1.31 
× 1.31 ft (0.4 × 0.4 m) portion of the slab was chosen for 
detailed micromechanical analysis (Fig. 1). The overall 
dimensions of the concrete slab are 24 × 5 ft (7.3 × 1.5 m) 

Figure 1. Dimensions of global and local prestressed concrete slabs for finite element method models. Note: 1 in. = 25.4 mm;  
1 ft = 0.305 m.
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with a 1 in. (25.4 mm) concrete cover. Moderate-strength 
prestressing tendons, each made of seven-wire compacted 
strands of Grade 270 (σ

pu
 = 270,000 psi [1860 MPa]) steel, 

with a 0.6 in. (15.2 mm) nominal diameter were selected as 
the prestressing steel (consistent with ASTM A72231). The 
seven-wire strands were made of a low-relaxation steel, 
which is applicable to Eq. (1). The top and bottom extreme 
fiber stresses of the concrete slab due to the prestressing 
force were determined by Eq. (14) and (15). After instan-
taneous prestress losses, the initial prestressing stress σ

pi
 

= 0.6σ
pu

 was obtained. The strand was spaced at a 4 in. 
(101.6 mm) center-to-center distance. A high compressive 
strength concrete with ʹfc  = 6000 psi (41,370 kPa) was used 
in the slab model. Many researchers report that most con-
crete shrinkage and creep occurs in hydrated cement paste 
due to the characteristics of hydration products.1,6 Creep 
is a complicated process that depends on the stress level, 
temperature, water-cement ratio, and relative humidity, for 
which empirical constants can be expressed by a compliance 
function.7 To simplify the calculation in this study, the creep 
strain in concrete was obtained using Eq. (4) provided by 
Nawy,1 which is a function of time and strain level. Shrink-
age strain of concrete was obtained using Eq. (6) and (7). 
The elastic modulus of concrete was calculated based on the 
strength of concrete per Eq. (16).

   σ t = −
Fi
Ac
+
Fieyt
Ig

 (14)

   σ b = −
Fi
Ac
+
Fieyb
Ig

 (15)

   Ec = 57,000 ʹfc  (16)

where

σt = top fiber stress of cross section

F
i
 = initial prestressing force

A
c
 = cross-sectional area

e = eccentricity

y
t
 = distance from neutral axis to top edge of cross sec-

tion

I
g
 = moment of inertia

σb = bottom fiber stress of cross section

y
b
 = distance from neutral axis to bottom edge of cross 

section

A small physical sample of the prestressed concrete slab 
was subjected to an X-ray computed tomography (CT) 
scanner, and a series of two-dimensional (2-D) CT images 
that reflect the inner structure of concrete were obtained. A 
3-D FEM model associated with the CT images of the pre-
stressed concrete slab sample was developed by the authors 
to conduct micromechanical analysis.32 Figure 2 shows 
the 3-D FEM micromechanical model with three different 
phases (mortar, aggregate, and steel) reconstructed from 
scanned 2-D CT images of the prestressed concrete slab 
sample. Perfect bonding was assumed between the steel and 
concrete in the model. As discussed, the shrinkage of the 
concrete slab only occurs in the mortar phase, and Eq. (6) 
was used for this moist-cured slab. The elastic modulus of 
concrete was calculated to be 4.5 × 106 psi (31,000 MPa) 
per Eq. (16). The elastic modulus for the Grade 270 

Figure 2. Microscopic structure of prestressed concrete slab for detailed micromechanical analysis. Note: All dimensions are in 
millimeters. 1 mm = 0.0394 in.
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(1860 MPa) steel tendon was 29 × 106 psi (200,000 MPa), 
and the elastic modulus of the aggregate phase was 10 × 
106 psi (69,000 MPa). The Poisson ratio was assumed to be 
0.20 for these solid materials.

