APPENDIX

Dapped ends of prestressed concrete thin-stemmed members: Part 2, design

Gary Klein, Amir Botros, Blake Andrews, and Kurt Holloway

Design example: Vertical Z scheme, two strands in nib

This section presents a design example for a 60 ft (18 m) long dapped-end 12 ft (3.7 m) wide double-tee beam with the vertical Z scheme. Two pretensioning strands pass through the nib.

Design loads

Table A1 gives the design loads used for the double-tee beam. The service and the factored load combinations considered in the design are based on the load combinations given in sections 2.3 and 2.4 in ASCE 7-10.¹ **Table A2** gives the geometry and details of the double tee.

Table A1. Design loads used for the beam				
Load type	Service load D + L	Factored load 1.2D + 1.6L		
Dead load <i>D</i> , lb/ft ²	78	94		
Live load <i>L</i> , lb/ft ²	60	96		
Combination, lb/ft ²	138	190		
Vertical dap reaction, kip	25	34		
Note: 1 kip = 4.448 kN; 1 lb/ft² = 47.88 Pa.				

Table A2. Geometry and details of the double-teebeam

Characteristic	Value	
Beam length, ft	60	
Overall width, ft	12	
Overall depth, in.	30	
Flange thickness, in.	4	
Cross-sectional area, in. ²	859	
Top stem width, in.	6.25	
Bottom stem width, in.	4.5	
Dap depth, in.	14	
Dap length, in.	8	
Concrete compressive strength f_c , psi	7000 (typical)	
Prestressing strand (½ in. special strand) ultimate strength, ksi	270	
ASTM A615 reinforcing bar yield strength, ksi	60	
Stem shear reinforcement (custom A185 WWR) minimum yield strength, ksi	80	
Note: WWR = welded-wire reinforcement. 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 psi = 6.895 kPa; 1 ksi = 6.895 MPa.		

Given information

Factored vertical reaction at end of beam $V_u = 34$ kip (150 kN)

Factored horizontal dap reaction $N_u = (0.2)(34) = 6.8$ kip (30 kN)

Shear strength reduction factor ϕ for dapped-end design = 0.75

Distance measured from the vertical reaction to center of hanger reinforcement a = 7.5 in. (190 mm)

Clear distance between the face of the dap and the hanger reinforcement at the bottom of the section $\ell_c = 1.25$ in. (190 mm)

Distance from extreme compression fiber to nib flexural reinforcement $d_n = 15.25$ in. (387 mm)

Distance from extreme compression fiber to centroid of prestressing reinforcement (not less than 80% of the total height of the section, 0.8*h*) $d_p = 24$ in. (610 mm)

Width of web taken at midheight of the full-depth section $b_w = 5.51$ in. (140 mm)

Width of web taken at midheight of the nib $b_w = 5.98$ in. (152 mm)

Height of the nib $h_n = 16$ in. (406 mm)

Yield strength f_y of deformed reinforcement bars = 60 ksi (414 MPa)

Yield strength f_y of welded-wire reinforcement = 80 ksi (552 MPa)

Specified clear cover of embedded reinforcement from bottom $c_{cb} = 1.25$ in. (32 mm)

Specified clear cover of embedded reinforcement from side face $c_{rs} = 1.75$ in. (44 mm)

Length of bearing pad $\ell_{pad} = 4$ in. (100 mm)

Width of bearing pad $b_{pad} = 4$ in. (125 mm)

Design procedure

Step 1: Verify sectional strength in B region (flexure, shear)

Beyond a distance of 2h from the face of the dap, the beam region of dapped double tees was designed for flexure and shear following the section design requirements of ACI 318-14.² Figure A1 shows the beam cross section and the strand pattern. The flexural capacity of the section was designed to carry an applied factored design load of 190 lb/ft² (9.10 kPa). The nominal flexural capacity was calculated using sectional analysis assuming a rectangular concrete stress distribution to satisfy both equilibrium conditions and strain compatibility. Figure A2 shows the reinforcement in the dapped end, which will be proportioned in subsequent steps.

