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Editor’s quick points 

n  Determining the sense of flexural stress (tensile or com-
pressive) has historically been difficult.

n  This peer-reviewed paper introduces a new sign con-
vention that requires a single equation for computing 
stress, regardless of the location within the member, and 
the sense of the applied moment.

n  The system is likely to appeal most strongly to those who 
have not yet conducted many analyses of prestressed 
concrete and who may not yet have a well-developed 
sense of the signs of the stresses.

A simple sign 
convention for 
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Prestressed concrete members must satisfy design criteria at both 
service load and ultimate load stages. In most cases, service load 
requirements control design, so the service load analysis is normally 
conducted first and strength is checked later.

Considerable effort is expended in determining the direct stresses un-
der service load conditions, but no consensus has yet been reached on 
a satisfactory method for determining the sense of the stress (tensile or 
compressive). For a simply supported precast concrete member without 
composite action, keeping track of the sense of the stress in a hand 
calculation is not difficult and almost any system will work. The most 
common approach is to use separate equations for stress at the top and 
bottom of the member. However, if the moment due to external load 
may occur in either direction (for example, in a beam that is continu-
ous or is statically determinate with an overhang) or if the calculations 
are to be automated, the use of a clear, internally consistent system is 
desirable.

This paper presents such a system. Its primary advantages are that it re-
quires a single equation for computing stress, regardless of the location 
within the member and the sense of the applied moment, and that the 
sense of the stress is inherent to the calculation without the need for a 
separate calculation. This characteristic holds true for members that are 
simple or continuous and that are purely precast concrete or composite 
with cast-in-place concrete. The system is well suited for automation in 
a computer program.

The system is likely to appeal most strongly to those who have not yet 
conducted many analyses of prestressed concrete and who may not yet 
have a well-developed sense of the signs of the stresses. However, the 
system does not discriminate among users and offers the same benefits 
of simplicity and automatic generation of signs to everybody. It has 
been used successfully in the teaching of prestressed concrete at the 
University of Washington in Seattle for the past 15 years.
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Other systems in use

At present, various methods are used to track the signs of the stresses. 
For example, Naaman1 uses the following eight rules to establish them:

Use plus (+) for compressive stresses in concrete.1. 

Use minus (–) for tensile stresses in concrete.2. 

Use plus (+) for the numerical value of the moment for positive 3. 
moments and minus (–) for negative moments.

Multiply the expression for flexural stress (4. M/Zt or M/Zb) by +1 
if the stress to be calculated is on the top fiber and by –1 if it is 
on the bottom fiber. Give the moment its own sign, for example, 
200 N-m or –150 N-m. The same is true for stresses calculated at 
points above or below the neutral axis of bending of the section. 
For vertical members, left replaces top or above and right replaces 
bottom or below.

Use the absolute value of the moment 5. Fe0 (i.e., F and e0 are 
assumed positive).

Multiply the stress due to 6. Fe0 by +1 when it is computed for a 
fiber on the same side as e0 with respect to the neutral axis and by 
–1 when it is on the opposite side.

For prestressing steel, use plus (+) for tensile stresses.7. 

For prestressing steel, use minus (–) for compressive stresses.8. 

Naaman’s third rule represents the conventional beam sign conven-
tion for moments. However, the method used for generating stresses 
of the correct sign is cumbersome and requires different treatment and 
different equations for the top and bottom of the section. Furthermore, 
tensile stress is positive in the prestressing steel but negative in the 
concrete. Use of different sign conventions for reinforcing steel and 
concrete in which a positive stress implies tension and compression, 
respectively, also provides opportunities for error and prevents the user 
from writing equilibrium in the simple form ΣF = 0. That form of the 
equilibrium equation offers the advantage that the sign of the force 
does not need to be known before performing any calculations, which 
is therefore consistent with the goal of the proposed sign convention. 

By contrast, if equilibrium is expressed as ΣFtension 
= ΣFcompression, it is necessary to know beforehand 
whether the forces are tensile or compressive.

Particularly when the cross section contains several 
elements (for example, precast concrete and cast-in-
place concrete or prestressing and mild steel), keep-
ing track of the signs of the different components 
becomes more burdensome and a simple system 
offers advantages.

Collins and Mitchell,2 Lin and Burns,3 Nawy,4 and 
Nilson5 all use a separate equation for the top and 
bottom of the section, each with a different arrange-
ment of positive and negative signs. They treat 
tensile stress as positive.

