APPENDIX

Dapped ends of prestressed concrete thin-stemmed members: Part 2, design

Gary Klein, Amir Botros, Blake Andrews, and Kurt Holloway

Design example: Vertical Z scheme, two strands in nib

This section presents a design example for a $60 \mathrm{ft}(18 \mathrm{~m})$ long dapped-end $12 \mathrm{ft}(3.7 \mathrm{~m})$ wide double-tee beam with the vertical Z scheme. Two pretensioning strands pass through the nib.

Design loads

Table A1 gives the design loads used for the double-tee beam. The service and the factored load combinations considered in the design are based on the load combinations given in sections 2.3 and 2.4 in ASCE 7-10. ${ }^{1}$ Table A2 gives the geometry and details of the double tee.

Table A1. Design loads used for the beam

Load type	Service load $\boldsymbol{D}+\boldsymbol{L}$	Factored load $\mathbf{1 . 2 \boldsymbol { D } + \mathbf { 1 . 6 L }}$
Dead load $D, \mathrm{lb} / \mathrm{ft}^{2}$	78	94
Live load L, lb/ ft^{2}	60	96
Combination, lb/ft ${ }^{2}$	138	190
Vertical dap reaction, kip	25	34
Note: $1 \mathrm{kip}=4.448 \mathrm{kN} ; 1 \mathrm{lb} / \mathrm{ft}^{2}=47.88 \mathrm{~Pa}$.		

Characteristic	Value
Beam length, ft	60
Overall width, ft	12
Overall depth, in.	30
Flange thickness, in.	4
Cross-sectional area, in. ${ }^{2}$	859
Top stem width, in.	6.25
Bottom stem width, in.	4.5
Dap depth, in.	14
Dap length, in.	8
Concrete compressive strength f_{c}^{\prime}, psi	7000 (typical)
Prestressing strand ($1 / 2$ in. special strand) ultimate strength, ksi	270
ASTM A615 reinforcing bar yield strength, ksi	60
Stem shear reinforcement (custom A185 WWR) minimum yield strength, ksi	80
Note: WWR = welded-wire reinforcement. 1 in. $=25.4$ $0.305 \mathrm{~m} ; 1 \mathrm{psi}=6.895 \mathrm{kPa} ; 1 \mathrm{ksi}=6.895 \mathrm{MPa}$.	$\text { ; } 1 \mathrm{ft}=$

Given information

Factored vertical reaction at end of beam $V_{u}=34$ kip (150 kN)

Factored horizontal dap reaction $N_{u}=(0.2)(34)=6.8 \mathrm{kip}$ (30 kN)

Shear strength reduction factor ϕ for dapped-end design $=$ 0.75

Distance measured from the vertical reaction to center of hanger reinforcement $a=7.5 \mathrm{in}$. (190 mm)

Clear distance between the face of the dap and the hanger reinforcement at the bottom of the section $\ell_{c}=1.25 \mathrm{in}$. (190 mm)

Distance from extreme compression fiber to nib flexural reinforcement $d_{n}=15.25 \mathrm{in}$. $(387 \mathrm{~mm})$

Distance from extreme compression fiber to centroid of prestressing reinforcement (not less than 80% of the total height of the section, $0.8 h) d_{p}=24 \mathrm{in} .(610 \mathrm{~mm})$

Width of web taken at midheight of the full-depth section $b_{w}=5.51 \mathrm{in} .(140 \mathrm{~mm})$

Width of web taken at midheight of the nib $b_{w}=5.98 \mathrm{in}$. (152 mm)

Height of the nib $h_{n}=16 \mathrm{in} .(406 \mathrm{~mm})$
Yield strength f_{y} of deformed reinforcement bars $=60 \mathrm{ksi}$ (414 MPa)

Yield strength f_{y} of welded-wire reinforcement $=80 \mathrm{ksi}$ (552 MPa)

Specified clear cover of embedded reinforcement from bottom $c_{c b}=1.25 \mathrm{in}$. $(32 \mathrm{~mm})$

Specified clear cover of embedded reinforcement from side face $c_{c s}=1.75 \mathrm{in} .(44 \mathrm{~mm})$

