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Simplified design for positive restraint 
continuity moment in bridge girders 

Maher K. Tadros, Amgad M. Girgis, Christopher Y. Tuan, and Athul A. Alex

■ Many U.S. states design precast, prestressed concrete 
continuous bridges as simple spans for both dead 
and live loads without considering any moments 
developed by the span connections.

■ The effect of thermal expansion and contraction is 
hardly considered in the analysis, and there is no 
consensus on the best method to calculate restraint 
moments that develop in the continuity diaphragm 
or how to detail positive moment connections.

■ The objective of this paper is to provide a simpli-
fied spreadsheet calculation of the positive restraint 
moments and the number of strands to be extended 
into the cast-in-place concrete diaphragm in order to 
control cracking.

Bridges composed of simple-span precast con-
crete beams that are made continuous by the 
deck reinforcement are also known as continu-

ous-for-live-load bridges. Design of these bridges for conti-
nuity over piers is explained in the American Association of 
State Highway and Transportation Officials’ AASHTO LRFD 
Bridge Design Specifications, article 5.14.1.4.1

In these bridges, the beams carry their own dead load and 
the slab dead load as simple spans, but all subsequent 
loads are carried as continuous spans. Deck reinforcement 
provides the negative moment resistance. In these designs, 
beams camber upward due to beam creep. If net camber due 
to simple-span loads (girder weight, prestressing, and deck 
weight) is upward, a positive moment develops due to con-
crete creep and the connection cracks. For this reason, the 
AASHTO LRFD specifications require a positive moment 
connection at the joint.

Literature survey

When National Cooperative Highway Research Program 
(NCHRP) report 5192 was published, article 5.14.1.4 
contained a provision stating that a connection could be 
considered continuous if the net stress at the bottom of the 
diaphragm from superimposed permanent loads, settlement, 
creep, shrinkage, temperature gradient, and 50% of the live 
load was compressive. Because this provision was already 
in the AASHTO LRFD specifications and was consistent 
with the experimental results showing that the connection 
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could tolerate some cracking, the provision was retained as 
article 5.14.1.4.5. 

iven that the calculation of diaphragm stresses is complex, 
there was a desire for a simple rule. At the time, the Tennessee 
Department of Transportation had a provision requiring the 
beams be aged 90 days before continuity was established. By 
that time, it is estimated that 60% of the creep has already 
taken effect. This was adopted as article 5.14.1.4.4, which 
requires the engineer to provide a positive moment connection 
with a strength of 1.2M

cr
, where M

cr
 is the cracking moment, 

and to specify in the contract documents that the beams are to 
be at least 90 days old when continuity is established.

Chebole3 conducted a parametric study to assess the effect 
of girder age on restraint moment in continuous bridges. The 
study was based on the method and the computer program 
developed in NCHRP report 519,2 which are the basis for the 
current AASHTO LRFD specifications for restraint moment 
reinforcement. The required amount of restraint moment rein-
forcement is excessive due to using a strength limit state. 

The hand-calculation method presented herein is a simplifi-
cation of the initial strain method developed in the 1970s by 
Tadros et al.4 and used in commercial time-step software. The 
solution aims to control cracking at the joint. It relates the 
required reinforcement to a serviceability limit state. Using 
the proposed approach frees the designer from having to wait 
90 days before the girder is allowed to be made continuous 
over the piers.

Current provisions

Article 5.14.1.4 of the AASHTO LFRD specifications sum-
marizes the provisions and commentary of AASHTO, provid-
ing four design options:

• Provide a positive moment connection with a strength of 
1.2M

cr
, and require the beams to be at least 90 days old at 

the time continuity is established.

• Provide a positive moment connection with a strength of 
1.2M

cr
, and use the provisions of article 5.4.2.3 with time 

development factor k
td
 = 0.7 to establish the minimum age 

at which continuity can be established.

• Use the provisions of article 5.14.1.4.5, and consider the 
bridge continuous if the net stress at the bottom of the 
diaphragm from superimposed permanent loads, settle-
ment, creep, shrinkage, temperature gradient, and 50% of 
live load is compressive.

• Calculate the actual restraint moments, and determine 
the degree of continuity from the analyses (article 
5.14.1.4.2).

This paper offers a simplified procedure for application of the 
fourth option.

Calculation of restraint moments

The initial strain theory that can be used to perform time-de-
pendent analysis of a composite prestressed concrete bridge 
member of any cross section is described herein. This method 
is based on traditional composite section analysis, using pseu-
doelastic properties to reflect creep characteristics. The so-
called initial strains are introduced in the analysis to account 
for the effects of member restraint due to concrete creep. In 
the analysis, the effect of restraint caused by noncreeping 
steel is ignored. It will be shown that no creep effects take 
place due to any loads introduced after continuity is made. 
Superimposed dead loads, live loads, temperature, deck 
shrinkage, and the like, can be assumed to be elastic (instanta-
neous) with negligible creeping effect.

Stress-strain-time relationship

The stress-strain-time relationship for the concrete is used to 
predict the total strain ε at a future time t that results from a 
stress increment applied at time t

o
. The total concrete strain at 

any time t can be separated into three components:

• ε
o
 = immediate concrete strain due to the applied stress f

• ε
cr
 = time-dependent creep concrete strain

• ε
sh

 =  free shrinkage concrete strain (this term will be 
ignored in future discussion because it does not con-
tribute significantly to the restraint moments)

Constant stress

The total concrete strain ε = ε
o
 + ε

cr
 is usually expressed as 

Eq. (1).

 ε =
f to( )
Ec to( ) 1+ψ t,to( )⎡⎣ ⎤⎦  (1)

where

f(t
o
)  = applied stress at time t

o

E
c
(t

o
)  = modulus of elasticity of concrete at time t

o

ψ(t, t
o
)  =  creep coefficient during a time interval from t

o
 to t 

for stress applied at time t
o
 and kept constant

Equation (1) applies as long as stress f is a constant, sustained 
stress. Figure 1 shows the gradual development of creep 
strain associated with constant stress over time. Both the mod-
ulus of elasticity E and the creep coefficient ψ are functions 
of time. In addition, because concrete is an aging material, ψ 
depends on the loading age t

o
 as well.