The PCI Design Handbook6 treats tensile stress as neg-
ative when it is in the concrete but as positive when it 
is in the reinforcement. Stresses are tabulated, thereby 
avoiding the issue of signs in explicit equations.

The American Concrete Institute (ACI) avoids the 
immediate problem by not providing explicit equa-
tions for service stresses in prestressed concrete 
members. However, ACI 318-057 is inconsistent 
with respect to signs. For example, in chapter 11, 
Nu is a factored axial force, defined as positive in 
compression, but in appendix D, Nn is a nominal 
axial strength, defined as positive in tension. This 
inconsistency is unfortunate because it leads to pos-
sible confusion and adds unnecessary difficulty to 
the process of programming the equations.

The American Association of State Highway and 
Transportation Officials’ (AASHTO) LRFD Bridge 
Design Specifications8 treats all stresses as positive, 
with the implicit assumption that the engineer will 
take care of the signs separately.

The foregoing examples demonstrate that consen-
sus on a suitable system does not yet exist. Today’s 
wide use of spreadsheets and other programming 
methods supports the concept of an internally 
consistent system. The proposed sign convention 
was, in fact, born out of frustration with trying to 
program some of the conventions in use.

Proposed sign convention

The proposed sign convention is defined by the 
following rules for the cross section of a member, 
such as a beam, with a longitudinal axis that is es-
sentially horizontal:

The origin of coordinates is taken at the center 1. 
of gravity of the concrete (CGC).

All vertical distances carry a sign and are mea-2. 
sured positive downward. The vertical coordi-
nate for a location above the CGC is therefore 
negative.

30 in. 

4 in. 

20 in. 

CGC 
8 in. 

6 in. 

2 

0 

1 

Figure 1. The cross section of the concrete T-beam used in the example. Note: CGC = 
center of gravity of the concrete. 1 in. = 25.4 mm.
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the section, c1 and c2, are assigned positive and negative values, 
respectively. This choice is in accordance with proposed sign 
convention rule 2.

Moment of inertia is computed conventionally. It has a positive •	
value because the process of integration leads to that result, and its 
dimensions are an even power of length (length4).

Section moduli are computed as•	

bottom section modulus

 S1 = 
  

I
c

c
1
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top section modulus
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I
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The radius of gyration is given by•	
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Kern distances are computed as•	

bottom kern distance
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Note that Eq. (1) and (2) have identical forms, apart from the change 
in indices, but S1 and S2 will be positive and negative, respectively, 
because of the signs of c1 and c2. The symbol S is used to indicate 
elastic section modulus. Some authors use Z, but that is used elsewhere 
to indicate plastic, rather than elastic, section modulus and has the 
potential for confusion.

Likewise, Eq. (3) and (4), for computing kern distances, have identical forms 
except for the different indices. The negative sign is inherent to the equation 
because the upper kern depends on the bottom stress and vice versa.

The sign of the tendon eccentricity is determined according to pro-
posed sign convention rule 2. In simply supported members it will 
usually be positive because the tendon lies below the CGC.

These equations are illustrated by example using the T-section in  
Fig. 1. For the purposes of this example, the gross section properties 
are used.
The origin is at the CGC, and coordinate y is measured positive down-
ward from it. The section properties are

c1 = bottom face distance = +16 in. (406 mm)

c2 = top face distance = –8 in. (203 mm)

All properties that are even powers of length, 3. 
such as area and moment of inertia, are posi-
tive. Properties that are odd powers of length 
(for example, CGC distance, kern distance, and 
section modulus) are computed directly from the 
vertical distances using proposed sign conven-
tion rule 2 and emerge automatically as negative 
or positive, depending on whether they refer to a 
location above or below the CGC. The signs of 
these properties do not need to be imposed inde-
pendently because evaluation of the necessary 
integrals leads automatically to the correct sign. 

Tension is positive and compression is nega-4. 
tive for all strains, stresses, and forces and for 
all materials.

Positive moments cause bottom tension. This is 5. 
the beam sign convention for moments.

The notation used for subscripts that define vertical 
location is

0 = CGC of basic member;•	

1 = bottom of basic member;•	

2 = top of basic member;•	

3 = bottom of composite topping (if present);•	

4 = top of composite topping (if present).•	

These subscripts are chosen because they avoid 
the use of the words top and bottom or subscripts t 
and b. For composite members, the former become 
ambiguous (for example, does top mean top of the 
precast concrete member or top of the slab?). The 
subscript t is also commonly used to indicate ten-
sion. The nonzero numerical values have the added 
rationality of progressing logically from one face to 
the other. If the member is purely precast concrete, 
basic member refers to the precast concrete section. 
If the member is cast in place, basic member refers 
to the section to which the prestressing is originally 
applied.

