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This paper describes a nonlinear numerical model 
capable of predicting the response up to failure of 
unbonded, partially prestressed, continuous, 
concrete beams, and presents a comparison of 
results from the model against test data. Loading 
pattern, type of loading and degree of concrete 
confinement are shown by means of a parametric 
study to have a significant effect on the tendon 
stress at ultimate. Finally, modifications are 
suggested to the current A23.3-94 Canadian Code 
equation for predicting the tendon stress at 
ultimate in concrete members prestressed with 
unbonded tendons, in order to consider the 
contribution from all plastic hinges likely to 
develop under a particular pattern of loading. 
Predictions from the modified equation are shown 
to be in good agreement with ava ilable test data. 

P
art 1 of this paper presented a review of literature 
pertaining to the increase in tendon stress at ultimate 
in unbonded continuous prestressed concrete mem­

bers. ' Test results indicated that the pattern of loading and 
type of loading had a significant effect on the increase in 
tendon stress. A comparison between test data and predic­
tions according to provisions in the Canadian and the 
American Codes (A 23.3-942 and ACI-3183

) revealed a poor 
agreement. It was suggested that an approach that viewed 
the member as a whole should be used for the analysis of 
concrete members prestressed with unbonded tendons. 

A nonlinear numerical model, in the form of a computer 
program (UBCPB),' capable of predicting the response of an 
unbonded, partially prestressed, continuous concrete beam 
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throughout the entire loading range is 
described. The numerical model uses 
the finite element method, together 
with an iterative moment-curvature ap­
proach, to calculate the increase in 
concrete strain at the level of the ten­
don with applied load at each element 
along the length of the beam. By sum­
ming the strain increment in each ele­
ment along the entire length of the 
beam, the total change in strain, and 
thus the change in stress in the tendon, 
can be computed. 

The model can handle simply sup: 
ported and multiple span continuous 
beams of rectangular cross section 
subjected to single-point, third-point 
or uniformly distributed loading. The 
model was validated by comparing 
predictions with 33 sets of test data re­
ported in the literature. The compari­
son was conducted in terms of both 
load vs. deflection, and load vs . ten­
don stress responses over the entire 
loading range up to failure. Sample re­
sults of this comparison are presented. 

Results are also presented from a 
parametric study, conducted using 
UBCPB, to identify the influences of 
loading pattern, type of loading and 
degree of concrete confinement on the 
increase in tendon stress at ultimate, 
t1fps• in partially prestressed, continu­
ous concrete structures with unbonded 
tendons. A modification of the A23.3 
equation for predicting t1fps for such 
members is suggested, and it is shown 
that predictions from the proposed 
equation are in good agreement with 
test data. 

DESCRIPTION 
OF MODEL 

UBCPB is a numerical model for 
the nonlinear analysis of continuous 
concrete beams prestressed with un­
bonded tendons . It is based on a 
macroscopic finite element approach 
similar to that suggested by Warner 
and Yeo,' and used by Campbell and 
Kodu~ for the analysis of continuous 
bonded prestressed concrete beams. 

UBCPB uses a step-wise linear 
analysi s and deformation control to 
trace the nonlinear response of a rect­
angular section, unbonded, partially 
prestressed concrete beam, which may 
be simply supported or continuous, 
and subjected to either concentrated 
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Fig. 1. Flowchart showing algorithm for computer program UBCPB. 

or uniformly distributed loading. The 
model is capable of accounting for 
self-weight, secondary moment due to 
prestress, concrete confinement and 
strain-hardening of the nonprestressed 
reinforcement. A flowchart showing 
the algorithm for UBCPB is presented 
in Fig. 1, and the program was written 
using a FORTRAN 77 Microsoft 
compiler. 

In the analysis , the beam is repre­
sented by a set of beam elements (or 
segments) connected together by 
nodes located at either end. Each node 
has two degrees of freedom, namely 
rotation and vertical translation. A lin­
ear analysis is carried out initially to 
determine the effects of prestress and 
self-weight of the beam. These effects 
are converted into equivalent induced 
moments, and in this way, the pre­
stressed beam is transformed into a 
nonprestressed beam with the pre­
stressing force applied as an external 
longitudinal force in each element. 

The positive and negative moment­
curvature (M-K) relationships for each 
element are generated assuming a spe­
cific level of prestress. A tendon stress 
equal to .fse, the effective stress after all 
losses, is taken as the initial value in 
the analysis. The M-K relationship is a 
function of the amounts and locations 
of the prestressed and nonprestressed 

reinforcement, the cross-sectional 
area, and the compressive strength of 
the concrete. The stress-strain relation­
ships for the concrete and the rein­
forcements are governed by the consti­
tutive Jaws shown in Figs. 2 and 3, 
respectively. 