Variable stress

Where the applied stress f is variable, Eq. (1) cannot be di-
rectly used. Figure 2 depicts the development of creep strain 
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under the effect of a gradually introduced stress. Using the 
principle of superposition, the effects of a series of applied 
stress increments can be determined individually using Eq. 
(1) and then combined to give the total time-dependent 
concrete strain. This approach is often called the time-step 
method and is suitable for numerical computer model-
ing. Another approach is called the age-adjusted effective 
modulus method, in which an aging factor is applied to the 
creep coefficient to account for the effect of the stress being 
gradually introduced to an aging concrete with gradually in-

creasing modulus of elasticity and decreasing creep effect.5 
The aging coefficient at a certain time χ(t, t

o
) is a function of 

the age of the concrete at the time of initial load introduction 
and a number of other factors. Equation (2) calculates the 
total strain.

 ε =
f to( )
Ec to( ) 1+ χ t,to( )ψ t,to( )⎡⎣ ⎤⎦  (2)

A pseudoelastic analysis can be performed by assuming a 
reduced modulus of elasticity that accounts for creep effects. 
Equation (3) gives the age-adjusted effective modulus of elas-
ticity of concrete for constant sustained stress Ectc

* t ,to( )=
Ec to( )

1+ψ t ,to( )
.

 Ectc
* t ,to( )=

Ec to( )
1+ψ t ,to( )  (3)

Equation (1) can be rewritten as Eq. (4) to take advantage of 
the effective modulus concept.

 ε = f t( )
Ec
* t,to( )  (4)

For gradually developing stress, Eq. (5) calculates the age-ad-
justed effective modulus.

 Ectv
* t,to( ) = Ec to( )

1+ χ t,to( )ψ t,to( )  (5)

The age-adjusted effective modulus of elasticity is referred to 
in this paper as defined by Eq. (5). Equation (3) is considered 
to represent a special condition: instantaneously applied load 
with the aging coefficient χ equal to 1. Further simplification 
is to assume a constant aging coefficient χ of 0.7, which has 
been shown to be reasonable by Dilger6 and by Tadros et al.7 
for the type of application (prestressed concrete beams with 
prestress and self-weight introduced at age of concrete of one 
to three days).

Calculation of restraint moment  
in precast concrete beams  
based on initial strain theory

Creep analysis for positive restraint moments over piers has 
been studied in detail by Mattock and Kaar,8 Freyermuth,9 Tad-
ros et al.,4 Dilger,6 Tadros et al.,7 Oesterle et al.,10 and Miller 
et al.2 Creep of the beam under the net effects of prestressing, 
self-weight, deck weight, and superimposed dead loads will 
tend to produce additional upward camber with time. Shrink-
age of the deck concrete will tend to produce downward 
deflection of the composite system with time. In addition, loss 
of prestress due to creep, shrinkage, and relaxation will result 
in downward deflection. Depending on the properties of the 
concrete materials and the age at which the beams are erected 
and subsequently made continuous, either positive or negative 
moments may occur over continuous supports.

In situations where beams are made continuous at a relatively 
young age, it is more likely that positive moments will devel-
op with time at the supports. These positive restraint moments 
are the result of the tendency of the beams to continue to 

Figure 1. Concrete strain over time under constant stress, 
shrinkage excluded. Note: f(t) = applied stress at time t; f(to) 
= applied stress at time to; t = time (infinity); to = beginning of 
the interval under loading being considered.
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Figure 2. Concrete strain over time under variable stress, 
shrinkage excluded. Note: f(t) = applied stress at time t; t = 
time (infinity); to = beginning of the interval under loading 
being considered.
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camber upward as a result of ongoing creep strains associated 
with the prestressing forces. Shrinkage of the deck concrete, 
loss of prestressing, and creep strains due to self-weight, deck 
weight, and superimposed dead loads all have a tendency to 
reduce this positive moment.

When beams are mature when they are made continuous, 
negative moments at the supports can result. This is es-
pecially true when the beams have short spans and large 
depths, thus requiring relatively low prestress levels. In 
these conditions, the time-dependent creep strains associated 
with prestressing have diminished to the point that the creep 
effects that produce downward deflection (beam weight and 
deck weight) are larger. This will induce negative restraint 
moments at the supports.

The effects of positive moments and associated diaphragm 
cracking on bridge performance continue to be hotly debat-
ed. An argument can be made that continuity for live loads 
becomes unreliable after a small crack has opened near the 
bottom of the diaphragm.10 A finite end rotation is required 
to close this crack, forcing the beam to carry live loads as a 
simple-span member. Theoretically, this simple-span action 
results in live-load moments that are significantly higher than 
those predicted by calculations that assume full continuity.

Countering this argument, however, is the successful expe-
rience of the many agencies that routinely design precast, 
prestressed concrete bridges under the assumption of full 
continuity for live loads. Cracking at the bottom fibers of the 
midspan region of these bridges due to smaller live-load mo-

Figure 3. Progression of beam end rotation at pier support.

Initial rotation due to prestress and beam weight Rotation at time t1 diaphragm 
concrete placement 
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ments in a continuous-span scenario has not been reported. In 
addition, only service load behavior is significantly affected. 
Under ultimate loads, end rotations of the beams will be large 
enough to close any crack that may have opened at the piers, 
restoring full continuity. It should be agreeable, therefore, 
that ultimate capacity is unaffected by existence of controlled 
bottom cracks in the beams at the pier areas.

The detailed pseudoelastic analysis is generally done us-
ing full, uncracked concrete section properties. It does not 
account for loss of stiffness due to cracking, which can create 
considerable relief of the calculated restraint moment. In 
some countries, a reduction factor of 0.9 is applied to the 
uncracked section restraint moment. Even with this reduced 
moment, the analysis given herein is considered conservative.

Understanding which loads  
create creep restraint

As a general statement, loads (including the effect of pre-
stressing) applied before continuity is made create creep 
restraint moments in the continuous beam. Alternatively, loads 
introduced after the beam becomes continuous only create 
elastic (no-creep) restraint moments.11–14

The analysis is made for a continuous beam with rigid vertical 
supports while allowing the beam to rotate and to translate 
horizontally over the supports. Only one support is fixed 
against horizontal translation to maintain stability. With these 
assumptions, uniform shrinkage and temperature change only 
induce axial deformation and not curvature or flexure.