This system will work equally well with tension 
defined as positive or negative. However, consis-
tency is essential once the choice has been made. It 
is suggested that tension be considered positive, as 
proposed here, because that is the standard conven-
tion used in the mechanics of materials.

Section properties are computed as follows:

Area is computed conventionally. It has a posi-•	
tive value because the process of integration 
leads to that result and because its dimensions 
are an even power of length (length2).

The CGC location is computed convention-•	
ally and is treated as the origin of coordinates. 
The distances to the bottom and top faces of 
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The direct stress at the bottom face due to eccen-
tricity of axial compression force is defined as
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However, because ep = ec when no external moment 
exits, which is the case for statically determinate 
members under prestressing alone,
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If the effects of eccentric prestressing and external 
loads are combined,
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where the tendon eccentricity ep is measured posi-
tive downwards from the CGC in accordance with 
the proposed sign convention.

If desired, the equation may be expressed in terms 
of force in the tendon, rather than the concrete, 
giving
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Finally, the equation may also be expressed in 
terms of the kern distance.
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When an external moment, due to self-weight or 
other loading, exists, ep is no longer equal to ec. The 
Mext term may then be eliminated by using the fact 
that
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The different forms of the equation expressed in 
Eq. (9), (10), (11), and (13) are general and are not 
a consequence of using the proposed sign conven-
tion. The selection of the form to be used is a matter 
of personal preference, but it is useful to know that 
the proposed convention works correctly with all 

Ac = (gross) area of concrete = +240 in.2 (155,000 mm2)

Ic =  (gross) moment of inertia of concrete = +12,800 in.4 (5.33 × 109 mm4)

 S1 = 
 

12,800

16
= +800  in.3 (13.1 × 106 mm3)

 S2 = 
 

12,800

!8
= !1600  in.3 (26.2 × 106 mm3)

 k1 = 
 

!
!1600

240
= +6.667  in. (169 mm) (5)

 k2 = 
 

!
800

240
= !3.333  in. (84.7 mm) (6)

The signs of the kern distances in Eq. (5) and (6) emerge correctly 
as negative or positive once the signs of c1 and c2 are assigned. The 
advantage of this convention for computing section properties becomes 
particularly apparent when the stresses are computed from moments. A 
positive moment of 1000 kip-in. (0.113 kN-m) produces bottom and top 
stresses of

bottom stress

 f1 = 

  

M

S
1

=
1200

800
= +1.500  ksi (10.3 MPa) (7)

top stress

 f2 = 

  

M

S
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=
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!1600
= !0.750  ksi (5.17 MPa) (8)

Equations (7) and (8), the algebraic equations for computing the top and 
bottom stresses are identical, except for the subscripts, yet the signs of 
the stresses are computed automatically and take on the correct sense of 
the stress—tension, or positive, at the bottom and negative, or compres-
sion, at the top. Similarly, a negative moment gives a negative, or com-
pressive, stress at the bottom and a positive, or tensile, stress at the top, 
as it should. Thus, all stresses can be computed using the same equa-
tion, regardless of the location of the stress or the sense of the moment.

These formulations can be incorporated into the equations for com-
puting service stresses in a prestressed concrete member, as shown in 
“Calculation of flexural stress.”

Calculation of flexural stress

It is customary to use a single variable for the prestressing force, regard-
less of whether tension in the tendon or compression in the concrete is 
under consideration. However, the dependence of the proposed system 
on signs benefits from a distinction between the two. Thus, here we 
define Fp to be the force in the tendon, which is likely to be tensile and 
therefore positive, and Fc to be the corresponding force in the concrete, 
which is likely to be compressive and therefore negative. With these 
definitions, a single equation may be used for computing the flexural 
stresses at all locations and due to all loads in a prestressed concrete 
member, including prestress.

The direct stress at the CGC due to prestressing is
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In Eq. (17) to (20), Msw signifies the moment due to self-weight and 
Mtot signifies the moment due to total external load.

A similar set of inequalities can be written for members that are 
subjected only to negative moments. These are used less frequently be-
cause many members are used on simple spans. Therefore, they experi-
ence only positive moments. Equations (17) to (20) are widely used in 
various forms but become simpler when the proposed sign convention 
is used, as shown previously. All four equations have the same form 
with the same signs, so there is no need to remember and use equations 
that are similar to each other in form but contain different signs for the 
top and the bottom of the member. When the equations are expressed 
in terms of kerns, as in Eq. (17) to (20), the subscript on the kern dis-
tance is always opposite to that on the stress and section modulus. For 
example, k1 always appears with f2 and S2, and k2 always appears with 
f1 and S1.