Twenty CT images (80 × 80 pixels each) were used to create 
the 3-D FEM micromechanical model of the prestressed 
concrete slab sample. Each 2-D pixel was reconstructed to a 
3-D voxel of 0.2 × 0.2 × 0.2 in. (5 × 5 × 5 mm) in dimension, 
representing a hexahedral FEM element. The modeled pre-
stressed concrete slab had dimensions of 16 × 16 × 4 in. (400 
× 400 × 100 mm) (Fig. 2). Continuous damage theory was 
then implemented to analyze the 3-D FEM micromechanical 
model. This model contained 128,000 elements and 137,781 
nodes. Each node had three degrees of freedom: u

x
, u

y
, u

z
. A 

transient solver was adopted to solve for the cracking behav-
ior of the prestressed concrete slab. To implement the finite 
element analysis with the constitutive relation per Eq. (13), 
the weak form of the equilibrium equation was required for 
FEM simulation (Eq. [17]). More details about derivation of 
the weak form of constitutive equation can be found in the 
authors’ previous studies.32

∫Ω Be
T Dn−1BedΩΔun = P

ext − Pn−1
int = ∫Γ Ne pdΓ − ∫Ω Beσ n−1dΩ = Rn−1 (17)

   ∫Ω Be
T Dn−1BedΩΔun = P

ext − Pn−1
int = ∫Γ Ne pdΓ − ∫Ω Beσ n−1dΩ = Rn−1

where

B
e
 = the first derivative of N

e
 function

N
e
 = shape function of eight-node element

Ω = integration domain

u
n
 = displacement variable

Pext = external force vector

Pint = internal force vector

Γ = integration boundary

p = load vector

R
n–1

 = residual vector at the n–1 step 

Initial and boundary conditions  
for analysis using FEM

Initial prestress and prestress losses  
in tendons

Based on the assumed initial prestress in tendons f
pi
 equal 

to 60% of the ultimate strength of the tendon steel and the 
thickness (cross-sectional area) of the tendon steel, an initial 
prestressing force F

i
 of 45,800 lb (204,000 N) was obtained 

and applied to the tendons. The prestress losses due to con-
crete creep and concrete shrinkage were calculated per Eq. 
(3) and (8). The prestress loss due to tendon steel relaxation 
was calculated per Eq. (1). The value of σ

cs
 for creep loss 

calculation was 1750 psi (12,000 kPa) for Eq. (3) based on 
the self-weight of the slab only. Figure 3 shows the three 
different types of prestress loss for a one-year period. The 
shrinkage of concrete was the primary factor that affected 
prestress loss owing to the high surface area–to–volume 
ratio of the slab. Also, all three types of prestress loss 
evolved rapidly in the first 180 days and tended to level off 
at one year, meaning that most of the prestress loss occurred 

Figure 3. Different types of prestress loss with time. Note: 1 psi = 6.895 kPa.
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within the first half year and was almost complete in the first 
year after prestress transfer. This is consistent with gener-
al field observations in the prestressed concrete industry. 
Figure 3 shows that the total prestress loss due to concrete 
creep, shrinkage, and steel relaxation was about 26,500 psi 
(182,700 kPa), or 16% of the initial prestress, after 180 days, 
which is in the normal range. These initial values were then 
used for FEM simulation.

Boundary conditions

Figure A.1 shows the location and the displacement bound-
ary conditions of the 3-D FEM micromechanical model (for 
appendix figures, go to pci.org/2019Nov-Appx-Pan). On the 
left-hand side of the 3-D FEM micromechanical model, a 
symmetric boundary was applied, meaning that no rotation 
is allowed on this side. In other words, this side was only 
subjected to moment and horizontal load. On the right side 
of the slab, a vertical hinged-support boundary was applied, 
meaning that only rotation was allowed and no vertical dis-
placement was permitted. Under such assumed boundary con-
ditions, the shear stress was zero on the symmetric boundary, 
which is consistent with basic structure mechanics.

For the force/stress boundary conditions of the 3-D FEM 
micromechanical model, on the right side, the moment M

D
 

(43,000 lb-in. [5 kN-m]) was transmitted from the remaining 
part of the prestressed concrete slab. The stress by M

D
 on this 

side was determined from the initial prestress f
pi
 in the tendon. 

The self-weight W
D
 of the slab caused shear stress and mo-

ment in the concrete (Fig. A.2). The moment on the 3-D FEM 
micromechanical model can be broken down into three parts: 
moment caused by prestress tendon with nonzero eccentricity, 

moment transmitted from remaining concrete of the slab, and 
self-weight-caused moment (Fig. A.3).

