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Development of design guidelines 
for ledges of L-shaped beams

Mohamed K. Nafadi, Gregory W. Lucier, Sami Rizkalla, Paul Zia,  
and Gary J. Klein

■ This paper presents the development of a design 
procedure for the eighth edition of the PCI Design 
Handbook to evaluate the punching shear strength 
of ledges of L-shaped beams.

■ Based on the failure surfaces observed throughout a 
comprehensive experimental program, an idealized 
failure surface was determined.

■ A procedure to evaluate the punching shear strength 
of the ledge was developed to provide an improved 
margin of safety for ledge capacity under a wide 
range of loading conditions.

This paper is part of a series of three that reports 
research on the behavior and punching shear strength 
of ledges of L-shaped beams. The research program 

included experimental tests of 21 short beams of 15.5 ft 
(4.72 m) span, 8 long beams of 45.5 ft (13.9 m) span, and 1 
long beam of 36.5 ft (11.1 m) span. All short beams were re-
inforced with mild steel only, while all long beams were pre-
stressed, except for one 45.5 ft span beam. All beams were 
subjected to multiple tests at different locations along the 
ledge, resulting in 106 total tests in the program. The results 
of these tests were presented in the first two papers in this 
series.1,2 In addition to the test program, the research also 
included the development of a three-dimensional nonlinear 
finite element model (FEM), validated by the experimental 
data and other data reported in the literature.3–9 The FEM 
was used initially to examine the possible effects of various 
design parameters, thus providing a basis for design of the 
experimental program. The FEM was also used to generate 
additional data supplementing the experimental data.10

Research findings revealed that several parameters signif-
icant to ledge punching shear strength are not considered 
by the design procedure presented in the seventh edition of 
the PCI Design Handbook: Precast and Prestressed Con-
crete11 for the ledges of L-shaped beams, referred to as the 
PCI procedure in this paper. These parameters include the 
global flexural and shear stresses, prestressing, and load 
eccentricity. While high levels of global stress and increased 
load eccentricity cause reductions in ledge capacity, the use 
of prestressing enhances the load-carrying capacity of the 
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Figure 1. Isolated symmetric and asymmetric failures. Note: bt = width of the double-tee stem or the width of the bearing pad, 
whichever is less; de = distance from the center of an applied concentrated load to end of the ledge; e' = eccentricity of the fac-
tored ledge vertical load to the inner web face; hl = height of beam ledge; lp = projection of the ledge.

ledge. The PCI procedure assumes 45-degree failure planes; 
however, observed failure planes were generally inclined at 
shallower angles, resulting in a relatively larger failure sur-
face. Furthermore, the PCI procedure specifies a load spacing 
of b

t
 + h

l
 or greater to prevent the overlapping of failure cones 

from adjacent loads (where b
t
 is the width of the double-tee 

stem or the width of the bearing pad, whichever is less, and h
l
 

is the height of beam ledge). Nevertheless, test results indicate 
that failure cones overlap when adjacent loads are spaced at a 
distance much larger than this specified value.2

This paper proposes a design procedure that takes into 
consideration the effects of the previously mentioned param-
eters along with the parameters traditionally considered for 
ledge resistance. Recommendations are presented for certain 
reinforcement details found to improve the behavior and to 
enhance the capacity of the ledge without changing ledge 
geometry. This proposed procedure has been incorporated in 
the eighth edition of the PCI Design Handbook.12

Observed failure surface

Figure 1 compares the symmetric failure surface observed 
from a typical test with the surface assumed by the PCI  
procedure. If a load is applied sufficiently close to the end of  
the ledge, then there exists a potential for asymmetric failure 
(Fig. 1). If two concentrated loads are placed relatively close 
to one another, their failure planes may overlap. In such a 
case, a combined failure plane will develop and the failure 
surface will generally follow the same configuration as the 
isolated failure surface, whether symmetric or asymmetric 
(Fig. 2). In all cases, test results demonstrated that the slopes 
of the faces of the observed failure surfaces are affected by 

five main parameters: global flexure and shear stresses, pre-
stressing, load eccentricity, concentrated ledge reinforcement, 
and ledge height.1,2

Proposed idealized failure surface

To determine the punching shear strength of a ledge, the PCI 
procedure uses an idealized rectangular failure surface, based 
on assumed 45-degree failure planes developed from both 
sides of the bearing area (Fig. 3). The width of the idealized 
rectangular failure surface is assumed to be the ledge projec-
tion l

p
 regardless of the load eccentricity from the inner web 

face. The depth of failure surface is assumed to be equal to the 
full ledge height h

l
.

Based on the actual failure surfaces measured from the 106 ex-
perimental tests, the length of the idealized rectangular failure 
surface is determined by a similar approach. Figure 4 shows 
the ratios of the average extension of the idealized rectangular 
failure surface from each side of the bearing area to the ledge 
height. Statistical analysis of these plotted data indicates that 
the average extension of the idealized failure surface on each 
side of the bearing area is 1.1h

l
, with a coefficient of variation 

of 19%. Therefore, for simplicity, the average is taken as 1.0h
l
.

Given these results, it is proposed to modify the PCI proce-
dure to consider the extension of the idealized rectangular 
failure surface from each side of the bearing area as 1.0h

l
 

instead of 0.5h
l
, reflecting the relatively larger failure surface 

observed in the tests. No change is proposed to either the 
width or the height of the idealized failure surfaces. Accord-
ingly, idealized design surfaces for various loading cases can 
be easily derived.
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Figure 2. Combined symmetric and asymmetric failures. Note: bt = width of the double-tee stem or the width of the bearing 
pad, whichever is less; de = distance from the center of an applied concentrated load to end of the ledge; e' = eccentricity of the 
factored ledge vertical load to the inner web face; hl = height of beam ledge; lp = projection of the ledge; s = spacing between 
applied concentrated loads.