Length of bearing pad $\ell_{\text {pad }}=4 \mathrm{in}$. $(100 \mathrm{~mm})$
Width of bearing pad $b_{p a d}=4 \mathrm{in} .(125 \mathrm{~mm})$

Design procedure

Step 1: Verify sectional strength in B region (flexure, shear)

Beyond a distance of $2 h$ from the face of the dap, the beam region of dapped double tees was designed for flexure and shear following the section design requirements of ACI 318-14. ${ }^{2}$ Figure A1 shows the beam cross section and the strand pattern. The flexural capacity of the section was designed to carry an applied factored design load of $190 \mathrm{lb} / \mathrm{ft}^{2}(9.10 \mathrm{kPa})$. The nominal flexural capacity was calculated using sectional analysis assuming a rectangular concrete stress distribution to satisfy both equilibrium conditions and strain compatibility. Figure A2 shows the reinforcement in the dapped end, which will be proportioned in subsequent steps.

Step 2: Verify shear strength in full section of D region

Full section nominal shear strength V_{n} (two strands in nib):

$$
V_{n}=V_{c}+V_{s}
$$

where
$V_{c}=$ nominal shear strength provided by concrete

Figure A1. Double-tee cross section. Note: $1 \mathrm{in} .=25.4 \mathrm{~mm} ; 1 \mathrm{ft}=0.305 \mathrm{~m}$.

Figure A2. Dapped end with vertical Z reinforcement. Note: a = shear span measured from the vertical reaction to center of hanger reinforcement; $A_{h}=$ area of shear-friction reinforcement across vertical crack at dapped ends and corbels; $A_{s}=$ area of nib flexural reinforcement; $A_{s h}=$ area of hanger reinforcement for dapped end; $A_{s h}^{\prime}=$ area of horizontal extension of hanger reinforcement; $d_{n}=$ distance from extreme compression fiber to nib flexural reinforcement; $h=$ member height; $h_{n}=$ height of the nib; $\ell_{c}=$ clear distance between the face of the dap and the hanger reinforcement at the bottom of the section; $\ell_{d}=$ development length of reinforcement; $\ell_{s h}=$ length of hanger reinforcement bar tail; $N_{u}=$ factored horizontal or axial force; $r_{b}=$ bend radius of hanger reinforcement measured to the inside of the bar; $V_{u}=$ factored vertical reaction at end of beam.
$V_{s}=$ nominal shear strength provided by steel reinforcement
$V_{c}=3.0 \sqrt{f_{c}^{\prime}} b_{w} d_{p}$ for two strands in the nib
where
$f_{c}^{\prime}=$ specified compressive strength of concrete
$V_{c}=3.0 \sqrt{7000}(5.51)(24)$
$=33,200 \mathrm{lb}=33.2 \mathrm{kip}(148 \mathrm{kN})$
$V_{s} \geq \frac{V_{u}}{\phi}-V_{c}$
$\geq \frac{34}{0.75}-33.2$
$\geq 12.1 \mathrm{kip}(53.8 \mathrm{kN})$

$$
\frac{A_{v}}{s} \geq \frac{V_{s}}{f_{y} d}
$$

where
$A_{v}=$ area of diagonal tension reinforcement in full section of beam
$s=$ spacing between reinforcement bars
$d=$ effective depth from the centroid of reinforcement to the extreme fiber of the compression zone
$\frac{A_{v}}{s} \geq \frac{12.1}{(80)(24)}$
$\geq 0.0063 \mathrm{in}^{2} / \mathrm{in} .\left(0.16 \mathrm{~mm}^{2} / \mathrm{mm}\right)$
Use one layer of W4 (5.7 mm) wires at 6 in . (150 mm), which provides a reinforcement area of $0.0067 \mathrm{in} .^{2} / \mathrm{in}$. ($0.16 \mathrm{~mm}^{2} / \mathrm{mm}$).

Check minimum shear reinforcement.