Parameters for 3-D FEM  
micromechanical model

A shear retention factor β (Eq. [12]) value of 0.2 was ad-
opted according to a prior study.23 The coefficient of normal 
reduction μ is a function of ultimate strain; that is, the post-
peak behavior and softening process of concrete are needed 
to determine the relationship between the ultimate strain 
and normal reduction. To simplify the FEM computation, a 
normal reduction factor value of 0.5 was adopted for crushed 
concrete and a value of 0.1 was adopted for open cracks.29,33 
To minimize the convergence problem during numerical simu-
lation, the Poisson ratio of the deteriorated concrete matrix 
was set with a small starting value.

Validation of boundary conditions

The specified boundary conditions for the 3-D FEM micro-
mechanical model of the concrete slab needed to be validated 
before detailed analysis using FEM. Two simple FEM mod-
els, termed local and global, where concrete is assumed to be 
homogeneous, were developed to validate the displacement 
and the mechanical boundary conditions. Figure 4 shows the 
vertical displacement u

z
 of the global prestressed concrete slab 

at the initial stage (t = 0). Simple supports were applied on the 
two end sides of the slab, while the boundaries of the other 
two sides were left open. The maximum displacement (cam-
ber) occurred at the center of the slab, with a value of 2.03 in. 
(51.6 mm). For the local FEM model shown in Fig. 4, the 
displacement boundary condition is specified in Fig. A.1 and 

Figure 4. Vertical displacements predicted for homogeneous prestressed concrete slab according to global (left) and  
local (right) finite element method models. Note: All dimensions are in inches. t = time. 1 in. = 25.4 mm.

Global slab vertical displacement at t = 0 days Local slab vertical displacement at t = 0 days
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the force boundary condition is given in Fig. A.3, where the 
moment transmitted from the remaining part of the concrete 
was calculated to be 43,000 lb-in. (5 kN-m). Figure 4 displays 
the vertical displacement u

z
 of the local FEM model. The left 

side of this piece of concrete slab represents the centerline of 
the global prestressed concrete slab. The camber difference 
between the left and right sides was about 0.02 in. (0.5 mm).

To more effectively validate the boundary conditions of the 
two simple FEM models, the difference between the vertical 
displacements of the left and right sides of the local FEM 
model were plotted in Fig. 5, with one curve predicted by the 
global FEM model and the other predicted by the local FEM 
model. Figure 5 shows that the vertical displacements be-
tween the two sides were close to each other (within 3%), as 
predicted by the global and local FEM models. This indicates 
that the boundary conditions specified for the local FEM mod-
el were appropriate. Such boundary conditions for displace-
ments and forces were then used in subsequent finite element 
analysis of the 3-D FEM micromechanical model.

Results and discussion

The validated boundary conditions were then applied to the 
3-D FEM micromechanical model with the concrete micro-
structure reconstructed from X-ray CT images (Fig. 2). This 
3-D FEM micromechanical model was developed to more 
accurately determine localized stress and strain concentra-
tions where excessive displacement, stress, or strain may 
have occurred, causing concrete cracking. The concrete slab 

was subjected to prestressing force from steel tendons, the 
self-weight of the slab, and the three time-dependent prestress 
loss processes: tendon steel relaxation, concrete creep, and 
concrete shrinkage. This slab is simply supported at two ends, 
which is a statically determinate structure in which thermal 
expansion is allowed and temperature-caused stress is negli-
gible. Most of the total time-dependent prestress loss occurs 
in the first half year after prestress transference (Fig. 3); thus, 
in many cases prestress loss can be assumed to be complete 
within the first year. From this standpoint, the prestress losses 
were modeled for 180 days in this study, starting from the mo-
ment of prestress transference. Figure 3 further shows that all 
three types of time-dependent prestress loss progressed rap-
idly within the first month of prestress transference and that 
over 80% of the total time-dependent prestress loss occurred 
within the first 180 days.

Figure 6 shows the vertical deflection of the micromechanical 
prestressed concrete slab under prestressing force and self-
weight and experiencing the three time-dependent prestress 
loss processes at the moments of 0 days, 30 days, 60 days, 
and 180 days. The prestressing force had its maximum value 
at the initial stage before prestress loss. As expected, the verti-
cal deflection of the prestressed concrete slab had a maximum 
value of 0.022 in. (0.56 mm) at 0 days, which matched the re-
sult predicted by the two simple FEM models shown in Fig. 5. 
This observation shows that the 3-D FEM micromechani-
cal model was developed correctly. Over time, the vertical 
displacement of the prestressed concrete slab progressed at 
slower rates as more prestress loss occurred. Figure 6 shows 

Figure 5. Comparison of vertical displacement predictions for prestressed concrete slab according to global and local slab finite 
element method models. Note: 1 in. = 25.4 mm.
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that the value of vertical displacement decreased most sig-
nificantly within the first 30 days. This is because most of the 
prestress loss happened within the first 30 days. In addition, in 
Fig. 6 the vertical deflection of the prestressed concrete slab 
appears to be distributed nonuniformly inside the concrete 
slab because the mortar and aggregate phases in concrete have 
different mechanical properties. This differentiates the results 
from the simple FEM models shown in Fig. 5. 