Figure 3. Idealized failure surface by PCI procedure (isolated symmetric failure). Note: bt = width of the double-tee stem or the 
width of the bearing pad, whichever is less; hl = height of beam ledge; lp = projection of the ledge.
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Nominal shear stress

The shear stress on the ledge due to applied eccentric concen-
trated loads is composed of two components:

• direct shear stress due to the vertical applied load, which 
is assumed uniformly distributed along the perimeter of 
the idealized failure surface

• torsional shear stress assumed linearly distributed due 
to the eccentricity of the applied load with respect to the 
centroid of the critical section of the idealized failure 
surface (Fig. 5) for symmetric and asymmetric failures

For symmetric failures, the distribution of shear stress on the 
back face of the failure surface due to the vertical load is typi-
cally uniform. However, the presence of the torsional moment 
around the y axis at the centroid of the critical section M

ny
 

induces a nonuniform distribution of shear stress on the side 
faces of the failure surface with a minimum value at the back 
plane and a maximum value at the edge of the ledge (Fig. 6). 
However, some of the torsional moment is counteracted by 
cantilever ledge flexure in the same way that the unbalanced 
moment at a slab-column connection is resisted by a combina-
tion of flexure and eccentric shear.13 For asymmetric failures, 
the distribution of shear stress on both the back face and the 
side face of the failure surface is nonuniform due to the pres-
ence of the torsional moments in two directions M

ny
 and the 

torsional moment around the x axis at centroid of critical sec-
tion M

nx
 (Fig. 6). Again, some of the torsional moment in both 

directions is counteracted by ledge flexure. To simplify these 
complex stress distributions, the shear stress is assumed to be 
uniform whether for the symmetric or asymmetric failures. 
The value of this uniform shear stress is expressed as β fc

' , 
where β is a shear strength coefficient dependent on the level 
of global stress and fc

' is the compressive strength of concrete.

Effect of global stresses  
in reinforced concrete beams

Effect of global flexural stress in reinforced concrete 
beams Results of the analytical and experimental studies 
indicate that increasing the level of the global flexural stress 
reduces the nominal punching shear strength of the ledge. To 
account for this effect, the level of global flexural stress at a 
given location along the span can be represented by the ratio 
of the applied moment M to the nominal moment capacity M

n 

of the beam at the location of interest (M/M
n
). Using the ide-

alized failure surface, the applied ledge load, and the concrete 
strength, the shear strength coefficient β was determined as 
follows.

Selected results of the finite element analysis (FEA)10 for two 
locations—midspan and quarter span—were used to deter-
mine the effect of global flexural stress on the shear strength 
coefficient β. For each location, different load cases were 

Figure 4. Ratios of the extension of idealized failure surface to ledge height for 106 observed failure surfaces. Note: bt = width of 
the double-tee stem or the width of the bearing pad, whichever is less; hl = height of beam ledge; lp = projection of the ledge.
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Figure 6. Shear stress distribution for asymmetric and symmetric failures. Note: fc
' = specified compressive strength of concrete; 

β = shear strength coefficient dependent on the level of global stress.

Figure 5. Applied torsional moments in asymmetric and symmetric failures. Note: bt = width of the double-tee stem or the width 
of the bearing pad, whichever is less; de = distance from the center of an applied concentrated load to end of the ledge; e' =  
eccentricity of the factored ledge vertical load to the inner web face; hl = height of beam ledge; lp = projection of the ledge; Mnx = 
torsional moment around x axis at centroid of critical section (parallel to ledge projection); Mny = torsional moment around y axis 
at centroid of critical section (perpendicular to ledge projection); Vln = nominal ledge capacity; x0 = distance from ledge load to 
centroid of critical section in a parallel direction to ledge projection; y0 = distance from ledge load to centroid of critical section 
in a perpendicular direction to ledge projection.
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studied by holding loads at auxiliary locations constant at a 
specified level while increasing the load at a selected location 
to failure. By varying the magnitude of the auxiliary loads, 
different levels of global flexural stress were achieved. Using 
the failure load predicted by the FEA for each case and the 
ratio of applied moment to nominal moment capacity M/M

n
, 

the shear strength coefficient β was determined for each case 
(Fig. 7). Such correlation indicates that increasing the ratio 
M/M

n
 reduces the shear strength coefficient β from 2.0 to 1.0. 

Most of the reduction of shear strength occurred when the ra-
tio M/M

n
 ranged from 0.2 to 0.6, while it became insignificant 

at ratios higher than 0.6. It should be noted that the data used 
in this analysis represent industry-typical cases with uniform-
ly distributed ledge reinforcement and maximum practical 
load eccentricity (with the ledge load placed at ¾ of the ledge 
projection l

p
 from the inner web face, in accordance with the 

seventh edition of the PCI Design Handbook).

Effect of global shear stress in reinforced concrete 
beams A similar analysis was performed to correlate the 
level of global shear stress to the uniform shear stress on the 
idealized failure surface of the ledge. In this case, the level 
of global shear stress is represented by the ratio V/V

n
, where 

V is the applied shear and V
n
 is the nominal shear capacity of 

the beam at a given location, as determined by the procedure 
developed by Lucier et al.6–8

Different loading cases were analyzed by FEA for two select-
ed locations at the end region and the quarter span to simulate 
different levels of global shear stress. Using the failure load 
predicted by the FEA for each loading case, both the ratio of 
applied shear to nominal shear capacity V/V

n
 and the shear 

strength coefficient β were determined for each loading case 
(Fig. 8). The correlation clearly indicates that increasing the 
ratio V/V

n
 reduces the shear strength coefficient β from 2.0 to 

1.0, similar to the reduction associated with increasing global 
flexural stress. Similarly, most of the reduction occurs when 
the ratio V/V

n
 ranges from 0.2 to 0.6.