The ratio f0s /f0i is often called the effectiveness ratio η. It represents the 
proportion of the initial prestress in the concrete that remains after all 
time-dependent losses have taken place. Its value lies between about 
0.75 and 0.90, depending on the material properties and how heavily 
the member is prestressed. Accurate calculations depend on detailed 
computations of prestress losses, but approximate values are often used 
for design and are adopted here.

Much of the design for service loads consists of finding member di-
mensions and prestressing arrangements that satisfy these inequalities.

Magnel diagrams

Gustav Magnel developed a graphical way of representing the stress 
inequalities of Eq. (17) to (20) that makes their use more intuitive. The 
diagram in which they are plotted is called a Magnel diagram.

In Magnel’s original version of the diagram, which is the one com-
monly used today, ep is plotted against 1/Fpi. The inequalities are 
formulated in terms of the independent variable Fpi, which is treated as 
a positive quantity.

of them. They may be specialized to a particular 
loading stage by adding a subscript to the stress and 
the force. For example, Eq. (11) may be written for 
initial conditions—that is, directly after transfer,
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and for effective conditions—that is, after all losses,
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In each case for Eq. (14) and (15), Mext takes on 
the value appropriate to the loading stage. If the 
member is composite, the external load effects must 
be separated into those occurring before and after 
composite action takes place, giving
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where the subscripts b and c refer to the basic and 
composite sections. In Eq. (16), it is assumed that all 
losses occur prior to the member’s becoming com-
posite. The subscript s on the stress—for example, 
f1s—indicates service conditions. For the prestress-
ing force Fp, the same condition is indicated by the 
second subscript e, in deference to ACI notation.7

The foregoing equations are used to compute the 
stress at the bottom of the section. In all cases, the 
stress at the top may be obtained by using equa-
tions that are identical, except for the interchange of 
subscripts 1 and 2.

Stress inequalities  
and Magnel diagrams

Stress inequalities

At any cross section, a prestressed concrete member 
is subjected to the eight stress limits listed in Table 
1. Note that the inequalities take into account the 
signs of the stresses (for example, –1000 psi < +700 
psi [–7 MPa < +4.8 MPa]). In addition, the tendon 
eccentricity must always lie between ep,min and ep,max.

If the member is subjected only to positive moments, 
only four of the eight stress inequalities derivable 
from Table 1 are relevant, and they can be expressed 
in terms of the stresses and the eccentricity of the 
tendon. They are
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Load stage Top Bottom
Initial fci ≤ f2 ≤ fti fci ≤ f1 ≤ fti

Service fcs ≤ f2 ≤ fts fcs ≤ f1 ≤ fts

Note: t and c in the allowable stresses signify tension and compression, respectively, 
and i and s signify initial and service conditions.

Table 1. Stress inequalities
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The four quantities 
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referred to here as modified kerns or limit kerns.1 
To illustrate the concept, 
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'  represents the lowest 
location in the member at which the compression 
force resultant may occur if the fci stress limit is not 
to be violated. It can be obtained from Eq. (17) by 
setting the extreme stress equal to the limiting stress 
and using Eq. (12):

 

  

f
ci
= f

1i
= !

F
pi

A
c

1!
e

c

k
2

"

#$
%

&'
= f

0i
1!

e
c

k
2

"

#$
%

&'

This can be solved for ec to give
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This introduces two difficulties. First, Fpi varies widely depending on 
the section size, so it is difficult for a designer to develop an intuitive 
sense of whether a particular value is reasonable. Second, the inequal-
ity reverses when the equation is multiplied by –1, as happens during 
the development of Eq. (21) to (24). To overcome these difficulties, it  
is proposed here that the diagram be plotted in terms of ep against the 
inverse of the initial stress, 1/f0i. To allow the plot to be made in the 
positive region, the absolute value of 1/f0i may be used. The latter will 
always lie between zero and about 4 ksi-1 (28 MPa-1) so development 
of a sense of scale is relatively easy. Furthermore, if the proposed sign 
convention is used and the equations are expressed in terms of ep, no 
changes in sign are ever needed.