To more clearly examine the variation of vertical deflection 
in the prestressed concrete slab, the top edge of the left side 
of the slab was selected for a detailed analysis. Figure 7 
shows the vertical displacement magnitudes of the selected 
edge at different time moments. At the beginning, the vertical 
displacement of the prestressed concrete slab demonstrated 
a smooth curve. As time progressed, the curve became more 
nonuniformly distributed in the slab due to the three types 

of prestress loss. Such nonuniform distribution in deforma-
tion might indicate localized stress and strain concentrations 
where concrete cracking could occur. Figure 7 shows that 
the vertical displacement of the left side of the concrete slab 
decreased by about 20% from 0 to 180 days, which shows 
the significant effect of prestress loss on the behavior of a 
prestressed concrete structure.

For the prestressed concrete slab modeled in this study, the pri-
mary strain and stress occur in the direction along the tendons, 
that is, the x-axis direction shown in Fig. 4 and 6. Figure 8 
shows the evolution of the primary strain, which is the nor-
mal strain along the x-axis direction, with time. In this study, 
positive values refer to tension and negative values indicate 
compression. Prestressing force from steel tendons applied 
eccentrically can cause moment on the cross section (Fig. A.3). 
Figure 8 shows that in the beginning the slab was subjected to 

Figure 6. Vertical displacement of prestressed concrete slab according to 3-D finite element method micromechanical model at 
0 days, 30 days, 60 days, and 180 days. Note: All dimensions are in inches. t = time. 1 mm = 0.0394 in.

Vertical displacement at t = 0 days

Vertical displacement at t = 60 days

Vertical displacement at t = 30 days

Vertical displacement at t = 180 days
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tensile strain in its upper cross section and compressive strain in 
the lower cross section. As time progressed, prestress loss due 
to steel relaxation in the tendons took effect by decreasing the 
magnitude of prestressing-force-caused moment, leading to re-
duced strain in the concrete. It is noteworthy that the difference 
in stress and strain is small between aggregate and paste.

The shrinkage and creep of concrete occurred primarily in the 
hardened mortar phase. Figure 8 shows that over time the nor-
mal strain in the concrete slab tended to become compressive 
strain, even on the top of the slab. This is because the shrinkage 
and creep of concrete aggravated the compressive strain as the 
concrete material (mainly mortar) yielded under the prestress-
ing force. Figure 8 shows that the compressive strain caused by 
shrinkage and creep of concrete was more significant and larger 
than the tensile strain resulting from the eccentric prestressing 
force. After 30 days, the mortar phase of concrete was under 
tension while the aggregate phase was under compression, lead-
ing to concentrated internal strain and stress in the prestressed 
concrete slab. On the right side of the slab, the localized high 
deformation and strain in concrete around the tendon–concrete 
interface was significantly higher than the deformation and 
strain at other locations of the slab owing to the St. Venant’s 
effect, meaning that the stress, strain, and deformation are sig-
nificantly higher in the close vicinity of where load is applied 
than the location away from the loaded area.. In design prac-

tices, such concentrated strain should be controlled to prevent 
catastrophic failure at the prestress transference stage.

The principal strain in the concrete was then used to trace and 
evaluate the development of cracks in the prestressed concrete 
slab based on the continuous damage theory. The strain status 
of a point in a concrete domain can be expressed by a 3 × 3 
symmetric matrix in the 3-D spatial coordinate system. To 
determine the magnitude and direction of the principal strain 
at a point in the domain, the eigenvalue and eigenvector of 
the matrix need to be determined. Equations (18) and (19) 
show the eigenproblem for finding the principal stress or 
strain for the concrete domain, where l, m, and n, and denote 
the direction of the three principal strains. Three eigenvectors 
should be obtained and substituted into Eq. (13) to obtain the 
principal stress. In Eq. (19), I

1
, I

2
, and I

3
 represent the first, 

second, and third invariants of strain, respectively.