Proposed relationship for the effects of global stress 
Results of the FEA indicate that the relationships between 
the ratios M/M

n
 and V/V

n
 and the shear strength coefficient β 

are almost identical. Therefore, one bilinear relationship can 
be used to estimate the shear strength coefficient β at a given 
location, based on the larger of the two ratios M/M

n
 and V/V

n
. 

Figure 9 shows the experimental results plotted against the 
proposed relationship using the larger of M/M

n
 and V/V

n
 

and the corresponding shear strength coefficient β. Similar 
trends were obtained from the FEA parametric study that was 
performed to study the effects of various parameters on ledge 
capacity at various locations. These results are presented else-
where.10 The proposed relationship is based on an optimized 
correlation between the shear strength coefficients determined 
by FEA and the experimental program and the predictions.

Figure 7. Effect of global flexural stress in reinforced concrete 
beams (finite element analysis). Note: M = applied moment; Mn 
= nominal moment capacity of the beam at the given location 
determined in accordance with section 5.2 of the seventh 
edition of the PCI Design Handbook; β = shear strength coeffi-
cient dependent on the level of global stress.

Figure 8. Effect of global shear stress in reinforced concrete 
beams (finite element analysis). Note: V = applied shear; Vn = 
nominal shear strength of the beam at the given location;  
β = shear strength coefficient dependent on the level of  
global stress.

Figure 9. Experimental results overlaid on the proposed 
relationship for the effect of global stresses in reinforced 
concrete beams. Note: M = applied moment; Mn = nominal mo-
ment capacity of the beam at the given location determined 
in accordance with section 5.2 of the seventh edition of the 
PCI Design Handbook; V = applied shear; Vn = nominal shear 
strength of the beam at the given location; β = shear strength 
coefficient dependent on the level of global stress.
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Effect of prestressing

Research findings clearly indicate that the use of prestressing 
generally enhances the punching shear strength of a ledge.2 
The influence of prestressing is dependent on the level of 
prestressing in the beam.

Using the same approach for reinforced concrete beams, 
the results of FEA10 for the ledge capacities of prestressed 
concrete beams were analyzed to determine the relationship 
between the larger of the ratios M/M

n
 and V/V

n
 and the corre-

sponding shear strength coefficient β (Fig. 10). The data used 
to establish the relationship were based on beams with the 
same prestressing level and the same concrete strength. The 
figure clearly indicates that prestressing increases the shear 
strength coefficient for different levels of global stress at all 
locations along the beam.

To account for the effect of prestressing, it is proposed to 
modify the shear strength coefficient β by a factor accounting 
for the level of prestressing γ. The coefficient γ was derived 
based on the increase of the principal tensile strength of 
concrete in the prestressed section, subjected to the com-
bined effects of shear and torsion.14–16 For reinforced concrete 
beams, γ equals 1.0, and for prestressed concrete beams, the 
following equation can be used:

γ = 1+10
f pc
fc
'

where

f
pc

 = average prestress after losses

fc
' = specified compressive strength of concrete

For the data presented at the top of Fig. 10, γ was 1.47, based 
on the average prestress after losses f

pc
 of 690 psi (4.8 MPa) 

and a concrete compressive strength fc
' of 6000 psi (41 MPa). 

The comparison between the modified shear strength coeffi-
cients γβ and those predicted by FEA indicates the validity of 
the proposed approach to predict the punching shear strength 
of a ledge. The same conclusion is drawn when this proposed 
approach is compared with the available experimental results 
for beams having an average γ equal to 1.32, corresponding to 
an average f

pc
 of 690 psi (4.8 MPa) and measured fc

' ranging 
from 8670 to 10,190 psi (59.8 to 70.26 MPa) (Fig. 10). The 
proposed approach for considering the effect of prestress-
ing can be used to conservatively predict the modified shear 
strength coefficient γβ.

Proposed procedure to evaluate the 
punching shear strength of ledges

Based on the analyses listed previously, a step-by-step proce-
dure for evaluating ledge punching shear capacity is proposed: 

1. For a given location of concentrated ledge load along the 

span of an L-shaped beam, the ratios M
u
/M

n
 and V

u
/V

n
 are 

determined, where M
u
 is the factored moment in the beam 

at the given location and V
u
 is the factored shear in the 

beam at the same location.

V
n
 = V

c
 + V

s

where

V
c
 =  nominal shear strength provided by concrete, 

determined in accordance with section 5.3 of the 
seventh edition of the PCI Design Handbook

V
s
 =  nominal shear strength provided by shear reinforce-

ment, determined in accordance with the slender 
spandrel procedure developed by Lucier et al.6

 = 2
Aso
s

⎛
⎝⎜

⎞
⎠⎟
f yd

A
so

/s =  vertical shear reinforcement on the outer web face 
(that is, non-ledge web face)

f
y
 = specified yield strength of shear reinforcement

d =  distance from the extreme compression fiber to 
the centroid of longitudinal tension reinforcement 
(per ACI 318-1413), but not less than 0.8h for pre-
stressed components

Figure 10. Finite element and experimental results overlaid on 
the proposed idealization for the effect of prestressing. Note: 
FEA = finite element analysis; M = applied moment capacity; 
Mn = nominal moment capacity of the beam at the given loca-
tion determined in accordance with section 5.2 of the seventh 
edition of the PCI Design Handbook; V = applied shear; Vn = 
nominal shear strength of the beam at the given location; β 
= shear strength coefficient dependent on the level of global 
stress; γ = factor accounting for the level of prestressing.
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h = height of beam

2. Let R be the larger of the two ratios M
u
/M

n
 and V

u
/V

n
. De-

termine the shear strength coefficient of the ledge β based 
on the following conditions (Fig. 11).