The analysis, using pseudoelastic properties, allows for the 
superposition of various effects. As shown later, the analy-
sis is given separately for each of the following effects and 
then superimposed to create the net effect. These effects are: 
prestressing, beam weight, deck weight, superimposed dead 
loads (barriers and overlays), deck shrinkage, and tempera-
ture gradient.

The analysis is illustrated with a two-span example. As-
sume the rotation at the center support of the left beam is θ

1
 

(Fig. 3) at the initial time when the prestressing is released. 
That rotation increases to θ

2
 as concrete creeps at the time 

the beams are ready to be connected with cast-in-place 
concrete diaphragms. If the beams were still free to rotate, 
the end rotation would increase to θ

3
. However, the conti-

nuity restraint moment would cause the rotation to remain 
unchanged by imposing an offsetting rotation θ

4
 such that 

θ
3
 – θ

4
 = θ

2
.

The value of θ
1
 represents the elastic deformation at the beam 

end θ
el
. Creep causes the rotation to grow by an increment 

θ
3
 – θ

2
 = θ

el
ψ

1
, where ψ

1
 is the creep coefficient between t

o
 

and time infinity. That deformation cannot happen if the two 
beam ends are joined with a rigid connection. Thus a restraint 
moment develops gradually and causes the ends to have an 
equal and opposite rotation to that caused by the applied 

loads. That rotation θ
4
 is calculated as θ

r,el
(1 + χψ

2
), where θ

r,el
 

is the elastic restraint rotation, χ is the aging coefficient, and 
ψ

2
 is the creep coefficient for concrete loaded from time of 

deck placement to time infinity. By setting these two rotations 
equal to each other, the resulting restraint moment is equal to 
the moment that would result elastically if it were multiplied 
by the factor ψ

1
/(1 + χψ

2
).

Alternatively, a load that is introduced just after continui-
ty is made would have a free rotation of θ

el
(1 + ψ

2
) and a 

restraining rotation of θ
r,el

(1 + χψ
2
). For this case, the restraint 

moment is equal to the elastic moment multiplied by (1 + 
ψ

2
)/(1 + χψ

2
), which would be equal to the elastic moment 

if χ is approximated as 1.0. If the loading after continuity is 
gradually introduced at the same rate as creep development, 
the restraint moment would be exactly equal to the elastic 
moment. Therefore, it is reasonable to assume that there is no 
creep restraint moment due to loads that are introduced after 
continuity is made. In a typical design, the restraint moment 
would consist of creep moment due to prestressing, beam 
weight, deck weight, and elastic moment due to superimposed 
dead load, live load, and daily temperature gradients.

Steps of analysis

Specifically, the following procedure is used for each load:

1. Calculate time-dependent material properties. 
 
ψ(t, t

o
) =  creep coefficient at time t for concrete loaded 

at time t
o
, specifically prestressing and beam 

weight 

 ψ(t, t
1
) =  creep coefficient at time t for concrete loaded 

at time t
1
, specifically deck weight and the 

restraint moment 

 ψ(t
1
, t

o
) =  creep coefficient at time t

1
, for concrete loaded 

at time t
o

 Time t is generally assumed equal to 75 years or 
27,000 days. Several authors have assumed 2000 days 
and 20,000 days to represent the time at which creep 
growth becomes nearly zero. 
 
The age-adjusted effective modulus of elasticity of con-
crete subjected to gradual loading at time t

1
 with creep 

developing in the period (t – t
1
) Ectv

* t,t1( ) =
Ec t1( )

1+ 0.7ψ t,t1( )
 is calculated by 

Eq. (6). 
 
       Ectv

* t,t1( ) =
Ec t1( )

1+ 0.7ψ t,t1( )
 (6)

The age-adjusted effective modulus of elasticity of 
concrete subjected to constant stress introduced at time t

o
 

with creep developing in the period (t – t
1
) is calculated 

by Eq. (7). 
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    Ectv

* t,to( ) = Ec to( )
ψ t,to( )−ψ t1,to( )  (7)

2. Perform elastic analysis, assuming the load is introduced 
to a continuous member. Determine the fictitious elastic 
restraint moments at the supports M

el
.

3. Determine the time-dependent multiplier corresponding 
to the load δ

c
 using Eq. (8). 

 
     

Ectv
* t,t1( )

Ectc
* t,to( )  (8)

4. Determine the cracking moment M
cr
(t) at time t using 

Eq. (9). 
               Mcr t( ) =δcMel  (9)

5. Calculate the net total moments by adding the creep 
restraint moments due to all loads applied before conti-
nuity is effected to the elastic continuity moments after 
continuity becomes effective. There needs to be two 
values for design, the maximum and minimum values. 
For example, the maximum positive moment should not 
include the negative moment due to live load. Although 
the future wearing surface load is considered to be dead 
load, its negative moment effect should not be included 
because its application may happen many years after the 
bridge is constructed.

Calculation of continuity moments  
due to pretensioning

Pretensioning is conventionally done on simple-span beams. 
As such, there are no continuity forces as long as the beam 
remains a simple span for its life. However, because it is 
made continuous with the adjacent spans along the bridge, 
creep effects generate continuity moments. As discussed in 
previous sections, the creep effects are determined as factors 
of the elastic moments that would happen if the beam were 
made continuous from the start. Thus, we need to determine 
these fictitious elastic continuity moments. The process is 
similar to the calculation of the secondary moments due to 
post-tensioning.15–19

Consider the pretensioning strand profile in Fig. 4. This 
profile is a general condition of other simpler profiles, such as 
single-point depression and straight profiles.

The steps of analysis are as follows:

1. Determine the equivalent loads due to prestressing.

2. Run continuous-span analysis for the loads in step 1.

3. The statically indeterminate moments at the joints (not 
counting the moment due to prestressing eccentricity Pe

e
, 

where P is the effective prestressing force and e
e
 is the 

eccentricity of the strand at beam ends) are the elastic 
moment needed in the creep analysis.