According to the continuous damage theory, concrete crack-
ing occurs when the principal tensile strain of an element in 
the concrete domain exceeds a predetermined strain limit; 
similarly, concrete crushes when the principal compressive 
strain of an element in the concrete domain exceeds a prede-
termined strain limit. The concrete stiffness can be deterio-
rated by either the tensile cracking or compressive crushing. 
If the principal strain of a concrete element possesses a value 

Figure 7. Vertical displacement along selected edge prestressed concrete slab at different times. Note: 1 in. = 25.4 mm.  
1 mm = 0.0394 in.
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between the tensile and compressive limits, the element is 
characterized as uncracked or uncrushed.
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Figure 9 shows the evolution of concrete cracking based on 
the continuous damage theory, that is, the principal strain 
criterion, from 0 to 180 days. The 0 value in Fig. 9 represents 
the stiffness-degraded elements, and 1 represents the stiff-
ness-undegraded elements (original elements). Figure 9 shows 
that no cracks occurred at the time of prestress transference 
(t = 0). Although the prestress loss in tendons tends to reduce 
the strain in concrete in the x-axis direction, the shrinkage 

and creep of concrete always yield unrecoverable strain in the 
direction of prestressing force, which will contribute to the 
total strain level and cause cracking or crushing of concrete. 
This complex process of concrete damage under the cumula-
tive effects of prestressing force and prestress losses can only 
be properly studied using a 3-D FEM micromechanical model 
as developed in this study.

At 30 days, a few cracks occurred near the center of the pre-
stressed concrete slab (Fig. 9). These cracks at the slab center 
then closed and new cracks started to appear on the surface of 
the slab after 60 days. Most of these cracks were caused by the 
compressive strain from concrete shrinkage and creep. Wheth-
er the crack is micro or macro after 180 days depends on the 
density of the elements that are shown as cracked in Figure 9, 
from which it can be seen that although most cracks are spo-
radic, some do merge to appear as major cracks. In this study, 
the drying shrinkage played a more important role in concrete 
cracking due to the high surface area–to–volume ratio of the 

Figure 8. Normal strain along x axis of prestressed concrete slab at 0 days, 30 days, 60 days, and 180 days. Note: All dimensions 
are in millimeters. t = time. 1 mm = 0.0394 in.

Normal strain at t = 0 days

Normal strain at t = 60 days

Normal strain at t = 30 days

Normal strain at t = 180 days
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slab. Moisture in concrete can evaporate from the slab surface, 
where the shrinkage strain is proportional to moisture loss. 
Also, compared to the macro tension field, the micro or local 
tension strain and stress, because of the difference properties of 
paste and aggregate, are significantly higher, which contributes 
a lot to the cracking of concrete. Drying shrinkage generally 
only causes microcracks in concrete.34 It is noteworthy that 
there is difference between the prestress loss of pretensioned 
concrete versus post-tensioned concrete. In post-tensioned 
concrete, since there are additional non-time-dependent losses 
due to seating and friction and there is no transfer zone, the 
time-dependent cracking of concrete may be less severe owing 
to the smaller prestressing force in the tendon.

To further study the contribution of the time-dependent pre-
stress losses to the cracking behavior of concrete, the individual 
effect of each type of prestress loss was evaluated separately. 
Figure A.4 shows the evolution of concrete damage under the 
effect of tendon relaxation alone by holding the concrete creep 

and shrinkage constant. No cracks occurred in the prestressed 
concrete slab during the 180-day period. Without concrete 
creep and shrinkage considered, the maximum strain appeared 
at the very beginning stage. Over time, the intensity of the prin-
cipal strain decreased as the tendon steel relaxed.

Figure A.5 shows the evolution of concrete damage under the 
concrete creep effect alone by holding the steel relaxation and 
concrete shrinkage constant, which did not result in apparent 
concrete cracking. Equations (3) and (4) characterize the creep 
strain associated with stress level or linear elastic strain. The 
coefficient of creep strain is a factor that depends on time. With-
out concerning other types of prestress loss, the level of stress 
in concrete σ

cs
 is from the initial prestressing force applied to 

tendons at the initial stage. In this study, because the eccentricity 
of prestressing force was small, the level of stress in concrete σ

cs
 

did not result in high stress to cause significant creepage of con-
crete. As a result, the total creep strain did not exceed the tensile 
or compressive limits for concrete cracking or crushing.