Step 2: Verify shear strength in full section of D region

Full section nominal shear strength V_{μ} (two strands in nib):

$$V_{\mu} = V_{c} + V_{c}$$

where

 V_c = nominal shear strength provided by concrete

Figure A2. Dapped end with vertical Z reinforcement. Note: a = shear span measured from the vertical reaction to center of hanger reinforcement; $A_{h} =$ area of shear-friction reinforcement across vertical crack at dapped ends and corbels; $A_{s} =$ area of nib flexural reinforcement; $A_{sh} =$ area of hanger reinforcement for dapped end; $A_{sh}^{'} =$ area of horizontal extension of hanger reinforcement; $d_{n} =$ distance from extreme compression fiber to nib flexural reinforcement; h = member height; $h_{n} =$ height of the nib; $\ell_{c} =$ clear distance between the face of the dap and the hanger reinforcement at the bottom of the section; $\ell_{a} =$ development length of reinforcement; $\ell_{sh} =$ length of hanger reinforcement bar tail; $N_{u} =$ factored horizontal or axial force; $r_{b} =$ bend radius of hanger reinforcement measured to the inside of the bar; $V_{u} =$ factored vertical reaction at end of beam.

 V_s = nominal shear strength provided by steel reinforcement

$$V_c = 3.0\sqrt{f_c} b_w d_p$$
 for two strands in the nit

where

 f_c = specified compressive strength of concrete

$$V_c = 3.0\sqrt{7000} (5.51) (24)$$

= 33,200 lb = 33.2 kip (148 kN)

$$V_s \ge \frac{V_u}{\phi} - V_c$$
$$\ge \frac{34}{0.75} - 33.2$$

 \geq 12.1 kip (53.8 kN)

 $\frac{A_v}{s} \geq \frac{V_s}{f_v d}$

where

- A_{ν} = area of diagonal tension reinforcement in full section of beam
- s = spacing between reinforcement bars
- *d* = effective depth from the centroid of reinforcement to the extreme fiber of the compression zone

$$\frac{A_{\nu}}{s} \geq \frac{12.1}{(80)(24)}$$

 $\geq 0.0063 \text{ in.}^2/\text{in.} (0.16 \text{ mm}^2/\text{mm})$

Use one layer of W4 (5.7 mm) wires at 6 in. (150 mm), which provides a reinforcement area of $0.0067 \text{ in.}^2/\text{in.}$ (0.16 mm²/mm).

Check minimum shear reinforcement.

Minimum
$$\frac{A_v}{s} = 0.75 \frac{\sqrt{f_c} b_w}{f_y} = 0.75 \frac{\sqrt{7000} (5.51)}{80,000}$$

$$= 0.0043 \text{ in.}^2/\text{in.} (0.11 \text{ mm}^2/\text{mm})$$

$$\geq \frac{50b_w}{f_y} = \frac{(50)(5.51)}{80,000}$$
$$= 0.0034 \text{ in.}^2/\text{in.} (0.086 \text{ mm}^2/\text{mm})$$

where

Minimum $\frac{A_v}{s} = 0.0043$, which is less than that provided.

Thus
$$\frac{A_v}{s} \longrightarrow OK$$

Check maximum nominal shear strength provided by steel reinforcement V_{smax} .

$$V_{smax} = 2.0\sqrt{f_c} b_w d_p$$

= 2.0\sqrt{7000} (5.51)(24)

= 22,100 lb = 22.1 kip (98.3 kN) > 12.1 kip \rightarrow OK

Step 3: Proportion hanger reinforcement

Determine area of hanger reinforcement A_{sh} .

$$A_{sh} = \frac{V_u}{\phi f_y} = \frac{34}{(0.75)(60)}$$

 $= 0.76 \text{ in.}^2 (490 \text{ mm}^2)$

Use one no. 8 (25M) bar (area equals 0.79 in.² [510 mm2]). The one no. 8 hanger bar should be inserted between the two columns of staggered strands.

Step 4: Check bend region of hanger reinforcement

Calculate bend radius of hanger reinforcement measured to the inside of the bar r_b .

$$r_{b} \geq \frac{2A_{sh}f_{y}}{b_{b}f_{c}}$$

where

 b_b = width of web at the bend region because the dap reinforcement is placed in the middle of the stem

$$r_{b} = \frac{2(0.79)(60,000)}{(4.5)(7000)}$$

$$\geq 3.01 \text{ in. } (76.5 \text{ mm})$$

Increase r_b by a ratio of $2d_b/c_c$, where d_b is the nominal diameter of reinforcement, and c_c is the specified clear cover of embedded reinforcement.