For R ≤ 0.2, β = 2

For 0.2 < R < 0.6, β = 1 + 2.5(0.6 – R)

For R ≥ 0.6, β = 1

For typical designs, the ratio R will likely exceed 0.6 in 
regions of maximum shear or flexure. Thus, it is usually 
reasonable and always conservative to take β as 1.0. Gen-
erally, ledge punching shear strength near the support or 
the midspan will control the design of the ledge.

3. For interior concentrated loads, where the distance from 
the center of an applied concentrated load to the end of 
the ledge d

e
 ≥ 0.5b

t
 + h

l
 + l

p
, a symmetric failure would 

control the design punching shear strength of the ledge 
φV

ln
 (where φ is the strength-reduction factor and V

ln
 is 

the nominal ledge capacity). The design strength should 
be taken as the lesser of the values given by Eq. (1) and 
(2). Typically, Eq. (1) controls the strength for single 
interior ledge loads, while Eq. (2) controls the strength 
for closely spaced interior ledge loads.

 φVln = φλγβ fc
' hl bt + 2hl + 2lp( )  (1)

 φVln = φ0.5λγβ fc
' hl bt + 2hl + s+ 2lp( )  (2)

where

λ = modification factor for density of concrete

s = spacing between applied concentrated loads

For end concentrated loads, where d
e
 < 0.5b

t
 + h

l
 + l

p
, an 

asymmetric failure would control the design punching 
shear strength of the ledge φV

ln
. The design strength 

should be taken as the lesser of the values given by Eq. 
(3) and (4). Typically, Eq. (3) controls the strength for 
single ledge loads close to the end of the ledge, while  
Eq. (4) controls the strength for closely spaced ledge 
loads close to the end of the ledge.

 φVln = φλγβ fc
' hl 0.5bt + hl + de + lp( )  (3)

 φVln = φ0.5λγβ fc
' hl 0.5bt + hl + de + s+ lp( ) (4)

The minimum load spacing s along the ledge should be 
used to determine the design punching shear strength. 
For nonprestressed sections, γ is 1.0. If d

e
 is less than 

the transfer length of the strands, the average prestress f
pc

 
should be reduced accordingly.

This research did not consider the case where a ledge 
supports a continuous load (such as cored slabs or box 
beams placed side by side) or a continuous series of 
closely spaced concentrated loads (such as channel 
beams).

These conditions are addressed by Eq. (5-48) of the  
seventh edition of the PCI Design Handbook.

Figure 11. Shear strength coefficient β for ledges of L-shaped 
beams. Note: Mn = nominal moment capacity of the beam 
at the given location determined in accordance with section 
5.2 of the seventh edition of the PCI Design Handbook; Mu 
= factored moment in the beam at the given location; Vn = 
nominal shear strength of the beam at the given location; Vu = 
factored shear in the beam at the given location.

Figure 12. Comparison of measured nominal ledge capacities 
and the values predicted by the equations included in the 
seventh edition of the PCI Design Handbook: Precast and 
Prestressed Concrete and by the proposed procedure. Note: 
1 in. = 25.4 mm.
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 φVln = 24φhlλ fc
'  (5-48)

φV
ln
 = design shear strength, lb/ft

PCI Eq. (5-48) assumes a shear strength of 2 fc
'  applied 

over the height of the ledge. The observed behavior of 
ledges under concentrated loads in this research suggests 
that PCI Eq. (5-48) may overestimate ledge strength; 
however, uniformly loaded ledges were not expressly 
studied in the research. Accordingly, it is recommended 
that the shear strength term be reduced to fc

'  and Eq. (5) 
be conservatively used in lieu of PCI Eq. (5-48).

 φVln = 12φhlλ fc
'  (5)

Reliability of the proposed procedure

Figure 12 compares the experimentally measured ledge 
capacities to predictions calculated per the design equations 
included in the seventh edition of the PCI Design Handbook 
and also per the proposed procedure. The ledge capacity 
predicted by PCI equations for each case is determined using 
the specified equation for the selected failure location (that is, 
Eq. [5-44] for interior locations and Eq. [5-45] for end loca-
tions). The experimental data represent typical cases where 
ledge reinforcement is uniformly distributed and maximum 
eccentricity is induced by placing the ledge load at ¾ of the 
ledge projection l

p
 from the inner web face. The comparisons 

demonstrate that the proposed procedure can be conservative-
ly applied to predict the punching shear strength of the ledges 
of L-shaped beams. The average ratio between the measured 
and predicted values using the proposed design procedure is 
1.15 ± 0.03, based on a 95% confidence level, with much of 
the variation on the conservative side. The study was per-
formed on L-shaped beams with the following characteristics:

• varying levels of global flexure and shear stresses

• reinforced and prestressed concrete beams

• ledge heights from 8 to 18 in. (200 to 460 mm)

• ledge projections from 6 to 10 in. (150 to 250 mm)

• concrete strengths from 5000 to 15,000 psi (34 to 
100 MPa)

• bearing widths from 4 to 12 in. (100 to 300 mm)

• distances of end load to end of ledge ranging from 4 to  
36 in. (100 to 910 mm)