Equation (10) gives the elastic continuity moment due to pre-
stress M

p,el
 for the special case of a two-span bridge with two 

equal spans prestressed with strands that have symmetrical 
profiles (Fig. 4).

 Mp,el =
3P

4
2ee + 1+α( ) ec −ee( )⎡⎣ ⎤⎦  (10)

where

α = coefficient of linear thermal expansion

e
c
 = eccentricity of the strand at midspan

e
e
 = eccentricity of the strand at the ends

Effects of deck shrinkage  
and temperature gradient

Both deck shrinkage and temperature gradient occur after 
the bridge beams have been made continuous over the pier 
supports. As indicated earlier, effects that occur after continu-
ity should have negligible creep redistribution. Their effects 
can thus be most closely modeled as elastic effects. Because 
shrinkage and temperature gradient are volume-change 
effects, the initial strain theory can be employed for their anal-
ysis, except that only the elastic modulus without adjustment 
is used.

Figure 4. Pretensioned strand profile. Note: ec = eccentricity of the strand at midspan; ee = eccentricity of the strand at beam 
ends; l = overall beam span; α = coefficient of linear thermal expansion.

αl   
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For simplified analysis, shrinkage of the deck may be taken 
in isolation without consideration of shrinkage of the beam 
because the latter is already accounted for implicitly when 
estimating the prestress losses. If a computer program is 
used, as in the analysis of segmental bridges, then a more 
precise differential shrinkage could be used. If the approach 
proposed here is adopted, then analysis for deck shrinkage is 
greatly simplified. Because analysis for temperature gradi-
ent is significantly more complex, it can be adapted to deck 
shrinkage. Roberts-Wollman et al. provides more discussion 
of these effects.20

The AASHTO LRFD specifications, article 3.12.3, outlines 
the temperature gradient that should be used to calculate 
thermal effects. Figure 5 shows the temperature gradient used 
for this type of bridge and in the design example section in 
this paper.

The coefficient of linear thermal expansion α is taken as 
6 × 10-6 in./in./°F (1 × 10-5 mm/mm/°C) for normalweight 
concrete. Analysis for temperature effects using the initial 
strain theory is described in the next section. It is valid for all 
span and support conditions. Another option is offered in the 
commentary in the AASHTO LRFD specifications, which 
gives a closed-form solution. However, the solution is limited 
to a two-span beam with equal spans.

This treatment of temperature effects is highly simplified 
and should be considered as such in design. It assumes that 
the temperature rises instantaneously. It does not distinguish 
between daily and seasonal temperature changes. It does not 
explicitly account for concrete’s ability to absorb and store 
heat. Thus, it should not be treated as more than an approxi-
mate quantification of a much more complex effect.

Analysis steps

1. Calculate the free strain due to the temperature rise 
(Fig. 5) αΔT at various fibers along the cross-section 
depth. This calculation assumes that the fibers are free to 
deform without any restraint.

2. Divide the section into layers of similar geometric and 
material properties. Apply restraining forces in these 
layers to cancel the free strains in step 1. Each force is 
equal to the strain times the modulus of elasticity times 
the area. The force is a stress resultant and is located at 
the geometric center of the stress diagram. Determine the 
total moment of the restraining forces about the centroid 
of the composite section.

3. Restore equilibrium by applying equal and opposite forc-
es and moments on the composite section, assuming the 
beam to be free of external supports. Place the supports 
and perform a structural analysis of the continuous beam 
for the equilibrium forces. Determine the internal stresses 
due to the forces resulting from the statically indetermi-
nate beam analysis.

4. The summation of the deformations and stresses in steps 
1, 2, and 3 produces the net effects of the temperature 
gradient.

Design of bottom continuity  
reinforcement

The preceding part of this paper discusses methods of calculat-
ing the time-dependent positive restraint moment in continuous 
precast, prestressed concrete bridge beams at the joints over 
the intermediate supports (piers). In all previous discussion, 
the analysis is completed using pseudoelastic analysis with 
uncracked section properties. If the positive restraint moment 
due to the most critical loading combination is less than the 
moment needed to create flexural cracking at the bottom of the 
beam at the face of the cast-in-place concrete diaphragm, then 
no reinforcement would be necessary. However, it is common 
to expect higher moments than the cracking moment and, thus, 
flexural cracking. In this case, two issues emerge: how to use 
the uncracked member analysis to extrapolate for estimation of 
the applied moment while the member is cracked and how to 
use the applied moment to calculate the required steel reinforce-
ment and to detail it for acceptable serviceability performance. 
A related issue is how to design the continuous span beam for 
negative moments due to full live-load effects, considering that 
it may be cracked over some lengths in the pier regions.

The issues given here have not been fully resolved through 
research. This explains the wide variation of practices, 
which rely on experience and engineering judgment. Until 
research produces better results, the following recommenda-
tions are made:

Figure 5. Design temperature gradient throughout the cross 
section according to the seventh edition of the AASHTO 
LRFD Bridge Design Specifications. Note: 1 in. = 25.4 mm; °C 
= (°F – 32)/1.8
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• The restraint moment is calculated using uncracked sec-
tion analysis. The moment may be reduced by as much 
as 10% to account for reduction due to cracking in the 
bottom fibers near the pier supports. Although the 10% 
reduction is quite conservative, it is somewhat consis-
tent with the redistribution allowed for negative moment 
design.

• Reinforcement is designed using cracked-section capacity 
analysis. A simplified calculation of the steel stress may 
be used assuming the lever arm between the compression 
and tension forces is equal to 0.9d, where d is the effec-
tive depth from the compression face to the center of the 
tensile reinforcement. Axial force from deck shrinkage 
and temperature can be accounted for by assuming half of 
the axial force carried by the bottom reinforcement.