With these provisos, the inequalities can be rearranged to provide a 
linear relationship between ep and 1/f0i, which can be plotted. The four 
inequalities for positive moments become

 

  

e
p
! k

2
1"

f
ci

f
0i

#

$%
&

'(
+

M
sw

F
pi

= k
1ci

'
+

M
sw

F
pi

 (21)

48 in. 

40 in. 

8 in. 

Figure 2. A  single tee is used in the example. Note: 1 in. = 25.4 mm.
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Figure 3. A Magnel diagram for the example in this paper. Note: 1 in. = 25.4 mm; 1 ksi = 6.895 MPa.
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In this case, the feasible domain is bounded by the fci and fts limits, 
which indicate that bottom stresses control. The most economical solu-
tion occurs with the minimum Fpi, which corresponds to the maximum 
absolute value of 1/f0i, that is, the point farthest to the right on the 
graph. As is frequently the case, the most economical solution occurs 
when ep = ep,max.

Conclusions

A new sign convention has been proposed for analysis of prestressed 
concrete members subjected to flexure under elastic conditions. Its 
primary advantages are that it causes the signs of the stresses in the 
concrete to be computed automatically, without special artifices, using 
a single equation that applies at any location within the cross section. 
This characteristic makes it particularly well suited for coding in a 
computer application, such as a spreadsheet. It also renders simple the 
equations required to create a Magnel diagram that shows the feasible 
choices for tendon prestress and eccentricity.

The sign convention could also be used for nonprestressed sections, 
such as steel sections. In that case, however, it is less necessary be-
cause keeping track of the signs of the stresses in such sections seldom 
gives rise to errors or confusion.

Adoption of a uniform sign convention would benefit the whole 
industry, and it would be particularly helpful to engineers who are just 
starting a career in prestressed concrete. However, adoption occurs 
only by agreement among many. Discussion of the topic is, therefore, 
welcome. 
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Since both the fti and fci limits must be respected 
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An example illustrates the process. Note that 1 in. = 
25.4 mm and 1 kip = 4.448 kN.

The T-beam in Fig. 2 has the following properties:

A = 550 in.2

ep,max = 23.1 in.

fci = –2.400 ksi

fcs = –2.250 ksi

fti = 0.190 ksi

fts = 0.424 ksi

I = 82,064 in.4

k1 = 11.567 in.

k2 = –5.506 in.

Msw = 4211 kip-in.

Mtot = 7445 kip-in.

S1 = 3028 in.3

S2 = –6362 in.3

η = 0.83

Plot a Magnel diagram showing feasible values of 
f0i and eccentricity.

Substitution in Eq. (21) to (24) gives the plot in Fig. 
3. The design must lie in the feasible domain of the 
Magnel diagram, namely

above the solid •	 fci limit line but below the 
dashed fts limit line;

above the solid •	 fti limit line but below the 
dashed fcs limit line; 

above the solid •	 ep,max line.
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Synopsis

Sign conventions abound for elastic 
analysis of prestressed concrete members, so the need for 
another set may not be immediately obvious. A sign con-
vention is needed to keep track of whether stress is tensile 
or compressive. However, in all of the existing methods of 
analysis, different equations are needed for the stresses at 
the top and the bottom of the section and special devices 
are needed to keep track of the signs. This paper introduces 
a new sign convention that is simple and requires only a 
single equation for stress, regardless of the location. This 

convention keeps track of the signs automatically under all 
circumstances without any action from the user and is well 
suited for computer programming.
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k'
1i =  controlling, modified kern under initial con-

ditions = max(k'
1ci ,k'

1ti)

k2 = top kern distance = 
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k'
2i =  controlling, modified kern under service con-

ditions = min(k’
2cs ,k’

2ts)

Msw = moment due to self-weight

Mtot = moment due to total external load

Nn = nominal axial strength

Nu = factored axial force 

r = radius of gyration = 
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S1 = bottom section modulus = 
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c
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S2 = top section modulus = 

  

I
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c
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Z = plastic section modulus

η = effectiveness ratio = f0s /f0i

Notation

Ac = (gross) area of concrete

c1 = distance to the bottom face of the section

c2 = distance to the top face of the section

ep = tendon eccentricity 

f0 =  direct stress at the center of gravity of concrete due 

to prestressing = 
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f1 =  stress at bottom face

f2 = stress at top face of basic beam

fci = initial allowable compressive stress

fcs = service allowable compressive stress

fti  = initial allowable tensile stress

fts = service allowable tensile stress

Fc = force in the concrete

Fp = prestressing force in the tendon

Ic = (gross) moment of inertia of concrete

k1 = bottom kern distance = 
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