• normalweight concrete

The research findings were mainly developed for ledges of 
L-shaped beams that support thin-stemmed precast concrete 
members, such as double tees, and further research is needed 

to verify the research findings for other cases, such as the 
much larger ledges of bridge piers or for cases where a ledge 
supports continuous loads. A size effect would need to be 
considered if the proposed procedure is applied to larger ledge 
beams, especially deep ledges supporting bridge girders. Al-
though limited test results demonstrate the applicability of the 
proposed procedure for concrete strengths up to 15,000 psi 
(100 MPa), it is recommended to conservatively limit fc

' to 
10,000 psi (69 MPa), in accordance with ACI 318-14.13 While 
it is true that the experimental program was conducted using 
normalweight concrete only, the proposed design equations 
are equally applicable to lightweight concrete if the traditional 
factor λ is included; however, additional research on ledges 
cast with lightweight concrete is recommended.

Detailing recommendations

The ledge shear resistance mechanism is primarily governed 
by failure in the concrete. However, test results1,2 indicate 
that detailing of the ledge reinforcement can influence ledge 
behavior.

• Test results indicate that turning the bottom leg of the 
hanger reinforcement into the ledge may improve the 
ledge shear failure mechanism by intercepting the diag-
onal compressive strut that extends downward from the 
ledge load, thus reducing the brittleness of the failure. It 
is recommended to provide a bar or strand at the inside 
corner of hanger bars that are turned outward towards the 
ledge.

• Limited test results indicate that the nominal shear capac-
ity of the ledge can be increased by 25% or more by con-
centrating all required ledge transverse and hanger rein-
forcement over a distance of b

t
 + 2h

l
 at the location of the 

applied concentrated load while turning the bottom leg 
of the hanger reinforcement into the ledge. The amount 
of reinforcement concentrated near the load should be 
determined using the equations in sections 5.5.2 and 5.5.4 
of the seventh edition of the PCI Design Handbook, with 
additional minimum reinforcement placed elsewhere 
between the ledge loads. For practical reasons, the ledge 
height is often kept constant throughout a project, so this 
approach may be particularly useful in cases where sup-
porting an unusually heavy load is required but increasing 
the ledge height is undesirable. The strut-and-tie method 
of ACI 318-1413 provides an alternative means for propor-
tioning concentrated hanger and ledge reinforcement.

• Limited test results indicate that welded-wire reinforce-
ment performs as well as conventional ledge reinforce-
ment and it reduces the time required for fabrication and 
placement of ledge reinforcement.

Conclusion

Based on extensive FEMs and a comprehensive experimental 
program that included 106 tests performed on 21 short-span 
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and 9 long-span L-shaped beams,1,2 the following conclusions 
are drawn for evaluating the punching shear strength of ledges 
of L-shaped beams.

• The procedure provided by the seventh edition of the 
PCI Design Handbook can significantly overestimate 
the punching shear strength of the ledge, especially for 
interior locations.

• The level of global stress is the most influential parameter 
affecting ledge capacity. High levels of global flexural or 
shear stress in the region of a concentrated ledge load sig-
nificantly reduce the punching shear strength of the ledge.

• The use of prestressing enhances the punching shear 
strength of the ledge. The enhanced capacity is dependent 
on the level of prestressing in the beam.

• Increasing the eccentricity of the applied load from the 
inner web face reduces the punching shear strength of 
the ledge. Therefore, it is conservative to determine the 
punching shear strength of the ledge by assuming that the 
ledge load is applied at ¾ of the ledge projection l

p
 from 

the inner web face, in accordance with PCI guidelines.

• For typical ledges, the crack angles of the observed fail-
ure surfaces were generally shallower than the 45-degree 

angles assumed by the PCI procedure.

• A simple and practical procedure is introduced for 
calculating the punching shear strength of the ledge by 
assuming a uniform nominal shear stress acting on an 
idealized failure surface.

• Special reinforcement details are recommended to im-
prove and enhance the behavior and capacity of the ledge 
without changing its geometry.
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Notation

A
so

/s = vertical shear reinforcement on the outer web face 
(that is, non-ledge web face)

b
t
 = width of the double-tee stem or the width of the bear-

ing pad, whichever is less

d = distance from the extreme compression fiber to the 
centroid of longitudinal tension reinforcement (per 
ACI 318-1413), but not less than 0.8h for prestressed 
components (d

p
 is used for prestressed components 

when a distinction from d for nonprestressed rein-
forcement is relevant)

d
e
 = distance from the center of an applied concentrated 

load to the end of the ledge

e' = eccentricity of the factored ledge vertical load to the 
inner web face

fc
' = specified compressive strength of concrete

f
pc

 = average prestress after losses at a given location

f
y
 = specified yield strength of shear reinforcement

h = height of beam

h
l
 = height of beam ledge

l
p
 = projection of the ledge ([b

l
 − b] in section 5.5 of the 

seventh edition of the PCI Design Handbook)

M = applied moment

M
n
 = nominal moment capacity of the beam at a given 

location determined in accordance with section 5.2 of 
the seventh edition of the PCI Design Handbook

M
nx

 = torsional moment around x axis at centroid of critical 
section (parallel to ledge projection)

M
ny

 = torsional moment around y axis at centroid of critical 
section (perpendicular to ledge projection)

M
u
 = factored moment in the beam at a given location

R = larger of the two ratios M
u
/M

n
 and V

u
/V

n

s = spacing between applied concentrated loads

V = applied shear

V
c
 = nominal shear strength provided by concrete, deter-

mined in accordance with section 5.3 of the seventh 
edition of the PCI Design Handbook