• Tensile steel stress is limited to the value obtained from 
crack control formulas, such as the one recommended 
by Frosch.21 A maximum limit on steel stress of 36 ksi 
(250 MPa) would correspond to a maximum crack width 
of 0.01 in. (0.25 mm). This limit would also allow justifi-
cation for assuming full continuity for negative moment 
analysis, according to Miller.2

Design example

The following example is a typical overpass bridge over 
Interstate 80 near Omaha, Neb. The geometric properties, 
material properties, and environmental conditions are similar 
to what is generally assumed in that area of the United States. 
The bridge is designed for the HL-93 live loading specified by 
the AASHTO LRFD specifications. Figure 6 shows the cross 
section of the composite NU900 girder with the cast-in-place 
concrete deck as used in the example.

Bridge data

Bridge width = 50 ft (15 m)

Bridge length l = 180 ft (55 m) (two 90 ft [27 m] spans)

Beam depth for NU900 = 35.4 in. (0.900 m)

Beam spacing = 10 ft (3 m)

Beam concrete strength = 5.5 ksi (38 MPa) cylinder strength 
at release

Beam strength = 8 ksi (55 MPa) cylinder strength at 28 days

Beam prestressing = thirty-four 0.6 in. (15 mm) low-relax-
ation strands (18 + 10 + 2 + 2 + 2 at a 2 × 2 in. [50 × 50 mm] 
spacing), with 2 in. bottom cover to strand centerline and 
draped profile (Fig. 7)

Deck thickness = 8 in. (200 mm) cast-in-place concrete, plus 
constant 1 in. (25 mm) thick haunch (assumed in design)

Deck strength = 4 ksi (28 MPa) cylinder strength at 28 days

Barrier = 20 lb/ft2 (1 kN/m2)

Future wearing surface = 25 lb/ft2 (1.1 kN/m2) (not used)

Design live load = HL-93 (not used)

Relative humidity = 70%

Figure 6. Composite cross section of NU900 beam used in 
example.

Figure 7. Beam elevation with strand profile. Note: ee = eccentricity of the strand at beam ends; l = beam span; α = coefficient 
defining drape point location relative to span length.
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Time prestressing strand released t
i
 = 1 day

Time diaphragm and deck placed t
d
 = 28 days

Time of end of beam life t = 20,000 days

Precast concrete beam moment of inertia I = 110,444 in.4 
(0.0459686 m4)

Precast concrete beam area A
b
 = 649 in.2 (0.419 m2)

Beam depth h = 35.43 in. (0.900 m)

Beam centroid to bottom fiber y
b
 = 16.10 in. (0.409 m)

Composite section centroid to bottom fibers y
bc

 = 28.48 in. 
(0.723 m)

Beam weight w = 0.676 kip/ft (9.86 kN/m)

Modulus of elasticity of beam concrete E
ci
 = 4406 ksi 

(30,390 MPa) at initial time

Modulus of elasticity of beam concrete E
c
 = 5314 ksi 

(36,650 MPa) at 28 days

Modulus of elasticity of deck concrete E
cd

 = 3644 ksi 
(25,130 MPa) at 28 days

These moduli of elasticity were calculated using the 
AASHTO prediction equation.

E
c
  = 33,000w1.5 ʹfc

where

w    = 0.145 kip/ft3 (22.8 kN/m3) for ʹfc  ≤ 5 ksi (34 MPa) 
  =  0.14 + 0.001 ʹfc  ≤ 0.155 kip/ft (2.26 kN/m) for ʹfc  > 

5 ksi (34 MPa)

ʹfc  = compressive strength of concrete

Beam shrinkage strain between initial time of loading and 
final time ε

bif
 = 0.000393

Beam shrinkage strain between prestress transfer and deck 
placement ε

bid
 = 0.000161

Beam shrinkage strain between time of deck placement and 
final time ε

bdf
 = 0.000232

Shrinkage strain of deck concrete between placement and 
final time ε

ddf
 = 0.000274

Beam creep coefficient between initial time of loading and 
final time ψ

bif
 = 1.526

Beam creep coefficient at beam between prestress transfer and 

deck placement ψ
bid

 = 0.626

Beam creep coefficient between time of deck placement and 
final time ψ

bdf
 = 1.030

Deck creep coefficient between deck placement and final time 
ψ

ddf
 = 2.126

Creep coefficients are defined as ratios of creep strain to ini-
tial strain for a constant sustained stress.

Restraint moment due to prestressing, 
beam weight, and deck weight

Only loads introduced before continuity can cause time-de-
pendent restraint moment due to creep. Typically, these are 
the pretensionsing forces, member self-weight, and deck 
weight. Each loading case is considered separately, though 
prestressing and self-weight cannot actually be separated. The 
total effect is obtained by simple superposition. Elastic anal-
ysis is performed first, assuming that the load was introduced 
to a noncreeping continuous member. The fictitious elastic 
restraint moments M

el
 are then determined at the supports. 

The sign convention is that a positive moment creates tension 
in the bottom fiber.

The elastic moment due to the effect of self-weight of the 
beam M

o
 is calculated as

Mo = −
wl2

8
= −

0.676( ) 90( )2

8
=  -684.5 kip-ft (-928.2 kN-m)

where

The elastic moment due to the effect of deck weight M
d
 (load 

applied before continuity is made) is calculated as

Md = −
wdl

2

8
= −

1.02( ) 90( )2

8
=  -1028.1 kip-ft (-1394.2 kN-m)

where

w
d
   = weight of the deck, including haunch

The following equation calculates the elastic moment due to 
prestressing release M

p
, assuming the beam was continuous 

and composite with the deck.