Minimum $\frac{A_{v}}{s}=0.75 \frac{\sqrt{f_{c}^{\prime}} b_{w}}{f_{y}}=0.75 \frac{\sqrt{7000}(5.51)}{80,000}$

$$
\begin{aligned}
& =0.0043 \mathrm{in} .^{2} / \mathrm{in} \cdot\left(0.11 \mathrm{~mm}^{2} / \mathrm{mm}\right) \\
& \geq \frac{50 b_{w}}{f_{y}}=\frac{(50)(5.51)}{80,000} \\
& =0.0034 \mathrm{in} .^{2} / \mathrm{in} \cdot\left(0.086 \mathrm{~mm}^{2} / \mathrm{mm}\right)
\end{aligned}
$$

where
Minimum $\frac{A_{v}}{s}=0.0043$, which is less than that provided.
Thus $\frac{A_{v}}{s} \rightarrow \mathrm{OK}$
Check maximum nominal shear strength provided by steel reinforcement $V_{s, \text { max }}$.

$$
\begin{aligned}
V_{s \max } & =2.0 \sqrt{f_{c}^{\prime}} b_{w} d_{p} \\
& =2.0 \sqrt{7000}(5.51)(24) \\
& =22,100 \mathrm{lb}=22.1 \mathrm{kip}(98.3 \mathrm{kN})>12.1 \mathrm{kip} \rightarrow \mathrm{OK}
\end{aligned}
$$

Step 3: Proportion hanger reinforcement

Determine area of hanger reinforcement $A_{s h}$.
$A_{s h}=\frac{V_{u}}{\phi f_{y}}=\frac{34}{(0.75)(60)}$

$$
=0.76 \mathrm{in}^{2}\left(490 \mathrm{~mm}^{2}\right)
$$

Use one no. 8 (25M) bar (area equals 0.79 in. ${ }^{2}$ [510 mm 2$]$). The one no. 8 hanger bar should be inserted between the two columns of staggered strands.

Step 4: Check bend region of hanger reinforcement

Calculate bend radius of hanger reinforcement measured to the inside of the bar r_{b}.
$r_{b} \geq \frac{2 A_{s h} f_{y}}{b_{b} f_{c}^{\prime}}$
where
$b_{b}=$ width of web at the bend region because the dap reinforcement is placed in the middle of the stem
$r_{b}=\frac{2(0.79)(60,000)}{(4.5)(7000)}$
$\geq 3.01 \mathrm{in} .(76.5 \mathrm{~mm})$
Increase r_{b} by a ratio of $2 d_{b} / c_{c}$, where d_{b} is the nominal diameter of reinforcement, and c_{c} is the specified clear cover of embedded reinforcement.

$$
\begin{aligned}
& 2 d_{b} / c_{c}=(2)(1.0) / 1.75=1.14 \\
& r_{b} \quad \geq(3.01)(1.14)=3.44 \mathrm{in} .(87.4 \mathrm{~mm})
\end{aligned}
$$

Make the radius of bend 3.5 in . (89 mm), which is greater than half the standard diameter of bend for this size bar, which is 3 in . $(75 \mathrm{~mm}$).

Step 5: Determine length of hanger reinforcement horizontal extension $\ell_{\text {sh }}$

Check confinement-to-bar diameter ratio c_{b} / d_{b}, which should be at least 1.5 and preferably 2.5 or more. Concrete confinement c_{b} is controlled by bottom cover in this case.

$$
\begin{aligned}
c_{b} & =c_{c b}+d_{b} / 2 \\
& =1.25+1.0 / 2 \\
& =1.75 \mathrm{in} .(44.4 \mathrm{~mm})
\end{aligned}
$$

$$
\frac{c_{b}}{d_{b}}=\frac{1.75}{1.0} 1.75>1.5 \rightarrow \mathrm{OK}
$$

The hanger bar tails should be extended into the span from the face of the dap at least 1.5 times the strand transfer length ℓ_{t}, and the horizontal extension from the bend should be at least 2.0 times the bar development length ℓ_{d}.