 $2d_b/c_c = (2)(1.0)/1.75 = 1.14$

 $r_b \ge (3.01)(1.14) = 3.44$ in. (87.4 mm)

Make the radius of bend 3.5 in. (89 mm), which is greater than half the standard diameter of bend for this size bar, which is 3 in. (75 mm).

Step 5: Determine length of hanger reinforcement horizontal extension ℓ_{ch}

Check confinement–to–bar diameter ratio c_b/d_b , which should be at least 1.5 and preferably 2.5 or more. Concrete confinement c_b is controlled by bottom cover in this case.

$$c_{b} = c_{cb} + d_{b}/2$$

= 1.25 + 1.0/2
= 1.75 in. (44.4 mm)
$$\frac{c_{b}}{d_{b}} = \frac{1.75}{1.0} 1.75 > 1.5 \longrightarrow \text{OK}$$

The hanger bar tails should be extended into the span from the face of the dap at least 1.5 times the strand transfer length ℓ_t , and the horizontal extension from the bend should be at least 2.0 times the bar development length ℓ_d .

Check development length per ACI 318-14 (Eq. 25.4.2.3.a).

$$\ell_{d} = \left\{ \left(\frac{3}{40}\right) \left(\frac{f_{y}}{\sqrt{f_{c}}}\right) \left[\frac{\psi_{e}\psi_{t}\psi_{s}}{\left(\frac{c_{b}+K_{tr}}{d_{b}}\right)}\right] \right\} d_{b} \quad (ACI 25.4.2.3.a)$$

where

- ψ_e = factor used to modify development length based on reinforcement coating
- ψ_t = factor used to modify development length for locating reinforcing in concrete placement
- ψ_s = factor used to modify development length based on reinforcement size
- K_{tr} = transverse reinforcement index (0 in this case)

$$\ell_{d} = \left\{ \left(\frac{3}{40}\right) \left(\frac{60,000}{\sqrt{7000}}\right) \left[\frac{(1)(1)(1)}{\left(\frac{1.75+0}{1.0}\right)}\right] \right\} 1.0$$

= 30.7 in. (780 mm)

Strand transfer length $\ell_t = 50d_s$

where

 d_s = strand diameter

 $\ell_t = (50)(0.522) = 26.1$ in. (663 mm)

$$\ell_{sh} = \text{maximum } 2\ell_d \text{ or } (1.5\ell_t - \ell_c)$$

- = maximum (2)(30.7) or [(1.5)(26.1) 1.25)]
- = maximum 61.4 or 37.9
- = 61.4 in. (1560 mm)

Therefore, use hanger reinforcement tail length ℓ_{sh} of 62 in. (1575 mm).

Step 6: Proportion reinforcement for nib flexure and axial tension

Calculate area of nib flexural reinforcement A_{s} .

 $A_{s} = \frac{1}{\phi f_{y}} \left[V_{u} \left(\frac{a}{d_{n}} \right) + N_{u} \left(\frac{h_{n}}{d_{n}} \right) \right]$

$$= \frac{1}{(0.75)(60)} \left[34 \left(\frac{7.5}{15.25} \right) + 6.8 \left(\frac{16.0}{15.25} \right) \right]$$

 $= 0.53 \text{ in.}^2 (340 \text{ mm}^2)$

Use two no. 5 (16M) bars (area = $0.62 \text{ in.}^2 [400 \text{ mm}^2]$).

This reinforcement should be welded to the bearing plate and extend at least a distance ℓ_d beyond the potential 45-degree crack intersecting the bottom corner of the full section.

Step 7: Design for nib shear

Nib shear strength (non–C bar detail):

$$\phi V_n = \phi 6.0 \sqrt{f_c} b_w d_n$$

= (0.75)(6.0) \sqrt{7000} (5.98)(15.25)
= 34,300 lb = 34.3 kip (153 kN) > V_u \longrightarrow OK

Nib shear friction:

 $A_h = 0.5(A_s - A_n)$

where

- A_h = area of shear-friction reinforcement across vertical crack at dapped ends and corbels
- A_n = area of nib reinforcement resisting tensile force

$$A_n = \frac{N_u}{\phi f_y} \left(\frac{h_n}{d_n}\right) = \frac{6.8}{(0.75)(60)} \left(\frac{16}{15.25}\right)$$

= 0.16 in.² (100 mm²)

$$A_h = 0.5(0.53 - 0.16) = 0.19 \text{ in.}^2 (120 \text{ mm}^2)$$

Use one no. 4 (13M) hairpin (U-shaped) bar (area = 0.40 in.² [258 mm²]).