Mp =
3P

4
2ee + 1+α( ) ec −ee( )⎡⎣ ⎤⎦  

 =
3 1269.9( )

4

2 19.12( )+ 1+ 0.1( ) 24.83−19.12( )[ ]
12

  = 3533.6 kip-ft (4790.7 kN-m)

where

e
e
 = 28.48 – 9.36 = 19.12 in. (485.6 mm)

e
c
 = 28.48 – 3.65 = 24.83 in. (630.6 mm)
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P  =  85% of the initial prestressing force = (0.85)(34)(0.217)
(202.5) = 1269.9 kip (5648.5 kN)

Moment at beam ends due to prestressing (simple span) 
=  -1269.9(16.1 – 9.36)/12 = -713.3 kip-ft (-967.3 kN-m)

The elastic moment due to the effect of self-weight of the 
barrier M

Barrier
 is calculated as

MBarrier = −
wl2

8
= −

0.20( ) 90( )2

8
=  -202.5 kip-ft (-274.5 kN-m)

where

w          = (0.020)(10) = 0.20 kip/ft (2.9 kN/m)

The age-adjusted effective modulus for concrete subjected 
to gradually introduced restraint moment from time of deck 
placement to time infinity Ectv

* t,td( ) =
Ec td( )

1+ 0.7ψ t,td( )
=

5314

1+ 0.7 1.030( )
 is calculated as

 Ectv
* t,td( ) =

Ec td( )
1+ 0.7ψ t,td( )

=
5314

1+ 0.7 1.030( )

  = 3088 ksi (21.29 GPa)

where

ψ(t, t
d
) =  creep coefficient for load applied at time t

d
 and 

sustained to time t

The age-adjusted effective modulus of elasticity of concrete 

subjected to a constant stress introduced at t
i
 with creep deter-

mined to the period (t – t
d
), Ectc

* t,ti( ) =
Ec ti( )

ψbif −ψbid

=
4406

1.526− 0.626
= is calculated as

Ectc
* t,ti( ) =

Ec ti( )
ψbif −ψbid

=
4406

1.526− 0.626
=  4896 ksi (33.76 GPa)

where

E
c
(t

i
)       = modulus of elasticity of concrete at time t

i

Determine the time-dependent multiplier corresponding to 
prestressing and beam self-weight δ

1
.

δ1 =
Ectv
* t,td( )

Ectc
* t,to( ) =

3088
4896

=  0.631

The age-adjusted effective modulus of elasticity for beam 
concrete due deck weight E

cd
 is calculated as

Ecd =
Ec td( )

1+1.0 1.030( )
=

5314

1+1.0 1.030( )
=  2618 ksi (18.05 GPa)

where

E
c
(t

d
) =  modulus of elasticity of concrete at time of deck 

placement t
d

Determine the time-dependent multiplier due to deck 
weight δ

2
.

δ 2 =
Ecd

Ectc
* t,to( ) =

2618
4896

= 0.535

Table 1. Calculation of restraint and equilibrium due to temperature gradient

Area number Width, in. Depth, in.
Centroidal 

distance, in.
Temperature 

gradient
Restraining 
stress, ksi

Restraining 
force, kip

Restraint  
moment, kip-ft

1 82.286 4 13.96 29.00 0.925 304.36 4247.8

2 82.286 4 9.96 6.00 0.191 62.97 627.0

3 33.209 1 7.46 6.00 0.191 6.35 47.4

4 48.430 2.5625 5.68 6.00 0.191 23.74 134.7

5 27.070 1.77 3.51 6.00 0.191 9.17 32.2

6 11.240 2.6875 1.28 6.00 0.191 5.78 7.4

Total 412.37 424.70

Total restraint moment 212.4

Note: 1 in. = 25.4 mm; 1 kip = 4.448 kN; 1 kip-ft = 1.356 kN-m; 1 ksi = 6.895 MPa.

Figure 8. Restraint moment due to deck shrinkage. Note: 1 kip = 4.448 kN; 1 kip-ft = 1.356 kN-m.

385.2 kip385.2 kip

383.8 kip-ft

383.8 kip-ft

383.8 kip-ft

383.8 kip-ft–191.9 kip-ft
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Determine the restraint moment M
r
:

The restraint moment due beam weight M
r1

 is calculated as 
M

r1
 = δ

1
M

o
 = (0.631)(-684.5) = -431.9 kip-ft (-585.5 kN-m)

The restraint moment due to prestressing M
r2

 is calculated as 
M

r2
  = δ

1
M

p
 + initial elastic moment = (0.631)(3533.6) – 713.3 

= 1516.1 kip-ft (2055.4 kN-m)

The moment due to prestressing is positive, and the moment 
due to self-weight of the beam is negative.

The restraint moment due to deck weight M
r3

 is calcu-
lated as M

r3
 = δ

2
M

d
 = (0.535)(-1028.1) = -550.0 kip-ft 

(-745.7 kN-m)

Restraint moments due to deck shrinkage

Modular ratio = 3644/5314 = 0.686

Beam spacing = 10 ft (3 m)

Span = 90 ft (27 m)

Deck thickness = 8 in. (200 mm)

Area of the deck A
d
 = 960 in.2 (620,000 mm2)

Moment of inertia of composite section = 308,248 in.4 
(1.28303 × 1011 mm4)

Centroid of the section from the top = 15.956 in. (405.28 mm)

Total depth of the cross section = 44.43 in. (1129 mm)

Deck shrinkage strain ε
s
 = 0.000274

Compressive force due to deck shrinkage

= εs AdEcd( ) 1

1+ 0.7ψddf

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 0.000274( ) 960( ) 3644( )
1

1+ 0.7 2.126( )

⎡

⎣
⎢

⎤

⎦
⎥=  385.2 kip 

    (1714 kN)

Moment due to shrinkage

 Msh =
385.2( ) 15.956−

8
2

⎛
⎝
⎜

⎞
⎠
⎟

12
=  383.8 kip-ft (520.5 kN-m)

This moment is applied as external end moment on the 
beams. Using continuous beam analysis software, the restraint 
moment caused at the interior support can be found. Figure 8 
shows the restraint moment due to deck shrinkage.

Total restraint moment = -191.9 kip-ft (-260.2 kN-m)

Restraint moment  
due to thermal gradient

For this example, the cross-section geometry is simplified into 
layers of rectangular shapes. Further, the temperature gradi-
ent is simplified into a series of constant rises in temperature 
(Fig. 9).

Table 1 gives the calculations of the initial strains and 
restraining forces. As for the shrinkage forces (Fig. 8), the 
pier restraint moment is half of the applied end moment. The 
exception here is that the temperature restraint moment is 

Figure 9. Simplified model of temperature gradient. Note: 1 in. = 25.4 mm; °C = (°F – 32)/1.8

82.29 in.

33.21 in.

11.24 in.

27.07 in.

48.43 in.

4.00 in.

12.00 in.