V
ln
 = nominal ledge capacity (V

n
 in section 5.5 of the sev-

enth edition of the PCI Design Handbook)

V
n
 = nominal shear strength of the beam at a  

given location

V
s
 = nominal shear strength provided by shear reinforce-

ment, determined in accordance with the slender 
spandrel procedure developed by Lucier et al.6

V
u
 = factored shear in the beam at a given location

x
0
 = distance from ledge load to centroid of critical section 

in a parallel direction to ledge projection

y
0
 = distance from ledge load to centroid of critical section 

in a perpendicular direction to ledge projection

β = shear strength coefficient dependent on the level of 
global stress

γ = factor accounting for the level of prestressing

λ = modification factor for density of concrete (section 
5.3.3 in the seventh edition of the PCI Design Hand-
book)

φ = strength-reduction factor
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into question by many engineers and researchers. 
Research findings from previous experimental studies 

have indicated that the PCI ledge design equations can 
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APPENDIX

Design example

Problem

Investigate the shear strength of the ledge of the following 
L-shaped beam and determine the required ledge reinforce-
ment (Fig. A1).

Data

Prestressing

Fourteen ½ in. (13 mm) special, 270 ksi (1860 MPa) low- 
relaxation strands

Area of prestressing strands A
ps

 = 2.338 in.2 (1510 mm2)

Pertinent results

Nominal moment capacity M
n
 =  1405 kip-ft (1906 kN-m) at 

first stem, near support

 =  2138 kip-ft (2900 kN-m) at 
fifth stem, midspan

Nominal shear strength  
provided by concrete V

c
 =  215 kip (956 kN, at first 

stem, near support

 =  66 kip (290 kN) at fifth 
stem, midspan

Vertical shear reinforcement  
on the outer web face A

so
/s =  0.06 in.2/ft (127 mm2/m), 

continuous

Additional information

Height of beam h = 60 in. (1520 mm)

Distance from extreme compression fiber to centroid of pre-
stressing reinforcement (not less than 80% of the total height 
of the section, 0.8h) d

p
 = 48 in. (1220 mm)

Factored ledge vertical load V
lu
 = 24.7 kip/stem (110 kN/stem)

Height of beam ledge h
l
 = 8 in. (200 mm)

Projection of the ledge l
p
 = 8 in. (200 mm)

Width of the double-tee stem or the width of the bearing pad 
b

t
 = 4 in. (100 mm)

Spacing between applied concentrated loads s = 60 in.  
(1520 mm)

Specified concrete compressive strength fc
' = 10,000 psi  

(69 MPa)

Distance from extreme compression fiber to the centroid of 
hanger reinforcement in L beam d

s
 = 6.75 in. (170 mm)

Depth of centroid of reinforcement in L beam ledges d
l
 = 6 in. 

(150 mm)

Modification factor for density of concrete λ = 1.0

Distance between torsional equilibrium reactions h
s
 = 48 in.
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No. 4
No. 4

each end

No. 5
each end

No. 5 each end
No. 3

1/2 in. special 270 ksi

low relaxation strand

Welded-wire reinforcement 
(continuous)

8 in.

2 
in

.
2 

ft
 4

 in
.

1 
ft

 8
 in

.
10

 in
.

8 
in

.

5 
ft

4 in. 6 in. 4 in. 2 in.

1 ft 4 in.

No. 5 × 40 ft

6 in. × 6 in. – W3.0 × W3.0

centered in member 

Figure A1. Elevation view of double-tees bearing on L-shaped beam and cross-section view of the example prestressed concrete 
L-shaped beam. Note: no. 3 = 10M; no. 4 = 13M; no. 5 = 16M; 1 in. = 25.4 mm; 1 ft = 0.305 m.
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Solution

Check the shear strength of the ledge

At the stem location of maximum shear (first stem)

Step 1

Calculate the ratios V
u
/V

n
 and M

u
/M

n
.

Factored shear in the beam V
u
 = 123 kip (547 kN)

Factored moment in the beam M
u
 = 340 kip-ft (460 kN-m)

V
s
 = 2(A

so
/s)f

y
(d/12)

 = 2(0.06)(60)(48/12) = 28.8 kip (128 kN)

where

V
s
 =  nominal shear strength provided by shear  

reinforcement 

f
y
 = specified yield strength of shear reinforcement

d =  effective depth from the centroid of reinforcement to 
the extreme fiber of the compression zone

V
n
 = V

c
 + V

s
 = 215 + 28.8 = 243.8 kip (1084 kN)

where

V
n
 = nominal shear strength of the beam

V
c
 = nominal shear strength provided by concrete

V
u
/V

n
 = 123/243.8 = 0.50 (larger)

M
u
/M

n
 = 340/1405 = 0.24

Step 2

Determine the coefficient of shear strength of the ledge β.

R = larger of the two ratios M
u
/M

n
 and V

u
/V

n
 = 0.50

for 0.2 < R < 0.6 

β = 1 + 2.5(0.6 – R) = 1 + 2.5(0.6 – 0.5) = 1.25

Step 3

Determine the design shear strength of the ledge.

From Design Aid 15.3.4 of the seventh edition of the PCI 
Design Handbook, strand develops 170 ksi at 29.6 in. (750 
mm) < 27 + 12 = 39 in. (990 mm). Thus, prestress force is 
fully transferred.

f pc =
Ppd
A

=
2.338( ) 170( )
544

 = 0.731 ksi (5.04 MPa)

where

f
pc

 = average prestress after losses at a given location

P
pd

 = prestress force limited by strand development

A = cross-sectional area

γ = γ = 1+10
f pc
fc
' = 1+10 0.731

10
⎛
⎝⎜

⎞
⎠⎟
= 1.316

where

γ = factor accounting for the level of prestressing

d
e
 = 27 in. (690 mm) ≥ 0.5b

t
 + h

l
 + l

p
 = 18 in. (460 mm)

where

d
e
 =  distance from the center of an applied concentrated load 

to the end of the ledge

Use the lesser of equations (1) and (2).