Figure 9. Accumulated continuous damage of prestressed concrete at 0 days, 30 days, 60 days, and 180 days. Note: All dimen-
sions are in millimeters. t = time. 1 mm = 0.0394 in.

Smeared crack at  t = 0 days

Smeared crack at  t = 60 days

Smeared crack at  t = 30 days

Smeared crack at  t = 180 days
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Figure A.6 displays the evolution of concrete damage by the 
effect of concrete shrinkage alone by holding the steel re-
laxation and concrete creep constant. A few cracks appeared 
near the center of the concrete slab at 30 and 60 days. At 
180 days, many more cracks appeared on the slab surface as 
a result of significant moisture loss over time. Compared with 
the effects of tendon relaxation and concrete creepage, the 
prestress loss by concrete shrinkage played a more important 
role in concrete cracking. This observation is in agreement 
with the results shown in Fig. 3, where the shrinkage loss 
was more significant for the prestressed concrete slab. As 
such, attention should be given to the concrete shrinkage 
effect in the design and manufacture of prestressed concrete 
slabs. It is noteworthy that shrinkage of concrete has a typical 
range from 400 to 1000 microstrain relative to the assumed 
780 microstrain in this paper; therefore in reality, the actual 
extent of concrete cracking may be significantly more severe 
than what is predicted in this manuscript since concrete 
shrinkage plays a more important role in the cracking dam-
age of prestressed concrete slabs than steel stress relaxation 
and concrete creep. Considering the limited research done 
in numerically studying the time-dependent cracking of pre-
stressed concrete,35–37 this work can be expected to improve 
the knowledge base of the subject.

Conclusion

This paper presents a 3-D FEM micromechanical model 
based on the continuous damage theory and a time-depen-
dent analysis of the cracking behavior of prestressed con-
crete slab. Three major types of prestress loss (tendon steel 
relaxation, concrete shrinkage, and concrete creep) were 
formulated based on the current concrete design codes and 
modeled explicitly in the developed model. Based on con-
stitutive equations of plasticity mechanics, stress in concrete 
was determined and updated at each time step to compute 
the principal strain used in the 3-D FEM micromechanical 
model based on continuous damage theory. Coefficients of 
the normal reduction factor and shear retention factor were 
induced to improve the efficiency of the FEM computation. 
A prestressed concrete slab was analyzed using the devel-
oped tool based on the 3-D reconstructed microstructure 
of concrete. Boundary conditions and initial values for the 
3-D FEM micromechanical model were validated by two 
simplified FEM models. The total time-dependent prestress 
loss was found to be 16% of the initial prestress applied to 
the tendon. The displacement, principal strain, and cracking 
damage of the 3-D FEM micromechanical model were an-
alyzed. The model outputs showed that prestress loss could 
significantly affect the cracking behavior of prestressed con-
crete. Stress concentration caused by prestress losses could 
cause concrete cracking even if the initial concrete stress 
from the tendon prestress was below the cracking and crush-
ing limits of concrete. In addition, it was found that concrete 
shrinkage plays an important role in the cracking damage 
of prestressed concrete slabs because such slabs often have 
a high surface area–to–volume ratio. Results were verified 
by separately analyzing the effect of each time-dependent 

prestress loss. This comprehensive study provides a useful 
tool, by means of a 3-D FEM micromechanical model, for 
evaluating the cracking behavior and cumulative damage of 
prestressed concrete structures.
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Notation