Check development length per ACI 318-14 (Eq. 25.4.2.3.a).
$\ell_{d}=\left\{\left(\frac{3}{40}\right)\left(\frac{f_{y}}{\sqrt{f_{c}^{\prime}}}\right)\left[\frac{\psi_{e} \psi_{t} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right]\right\} d_{b}$
(ACI 25.4.2.3.a)
where

[^0]Strand transfer length $\ell_{t}=50 d_{s}$
where

$$
\begin{aligned}
d_{s} & =\text { strand diameter } \\
\ell_{t} & =(50)(0.522)=26.1 \mathrm{in} .(663 \mathrm{~mm}) \\
\ell_{s h} & =\text { maximum } 2 \ell_{d} \text { or }\left(1.5 \ell_{t}-\ell_{c}\right) \\
& =\text { maximum }(2)(30.7) \text { or }[(1.5)(26.1)-1.25)] \\
& =\text { maximum } 61.4 \text { or } 37.9 \\
& =61.4 \mathrm{in} .(1560 \mathrm{~mm})
\end{aligned}
$$

Therefore, use hanger reinforcement tail length $\ell_{s h}$ of 62 in . (1575 mm).

Step 6: Proportion reinforcement for nib flexure and axial tension

Calculate area of nib flexural reinforcement A_{s}.
$A_{s}=\frac{1}{\phi f_{y}}\left[V_{u}\left(\frac{a}{d_{n}}\right)+N_{u}\left(\frac{h_{n}}{d_{n}}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{(0.75)(60)}\left[34\left(\frac{7.5}{15.25}\right)+6.8\left(\frac{16.0}{15.25}\right)\right] \\
& =0.53 \mathrm{in}^{2}\left(340 \mathrm{~mm}^{2}\right)
\end{aligned}
$$

Use two no. $5(16 \mathrm{M})$ bars $\left(\right.$ area $\left.=0.62 \mathrm{in.}^{2}\left[400 \mathrm{~mm}^{2}\right]\right)$.
This reinforcement should be welded to the bearing plate and extend at least a distance ℓ_{d} beyond the potential 45 -degree crack intersecting the bottom corner of the full section.

Step 7: Design for nib shear

Nib shear strength (non-C bar detail):

$$
\begin{aligned}
\phi V_{n} & =\phi 6.0 \sqrt{f_{c}^{\prime}} b_{w} d_{n} \\
& =(0.75)(6.0) \sqrt{7000}(5.98)(15.25) \\
& =34,300 \mathrm{lb}=34.3 \mathrm{kip}(153 \mathrm{kN})>V_{u} \rightarrow \mathrm{OK}
\end{aligned}
$$

Nib shear friction:
where
$A_{h}=$ area of shear-friction reinforcement across vertical crack at dapped ends and corbels
$A_{n}=$ area of nib reinforcement resisting tensile force

$$
\begin{aligned}
A_{n} & =\frac{N_{u}}{\phi f_{y}}\left(\frac{h_{n}}{d_{n}}\right)=\frac{6.8}{(0.75)(60)}\left(\frac{16}{15.25}\right) \\
& =0.16 \text { in. }{ }^{2}\left(100 \mathrm{~mm}^{2}\right)
\end{aligned}
$$

$A_{h}=0.5(0.53-0.16)=0.19 \mathrm{in.}^{2}\left(120 \mathrm{~mm}^{2}\right)$
Use one no. 4 (13M) hairpin (U -shaped) bar (area $=0.40$ in. ${ }^{2}$ [258 $\left.\mathrm{mm}^{2}\right]$).

Step 8: Design for direct bearing

The design checks for nib flexure and shear (steps 6 and 7) ensure adequate flexure, shear, and shear-friction resistance. Check for maximum direct bearing in accordance with Eq. (9).

$$
\begin{aligned}
\phi V_{n} & \leq \phi 1.1 \ell_{p a d} b_{p a d} f_{c}^{\prime} \\
34 & \leq(0.65)(1.1)(4.0)(4.0)(7.0) \\
34 \mathrm{kip} & \leq 80.1 \mathrm{kip}(356 \mathrm{kN}) \rightarrow \mathrm{OK}
\end{aligned}
$$

Also check bearing pad stress per PCI Design Handbook: Precast and Prestressed Concrete. ${ }^{3}$

References

1. ASCE (American Society of Civil Engineers) Committee on Minimum Design Loads for Buildings and Other Structures. 2010. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-10.
2. ACI (American Concrete Institute). 2014. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills, MI: ACI.
3. PCI Industry Handbook Committee. 2010. PCI Design Handbook: Precast and Prestressed Concrete. MNL-120. 7th ed. Chicago, IL: PCI.