 φVln = φλγβ fc
' hl bt + 2hl + 2lp( )  (1)

= 0.75( ) 1.0( ) 1.316( ) 1.25( ) 10,000 8( ) 4+ 2 8( )+ 2 8( )⎡⎣ ⎤⎦ / 1000

= 35.5 kip (158 kN) ➔ lesser

where

φ = strength-reduction factor

V
ln
 = nominal ledge capacity

λ = modification factor for density of concrete

 φVln = φ0.5λγβ fc
' hl bt + 2hl + s+ 2lp( )  (2)

 = 0.75( ) 0.5( ) 1.0( ) 1.316( ) 1.25( ) 10,000 8( )× 4+ 2 8( )+ 60+ 2 8( )⎡⎣ ⎤⎦ / 1000

 = 0.75( ) 0.5( ) 1.0( ) 1.316( ) 1.25( ) 10,000 8( )× 4+ 2 8( )+ 60+ 2 8( )⎡⎣ ⎤⎦ / 1000

 = 47.4 kip (211 kN)

At the stem location of maximum moment (fifth stem)

Step 1

Calculate the ratios V
u
/V

n
 and M

u
/M

n
.

V
u
 = 12 kip (53 kN)

M
u
 = 1446 kip-ft (1961 kN-m)
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V
s
 = 28.8 kip (128 kN)

V
n
 = V

c
 + V

s
 = 66 + 28.8 = 94.8 kip (422 kN)

V
u
/V

n
 = 12/94.8 = 0.13

M
u
/M

n
 = 1446/2138 = 0.68 (larger)

Step 2

Determine the coefficient of shear strength of the ledge β.

R = M
u
/M

n
 = 0.68

for R ≥ 0.6, β = 1.0

Step 3

Determine the design shear strength of the ledge.

d
e
 = 267 in. (6780 mm) ≥ 0.5b

t
 + h

l
 + l

p
 = 18 in. (460 mm)

Use the lesser of equations (1) and (2)

Applying Eq. (1)

= 0.75( ) 1.0( ) 1.316( ) 1.0( ) 10,000 8( ) 4+ 2 8( )+ 2 8( )⎡⎣ ⎤⎦ / 1000

= 28.4 kip (126 kN) ➔ lesser

Applying Eq. (2)

= 0.75( ) 0.5( ) 1.0( ) 1.316( ) 1.0( ) 10,000 8( )× 4+ 2 8( )+ 60+ 2 8( )⎡⎣ ⎤⎦ / 1000

 = 0.75( ) 0.5( ) 1.0( ) 1.316( ) 1.0( ) 10,000 8( )× 4+ 2 8( )+ 60+ 2 8( )⎡⎣ ⎤⎦ / 1000

= 37.9 kip (169 kN)

therefore, φV
ln
 = 28.4 kip (126 kN) > 24.7 kip/stem (110 kN/

stem) ➔ OK

Determine the required transverse  
reinforcement

Using factored ledge friction load N
lu
 = 0.15V

lu
 = 3.71 kip 

(16.5 kN)

Assuming the maximum load eccentricity of 0.75l
p
 from the 

inner web face

Applied load eccentricity measured to the centroid of the 
hanger reinforcement a = 0.75l

p
 + cover

 = (0.75)(8) + 1.25 = 7.25 in. (184 mm) 

d = 6.75 in. (171 mm)

6h
l
 = 48 > s/2 = 30 in. (760 mm)

Distribute reinforcement over a distance of s/2 on each side  
of the load:

As =
1

φ f y

⎛

⎝
⎜

⎞

⎠
⎟ Vlu

a
d

⎛
⎝⎜

⎞
⎠⎟
+ Nlu

hl
d

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= 1
0.75( ) 60( )

⎛

⎝
⎜

⎞

⎠
⎟ 24.7

7.25
6.75

⎛
⎝⎜

⎞
⎠⎟
+ 3.71 8

6.75
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= 0.69 in.2 (445 mm2)

where

A
s
  = area of transverse flexural reinforcement

As
s
=
0.69( ) 12( )
60

 = 0.138 in.2/ft (292 mm2/m)

Maximum bar spacing = 8 in. (200 mm)

Use no. 3 at 8 in. (10M at 200 mm), A
s
 = 0.165 in.2/ft  

(349 mm2/m) at all locations

Check longitudinal bending of the ledge

Al = 200lp
dl
f y

= 200 8( ) 6
60,000

⎛
⎝⎜

⎞
⎠⎟
= 0.16 in.2  (100 mm2 )

where

A
l
 =  area of longitudinal reinforcement to resist longitudinal 

bending in ledges

Use one ½ in. (13 mm) special strand at top of the ledge, 
providing 0.167 in.2 (108 mm2), and use one no. 5 (16M) bar 
at the bottom of the ledge, providing 0.31 in.2 (200 mm2).