46°F

12°F

(46+12)/2=29°F

6°F
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positive (requiring bottom steel), while the shrinkage restraint 
moment is negative. In other examples where the beam has 
more than two spans, the moments at the piers would be cal-
culated with a continuous beam with two equal end moments 
applied at the abutments.

Net restraint moment due to total effects

Restraint moment due to beam weight = -431.9 kip-ft 
(-585.5 kN-m)

Restraint moment due to prestressing = 1516.1 kip-ft 
(2055.4 kN-m)

Restraint moment due to deck weight = -550.0 kip-ft 
(-745.7 kN-m)

Restraint moment due to temperature = 212.4 kip-ft 
(288.0 kN-m)

Restraint moment due to deck shrinkage = -191.9 kip-ft 
(-260.2 kN-m)

Elastic moment due to barrier weight = -202.5 kip-ft 
(-274.5 kN-m)

Total net moment M
res

 = 351.6 kip-ft (476.8 kN-m)

Net restraint axial force due to total effects

Restraint axial force due to beam weight = 0.0 kip (0.0 kN)

Restraint axial force due to prestressing = 0.0 kip (0.0 kN)

Restraint axial force due to deck weight = 0.0 kip (0.0 kN)

Restraint axial force due to temperature = -412.37 kip 
(-1834.2 kN) (tension)

Restraint axial force due to deck shrinkage = +385.2 kip 
(+1714 kN) (compression)

Elastic axial force due to barrier weight = 0.0 kip (0.0 kN)

Total net axial force F
res

 = -27.17 kip (-120.9 kN)

Moments or axial force at the piers due to future wearing 
surface and live loads is not included in this example. These 
loads create negative moments causing compression at the 
bottom of the connection and are not permanent.

Restraint moment reinforcement  
extended from beam end  
into diaphragm

The stress limit is assumed to be 36 ksi (250 MPa).

The minimum required area of steel A
s,required

 is calculated as 

As ,required =0.9

Mres

jd
+
Fres
2

36

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=0.9

351.6( ) 12( )
39.99

−
−27.17( )
2

36

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
 = 2.977 in.2 (1921 mm2)

where

Figure 10. Strand bending at beam 
end. Courtesy of Coreslab Structures, 
Omaha, Neb.

Figure 11. Bridge under construction 
near Des Moines, Iowa. Note the bent 
strands.

Figure 12. Fairview Road overpass 
over Interstate 80 in Omaha, Neb.
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jd     =  lever arm between tension and compression, as-
sumed to be 0.9h = 39.99 in. (1016 mm)

Use fourteen 0.6 in. (15 mm) strands bent into the diaphragm.

Commentary on example results

The number of strands required to be extended for this bridge 
example is greater than the empirical number of eight strands 
generally used in the state of Nebraska. The empirical ap-
proach in Nebraska has worked well for more than 30 years 
with no visible signs of bottom-fiber cracking. This would 
seem to indicate that the proposed analysis is perhaps too 
conservative. For example, the restraint moment is calculat-
ed using uncracked section analysis. Reducing that moment 
by 10% to 20% could be justified to allow for the fact that 
cracking relieves the positive moment zone from the moment 
for which reinforcement is being provided. The reinforcement 
is only for crack control and should never be thought of as a 
strength design requirement.

The use of strands in the joint to control cracking is superior 
to the use of additional L-shaped bars, as some owners seem 
to specify. Strands are already in the beam and are continuous 
for the full length. Thus, they do not cause stress concentra-
tion as additional short bars placed only at the ends could cre-
ate. Also, additional bars are inserted between strand positions 
in the already occupied beam bottom flange. They create addi-
tional detailing complications and result in additional costs.

Bending strands into the cast-in-place concrete diaphragms 
is a common practice in many states. It is done with a simple 
tool (Fig. 10).

In Nebraska, the strands are bent at 6 in. (150 mm) from the 
end face of the beam. The strands are extended at least 18 in. 
(460 mm) for a total strand extension beyond the face of the 
beam of 24 in. (610 mm). The strands are embedded in a 24 in. 
wide cast-in-place concrete diaphragm. The beams are embed-
ded 8 in. (200 mm) into the diaphragms with an 8 in. gap where 
the continuity steel exists. The state of Iowa use similar details 
(Fig. 11). The result is an aesthetically pleasing exterior face, as 
shown for a bridge on Interstate 80 in Nebraska (Fig. 12).

Conclusion

A simplified step-by-step method of for calculating the rein-
forcement needed to control cracking due to creep restraint 
moment in precast, prestressed concrete beams is presented. 
It can be used by designers using a simple Excel workbook. 
It is valid for cases involving any number of spans of any 
length. The analysis shows that only a few strands need to be 
extended beyond the end of the beam and embedded in the 
cast-in-place concrete diaphragms. Such process is common 
at virtually no additional cost. It is superior to adding rein-
forcing bars at the ends, which tend to congest the end zone of 
the beam and create unnecessary stress concentrations. With 
the proposed analysis, it is no longer needed to place exces-

sive amounts of steel corresponding to flexural strength being 
equal to 1.2M

cr
 or to wait a period of 90 days between girder 

casting and diaphragm concrete placement.
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Notation

A
b
 = area of cross section of the precast concrete beam

A
d
 = area of the deck

A
s,required

 = minimum required area of steel

d =  effective depth from the compression face to the 
center of the tensile reinforcement

e
c
 = eccentricity of the strand at midspan

e
e
 = eccentricity of the strand at beam ends

E = modulus of elasticity

E
c
 = modulus of elasticity of the beam

E
cd

 = modulus of elasticity of the deck

E
ci
 = modulus of elasticity of the beam

E
c
(t

o
) =  modulus of elasticity of concrete at time t

o
 the 

beginning of the interval being considered

E
c
(t

d
) = modulus of elasticity of beam at time t

d

E
c
(t

i
) = modulus of elasticity of beam at time t

i

E*
c
(t, t

o
) =  age-adjusted effective modulus of elasticity for 

stress applied at t
o
 and sustained to t

E*
ctc

(t, t
o
)  =  age-adjusted effective modulus of elasticity of 

concrete for constant sustained stress

E*
ctc

(t, t
i
)  =  age-adjusted effective modulus of elasticity of 

concrete subjected to a constant stress introduced at 
t
i
 with creep determined to the period (t – t

d
)