A
c
 = cross-section area of concrete slab

A
i
 = experimentally measured fitting parameter

B
e
 = the first derivative of N

e
 function

B
i
 = experimentally measured fitting parameter

C
t
 = creep coefficient as a function of time

C
u
 = ultimate creep coefficient 

D = experimentally measured fitting parameters

Dcr = elastic modulus matrix in the crack plane

D
ijkl

 = fourth order stiffness tensor

Ds = deteriorated stiffness matrix

e = eccentricity

E = elastic modulus

E
c
 = elastic modulus of concrete

E
ps

 = elastic modulus of prestress steel tendon or wires

E
0
 = initial elastic modulus

ʹfc   = compressive strength of concrete

fpi  = initial prestress in tendon

F
i
 = initial prestressing force

G = shear modulus

G
i
 = regression factor

I
g
 = moment of inertia of cross section

I
1
 = first invariant of strain

I
2
 = second invariant of strain

I
3
 = third invariant of strain

J(t, σ) = compliance function

l
1
 = direction of principal stress at cosine angle between 

l and x axis

l
2
 = direction of principal stress at cosine angle between 

l and y axis

l
3
 = direction of principal stress at cosine angle between 

l and z axis

m
1
 = direction of principal stress at cosine angle between 

m and x axis

m
2
 = direction of principal stress at cosine angle between 

m and y axis

m
3
 = direction of principal stress at cosine angle between 

m and z axis

n
1
 = direction of principal stress at cosine angle between 

n and x axis

n
2
 = direction of principal stress at cosine angle between 

n and y axis

n
3
 = direction of principal stress at cosine angle between 

n and z axis

M
D
 = moment for boundary conditions of 3-D FEM  

micromechanical model

N
e
 = shape function of eight-node element

p = load vector

Pext = external force vector

Pint = internal force vector

R
n–1

 = residual vector at the n–1 step

S
i
 = experimentally measured fitting parameter

t = time

t
1
 = beginning of the time interval for determining  

prestress loss

t
2
 = end of the time interval for determining prestress loss

T = transformation matrix 

u = displacement variable

u
x
 = displacement of 3-D FEM micromechanical model 

in x-axis direction

u
y
 = displacement of 3-D FEM micromechanical model 

in y-axis direction

u
z
 = vertical displacement of 3-D FEM micromechanical 

model
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W
D
 = self-weight of 3-D FEM micromechanical model

y
b
 = distance from neutral axis to bottom edge of slab

y
t
 = distance from neutral axis to top edge of slab

α = experimentally measured fitting parameter

β = coefficient of shear retention factor

Γ = integration boundary

δ = Kronecker delta

δ
ij
 = element of Kronecker delta matrix at the ith row and 

the jth column

∆σ
pCR

 = prestress loss due to concrete creep

∆σ
pR

 = prestress loss due to streel stress relaxation

∆σ
pSH

 = prestress loss due to concrete shrinkage

ε
CR

 = concrete creep strain

ε
EL

 = linear elastic strain

ε
PL

 = plastic strain

ε
SH

 = concrete shrinkage strain

ε
SH,u

 = ultimate shrinkage strain of concrete

ε
total

 = total strain

μ = coefficient of normal reduction

σ = stress 

σb = bottom fiber stress of concrete slab

σ
cs
 = stress in concrete at the location of the centroid of 

steel tendon

σ
ij
 = stress status

σ
pi
 = initial prestressing stress

σ
pu

 = ultimate strength of prestressing steel

σt = top fiber stress of concrete slab

σ
y
 = yield strength of steel tendon

Ω = integration domain
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Abstract

The stringent control of cracking in prestressed 
concrete demands more research to investigate the 
mechanism and evolution of cracking in concrete 
under combined prestressing and loading conditions. 
For the first time, continuous damage theory is applied 
to quantitatively depict the time-dependent cracking 
behavior of prestressed concrete. A 3-D finite ele-
ment method (FEM) micromechanical model based 
on the continuous damage theory was created for a 
prestressed concrete slab using a 3-D imaging–based 
approach developed for reconstructing a concrete 
microstructure. Three major time-dependent prestress 
losses—tendon relaxation, concrete shrinkage, and 
concrete creep—were determined explicitly using the 
developed 3-D FEM micromechanical model. Based 
on the determined deformation, principal strain, and 
level of cracking of the concrete slab, it was found that 
the time-dependent prestress losses significantly affect 
the cracking behavior of prestressed concrete. Stress 
growth resulting from prestress losses could cause 
chronic concrete cracking in service even if the initial 
prestress applied in concrete was well below its crack-
ing limit. Of the three major types of prestress losses, 
concrete shrinkage plays a more critical role in causing 
continuous cracking in prestressed concrete. The 3-D 
FEM micromechanical model has the potential for 
wide adoption for designing prestressed concrete struc-
tures because, for example, concrete cracking can be 
more accurately predicted in design.
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Continuous damage, micromechanical modeling, 
time-dependent prestress loss.
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