Determine the required hanger  
reinforcement Ash

m =

ds + a( )− 3− 2
hl
h

⎛
⎝⎜

⎞
⎠⎟
hl
h

⎛
⎝⎜

⎞
⎠⎟

2
bl
2

⎛
⎝⎜

⎞
⎠⎟
− eγ t

x2y( )
l

x2y∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ds

 

=

6.75+ 7.25( )− 3− 2 8
60

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

8
60

⎛
⎝⎜

⎞
⎠⎟

2
16
2

⎛
⎝⎜

⎞
⎠⎟
− 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
6.75

= 2.02 ≥ 0.6 (OK)

 =

6.75+ 7.25( )− 3− 2 8
60

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

8
60

⎛
⎝⎜

⎞
⎠⎟

2
16
2

⎛
⎝⎜

⎞
⎠⎟
− 0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
6.75

= 2.02 ≥ 0.6 (OK)

where

γ
t
 =  factor used in designing hanger reinforcement as defined 

in section 5.5.4 in the seventh edition of the PCI Design 
Handbook = 0 (open reinforcement)
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m =  modification factor for hanger reinforcement design 
defined in section 5.5.4 in the seventh edition of the PCI 
Design Handbook

b
l
 = width of web and one ledge

e =  eccentricity of design load measured from centroid of 
section

x =  shorter side of the component rectangles forming the 
ledge and the web

y =  longer side of the component rectangles forming the 
ledge and the web

Ash =
Vlu
φ f y

⎛

⎝
⎜

⎞

⎠
⎟ m = 24.7

0.75( ) 60( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1.11 in.2  (716 mm2 )

Ash
s

=
1.11( ) 12( )
60

= 0.22 in.2 /ft (470 mm2 /m)

Use no. 4 at 8 in. (13M at 200 mm), A
sh

 = 0.30 in.2/ft  
(635 mm2/m)

Determine reinforcement for  
out-of-plane bending near beam end

Awl = Awv =
Vue
2φ f ydw

 =
24.7( ) 9 / 2( ) 10( )
2 0.75( ) 60( ) 6.5( )

 = 1.9 in.2 (1226 mm2)

(to be distributed over a height and length of h
s
 = 48 in. 

[1200 mm])

where

A
wl

 =  area of steel in longitudinal direction at beam end for 
torsional equilibrium

A
wv

 =  area of steel in vertical direction at beam end for torsion-
al equilibrium

d
w
 =  depth of A

wl
 and 

 
A

wv
 reinforcement from outside face of 

L beam

Notation

a = applied load eccentricity measured to the centroid of 
the hanger reinforcement

A = cross-sectional area

A
l
 = area of longitudinal reinforcement to resist longitudi-

nal bending in ledges

A
ps

 = area of prestressing strand

A
s
 = area of transverse flexural reinforcement

A
sh

 = area of hanger reinforcement

A
so

/s = vertical shear reinforcement on the outer web face 
(that is, non-ledge web face)

A
wl 

= area of steel in longitudinal direction at beam end for 
torsional equilibrium

A
wv

 = area of steel in vertical direction at beam end for 
torsional equilibrium

b = width of web

b
l
 = width of web and one ledge

b
t
 = width of the double-tee stem or the width of the bear-

ing pad, whichever is less

d = distance from the extreme compression fiber to the 
centroid of longitudinal tension reinforcement (per 
ACI 318-1413), but not less than 0.8h for prestressed 
components (d

p
 is used for prestressed components 

when a distinction from d for nonprestressed rein-
forcement is relevant)

d
e
 = distance from the center of an applied concentrated 

load to the end of the ledge

d
l
 = depth of centroid of reinforcement in L beam ledges

d
p
 = distance from extreme compression fiber to centroid 

of prestressing reinforcement (not less than 0.8h)

d
s
 = distance from extreme compression fiber to the cen-

troid of hanger reinforcement in L beam

d
w
 = depth of A

wl
 and 

 
A

wv
 reinforcement from outside face 

of L beam

e = eccentricity of design load measured from centroid of 
section

fc
' = specified compressive strength of concrete

f
pc

 = average prestress after losses at a given location

f
y
 = specified yield strength of shear reinforcement

h = height of beam

h
l
 = height of beam ledge

h
s
 = distance between torsional equilibrium reactions
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l
p
 = projection of the ledge 

m = modification factor for hanger reinforcement design 
defined in section 5.5.4 in the seventh edition of the 
PCI Design Handbook

M
n
 = nominal moment capacity of the beam at the given 

location determined in accordance with section 5.2 of 
the seventh edition of the PCI Design Handbook

M
u
 = factored moment in the beam at the given location

N
lu
 = factored ledge friction load (N

u
 in section 5.5 of the 

seventh edition of the PCI Design Handbook)

P
pd

 = prestress force limited by strand development

R = larger of the two ratios M
u
/M

n
 and V

u
/V

n

s = spacing between applied concentrated loads

V
c
 = nominal shear strength provided by concrete, deter-

mined in accordance with section 5.3 of the seventh 
edition of the PCI Design Handbook

V
ln
 = nominal ledge capacity (V

n
 in section 5.5 of the sev-

enth edition of the PCI Design Handbook)

V
lu
 = factored ledge vertical load (V

u
 in section 5.5 of the 

seventh edition of the PCI Design Handbook)

V
n
 = nominal shear strength of the beam at the given location

V
s
 = nominal shear strength provided by shear reinforce-

ment, determined in accordance with the slender 
spandrel procedure developed by Lucier et al.6

V
u
 = factored shear in the beam at the given location

x = shorter side of the component rectangles forming the 
ledge and the web

y = longer side of the component rectangles forming the 
ledge and the web

β = shear strength coefficient dependent on the level of 
global stress

γ = factor accounting for the level of prestressing

γ
t
 = factor used in designing hanger reinforcement as 

defined in section 5.5.4 in the seventh edition of the 
PCI Design Handbook 

λ = modification factor for density of concrete (section 5.3.3 
in the seventh edition of the PCI Design Handbook)

φ = strength-reduction factor
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