E*
ctv

(t, t
o
)  =  age-adjusted effective modulus of elasticity of 

concrete for gradually developing stress

E*
ctv

(t, t
1
)  =  age-adjusted effective modulus of elasticity of 

concrete subjected to gradual loading at time t
1
 

with creep developing in the period (t – t
1
)

E*
ctv

(t, t
d
)  =  age-adjusted effective modulus of elasticity of 

concrete subjected to gradual loading introduced at 
time t

d
 with creep developing in the period (t – t

d
), 

where t is generally taken in design as time infinity

f = applied stress

ʹfc  = compressive strength of concrete

f(t
o
) = applied stress at time t

o

F
res

 = total net axial force

h = depth of precast concrete beam

I = precast concrete beam moment of inertia

jd =  lever arm between tension and compression,  
assumed to be 0.9h

k
td
 = time development factor

l = span length

M
Barrier

 =  elastic moment due to effect of self-weight of the 
barrier

M
cr
 = cracking moment

M
cr
(t) = cracking moment at time t

M
d
 =  elastic moment due to the effect of weight of the 

deck

M
el
 = elastic restraint moments at the supports

M
o
 = elastic moment due to self-weight of the beam

M
p
 = elastic moment due to prestress release

M
p,el

 =  elastic continuity moment due to prestress for the 
special case of a two-span bridge with two equal 
spans prestressed with strands that have symmetri-
cal profiles

M
r
 = total restraint moment

M
r1

 = restraint moment due to beam weight

M
r2

 = restraint moment due to prestressing

M
r3

 = restraint moment due to deck weight

M
res

 = total net moment

M
sh

 = moment due to shrinkage

P = effective prestressing force

s = spacing of reinforcement

t =  time in days, generally in design assumed as final 
time, which is 20,000 days

t
o
 =  beginning of the interval under loading being con-

sidered

t
d
 = time of diaphragm and deck placement
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t
i
 = time of prestress release 

w = beam weight

w
d
 = deck weight, including haunch

y
b
 =  distance from the centroid to the bottom fiber of the 

precast concrete beam

y
bc

 = composite section centroid to bottom fibers

α = coefficient of linear thermal expansion

αΔT = free strain due to the temperature change

γ
e
 = exposure factor

δ
1
 =  time-dependent multiplier corresponding to pre-

stressing and beam self-weight

δ
2
 =  time-dependent multiplier corresponding to deck 

weight

δ
c
 =  time-dependent multiplier corresponding to the load 

being considered

ε = total strain

ε
o
 = immediate concrete strain due to applied stress f

ε
bdf

 =  beam shrinkage strain between time of deck place-
ment and final time

ε
bid

 =  beam shrinkage strain between transfer and deck 
placement

ε
bif

 =  beam shrinkage strain between initial time of load-
ing and final time

ε
cr
 = time-dependent concrete creep strain

ε
ddf

 =  shrinkage strain of deck concrete between place-
ment and final time

ε
s
 = free shrinkage strain of deck

ε
sh

 = free shrinkage strain of concrete

θ
1
 = rotation at the center support of the left beam

θ
2
 =  rotation as concrete creeps at the time the beams are 

ready to be connected with cast-in-place concrete 
diaphragms

θ
3
 = end rotation

θ
4
 =  offsetting rotation caused by the continuity restraint 

momen, causing the rotation to remain unchanged 
by imposing an offsetting rotation such that θ

3
 – θ

4
 

= θ
2

θ
el
 = elastic rotation at beam end = θ

1

θ
r,el

 = elastic restraint rotation

χ = aging coefficient

χ(t, t
o
) = aging coefficient at a certain time

ψ = creep coefficient

ψ
1
 = creep coefficient between t

1
 and time infinity

ψ
2
 =  creep coefficient for concrete loaded from time t

1
 to 

time infinity

ψ
bdf

 =  creep coefficient of beam between time of deck 
placement and final time

ψ
bid

 =  creep coefficient at beam between prestress transfer 
and deck placement

ψ
bif

 =  creep coefficient at beam between initial time of 
loading and final time

ψ
ddf

 =  creep coefficient of deck concrete between deck 
placement and final time

ψ(t, t
o
) =  creep coefficient during a time interval from t

o
 to t 

for stress applied at time t
o
 and kept constant

ψ(t, t
1
) =  creep coefficient at time t for concrete loaded at 

time t
1
, specifically deck weight and the restraint 

moment

ψ(t, t
d
) =  creep coefficient for load applied at time t

d
 and 

sustained to time t

ψ(t
1
, t

o
) =  creep coefficient at time t

1
, for concrete loaded at 

time t
o
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Abstract

Precast, prestressed concrete continuous bridges have 
been constructed in many countries around the world. 
Although these bridges have been in service for many 
years, there has been limited verification of the ability 
of the connection to provide the predicted continuity. 
Subsequently, many U.S. states design the girders 
as simple spans for both dead and live loads without 
considering any moments developed by the diaphragm 
connection. The effect of thermal expansion and con-
traction is hardly considered in the analysis, though it 
is found to have significant effects on continuity. Apart 
from this, there is no consensus on the best method 
to calculate restraint moments that develop in the 
continuity diaphragm or how to detail positive moment 
connections.

The objective of this paper is to provide a simplified 
spreadsheet analysis for the restraint moments and the 
required crack control reinforcement. Detailed numeri-
cal analysis was performed using a two-span NU-gird-
er bridge. It is recommended that the strands already 
in the beam be used to meet the crack control require-
ments with no additional mild reinforcement.

Keywords

Aging effect, bridge, continuity diaphragm, restraint 
moment, thermal contraction, thermal expansion.

Review policy

This paper was reviewed in accordance with the 
Precast/Prestressed Concrete Institute’s peer-review 
process.

Reader comments

Please address any reader comments to PCI Journal 
editor-in-chief Emily Lorenz at elorenz@pci.org or 
Precast/Prestressed Concrete Institute, c/o PCI Journal, 
200 W. Adams St., Suite 2100, Chicago, IL 60606. J