Notation

$a \quad=$ shear span measured from the vertical reaction to center of hanger reinforcement
$A_{h}=0.5\left(A_{s}-A_{n}\right)$

A_{h}	$=$ area of shear-friction reinforcement across vertical
A_{s}	$=$ area of nib flexural reinforcement
$A_{\text {sh }}$	$=$ area of hanger reinforcement for dapped end
$A_{s h}^{\prime}$	$\begin{aligned} & =\text { area of horizontal extension of hanger reinforce- } \\ & \text { ment } \end{aligned}$
A_{v}	$\begin{aligned} & =\text { area of diagonal tension reinforcement in section } \\ & \text { under consideration } \end{aligned}$
b_{b}	$=$ width of the web at the bend region
$b_{p a d}$	$=$ width of bearing pad, but not greater than the stem width
b_{w}	$=$ width of web taken at mid-height of the portion of the tapered stem under consideration (full section or nib)
c_{b}	$=$ concrete confinement $=$ lesser of: distance from the center of bar or wire to the nearest concrete surface or one half the center-to-center spacing of bars or wires being developed
c_{c}	$=$ specified clear cover of embedded reinforcement
$c_{c b}$	$=$ specified clear cover of embedded reinforcement from bottom
$c_{c s}$	$\begin{aligned} & =\text { specified clear cover of embedded reinforcement } \\ & \text { from side face } \end{aligned}$
d	$=$ effective depth from the centroid of reinforcement to the extreme fiber of the compression zone
d_{b}	$=$ nominal diameter of reinforcement
d_{n}	$\begin{aligned} = & \text { distance from extreme compression fiber to nib } \\ & \text { flexural reinforcement } \end{aligned}$
d_{p}	$\begin{aligned} & =\text { distance from extreme compression fiber to cen- } \\ & \text { troid of prestressing reinforcement but not less } \\ & \text { than } 0.8 \mathrm{~h} \end{aligned}$
d_{s}	$=$ strand diameter
D	$=$ dead load
f_{c}^{\prime}	$=$ specified compressive strength of concrete

$f_{y} \quad=$ specified yield strength of reinforcement
$h \quad=$ member height
$h_{n} \quad=$ height of the nib
$K_{t r} \quad=$ transverse reinforcement index
$\ell_{c} \quad=$ clear distance between the face of the dap and the hanger reinforcement at the bottom of the section
$\ell_{d} \quad=$ development length of reinforcement
$\ell_{p a d} \quad=$ length of bearing pad measured parallel to stem
$\ell_{s h} \quad=$ length of hanger reinforcement horizontal extension
$\ell_{t} \quad=$ strand transfer length
$L \quad=$ live load
$N_{u} \quad=$ factored horizontal or axial force
$r_{b} \quad=$ bend radius of hanger reinforcement measured to the inside of the bar
$s \quad=$ spacing between reinforcement bars
$V_{c} \quad=\quad$ nominal shear strength provided by concrete
$V_{n} \quad=$ nominal shear strength
$V_{s} \quad=$ nominal shear strength provided by steel reinforcement
$V_{s, \text { max }}=$ maximum nominal shear strength provided by steel reinforcement
$V_{u} \quad=$ factored vertical reaction at end of beam
$\phi \quad=$ shear-strength reduction factor
$\psi_{e} \quad=$ factor used to modify development length based on reinforcement coating
$\psi_{s} \quad=$ factor used to modify development length based on reinforcement size
$\psi_{t} \quad=$ factor used to modify development length for locating of reinforcing in concrete placement

[^0]: $\psi_{e}=$ factor used to modify development length based on reinforcement coating
 $\psi_{t}=$ factor used to modify development length for locating reinforcing in concrete placement
 $\psi_{s}=$ factor used to modify development length based on reinforcement size
 $K_{t r}=$ transverse reinforcement index (0 in this case)
 $\ell_{d}=\left\{\left(\frac{3}{40}\right)\left(\frac{60,000}{\sqrt{7000}}\right)\left[\frac{(1)(1)(1)}{\left(\frac{1.75+0}{1.0}\right)}\right]\right\} 1.0$
 $=30.7 \mathrm{in} .(780 \mathrm{~mm})$