Step 8: Design for direct bearing

The design checks for nib flexure and shear (steps 6 and 7) ensure adequate flexure, shear, and shear-friction resistance. Check for maximum direct bearing in accordance with Eq. (9).

$$\phi V_n \leq \phi 1.1 \ell_{pad} b_{pad} f_c$$

 $34 \qquad \leq (0.65)(1.1)(4.0)(4.0)(7.0)$

34 kip \leq 80.1 kip (356 kN) \rightarrow OK

Also check bearing pad stress per *PCI Design Handbook: Precast and Prestressed Concrete.*³

References

- 1. ASCE (American Society of Civil Engineers) Committee on *Minimum Design Loads for Buildings and Other Structures*. 2010. *Minimum Design Loads for Buildings and Other Structures*. ASCE/SEI 7-10.
- 2. ACI (American Concrete Institute). 2014. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills, MI: ACI.
- PCI Industry Handbook Committee. 2010. PCI Design Handbook: Precast and Prestressed Concrete. MNL-120. 7th ed. Chicago, IL: PCI.

Notation

a = shear span measured from the vertical reaction to center of hanger reinforcement

APPENDIX

A_h	= area of shear-friction reinforcement across vertical	f_y	= specified yield strength of reinforcement
A_{s}	= area of nib flexural reinforcement	h	= member height
A_{sh}	= area of hanger reinforcement for dapped end	h_{n}	= height of the nib
$\dot{A_{sh}}$	= area of horizontal extension of hanger reinforce- ment	K_{tr}	= transverse reinforcement index
A_{v}	 area of diagonal tension reinforcement in section under consideration 	ℓ_c	 clear distance between the face of the dap and the hanger reinforcement at the bottom of the section
b_{b}	= width of the web at the bend region	ℓ_d	= development length of reinforcement
$b_{_{pad}}$	= width of bearing pad, but not greater than the stem width	$\ell_{_{pad}}$	= length of bearing pad measured parallel to stem
$b_{_{\scriptscriptstyle W}}$	= width of web taken at mid-height of the portion of the tapered stem under consideration (full section)	$\ell_{_{sh}}$	= length of hanger reinforcement horizontal ex- tension
	or nib)	ℓ_t	= strand transfer length
c_{b}	= concrete confinement = lesser of: distance from the center of bar or wire to the nearest concrete surface	L	= live load
	or one half the center-to-center spacing of bars or wires being developed	$N_{_{\!$	= factored horizontal or axial force
C _c	= specified clear cover of embedded reinforcement	r _b	 bend radius of hanger reinforcement measured to the inside of the bar
C _{cb}	= specified clear cover of embedded reinforcement from bottom	S	= spacing between reinforcement bars
C	 specified clear cover of embedded reinforcement 	V_{c}	= nominal shear strength provided by concrete
C _{cs}	from side face	$V_{_{n}}$	= nominal shear strength
d	 effective depth from the centroid of reinforcement to the extreme fiber of the compression zone 	V_{s}	= nominal shear strength provided by steel rein- forcement
$d_{_b}$	= nominal diameter of reinforcement	$V_{s,max}$	= maximum nominal shear strength provided by steel reinforcement
d_{n}	 distance from extreme compression fiber to nib flexural reinforcement 	$V_{_{u}}$	= factored vertical reaction at end of beam
d_{p}	= distance from extreme compression fiber to cen- troid of prestressing reinforcement but not less	ϕ	= shear-strength reduction factor
	than 0.8h	$\psi_{_{e}}$	= factor used to modify development length based on reinforcement coating
d_{s}	= strand diameter	ψ_{s}	= factor used to modify development length based
D	= dead load		on reinforcement size
$f_c^{'}$	= specified compressive strength of concrete	ψ_t	= factor used to modify development length for locating of reinforcing in concrete placement