A key segment, located at a high 
moment region where failure is likely 
to occur in the beam, is selected and a 
predetermined curvature increment 
called the Target Curvature is assigned 
to it. A linear analysis, based on the 
direct stiffness method,7 is carried out 
using the relevant secant bending stiff­
ness (Ef) for each element to deter­
mine the moment and the curvature in 
each of the other segments. The linear 
analysis is repeated using the updated 
secant stiffness for the same curvature 
increment, until convergence has been 
achieved. Convergence occurs when 
the secant stiffness of all segments 
from two successive cycles are within 
a specified tolerance limit, which was 
set to one percent. 

Based on the current curvature (K) 
and depth of the neutral axis (c) , the 
average strain in the concrete at the 
level of the prestressing steel is calcu­
lated for each of the elements. The 
elongation of the tendon is computed 
and a revised value for the stress in the 
tendon is obtained. 
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If the revised value of /ps is different 
from the assumed value by more than 
a specified tolerance, the M-K rela­
tionships are regenerated and the cycle 
of computation is repeated to obtain a 
new value for ~fps · Knowing the mag­
nitude of the bending moment in each 
element, the corresponding external 
load is computed from equilibrium 
equations. Corresponding nodal de­
flections and reactions at the supports 
due to the external load are obtained 
from the linear analysis. 

Stress (fc} 

fc 

The above description represents one 
cycle of computation for a curvature in­
crement. For the next curvature incre­
ment, the moment-curvature relation­
ships are recalculated for each of the 
elements based on the revised tendon 
stress, and the cycle is repeated. Incre­
menting of curvature continues until 
one of the segments reaches its ultimate 
curvature capacity. Failure is assumed 
to occur by crushing of the concrete or 
by rupture of the prestressed or non­
prestressed reinforcement. 

1.4 

1.2 

0.8 

~ 
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Two stress-strain relationships for 
concrete in compression, namely , 
that proposed by Hognestad8 for un­
confined concrete (see Fig . 2a) and 
that proposed by Park et aJ.9 for con­
fined concrete (see Fig. 2b ), are in­
cluded in the model. For concrete in 
tension, the stress-strain relationship 
is assumed to be linear with a slope 
equal to the elastic modulus in com­
pression at zero stress. The concrete 
contribution in tension after cracking 
is neglected. 

\ ... ~,. '. ,J -"-· (-'·- ]'1 
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Fig. 2. Stress-strain relationships for unconfined and confined concrete. 
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Fig. 3. Stress-strai n relationships for nonprestressed and prestressed reinforcement. 
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Fig. 3(a) shows the stress-strain re­
lationship for nonprestressed rein­
forcement used in the model. Two op­
tions are available to represent the 
stress-strain relationship in the post­
yield zone: a trilinear stress-strain re­
lationship '0 and a bilinear-parabolic 
stress-strain relationship. " A stress­
strain relationship, based on the Mene­
gotto and Pinto 12 power formula, is 
used for the prestressed reinforcement 
(see Fig. 3b), or alternatively, the user 
can input a known stress-strain rela­
tionship. 

The following assumptions were 
made in developing the model: 

1. Cross sections of the beam re­
main plane under all loading condi­
tions, and thus a linear strain gradient 
is assumed to exist in the concrete. 

2. Zero bond exists between the ten­
don and the surrounding concrete, and 
related friction forces are neglected. 
As a result, the prestressing force in a 
tendon is assumed constant between 
the anchorages. 

3. The increase in tendon strain is 
equal to the deformation of the con­
crete at the level of the tendon over 
the entire length of the beam. 

4. A section exhibits linear-elastic 
behavior up to cracking of the concrete. 

5. The eccentricity of the tendon is 
constant over the length of a segment. 
This is true for members with straight 
tendons and is a reasonable approxi­
mation for members with draped ten­
dons, provided that the length of the 
segment is sufficiently small. 

6. After cracking, the bending stiff­
ness of an element is constant 
throughout its length. The assumption 
of "smeared" cracking is inherent in 
the definition of a macroscopic model. 

7. Deformations are small, and thus 
the deformed and undeformed shapes 
of the beam are similar, permitting 
geometrical nonlinearities to be 
neglected. 

8. The reduction in shear stiffness 
due to diagonal cracking is ignored. 
While this assumption may lead to an 

underestimation of the deflection of a 
heavily reinforced member (in which 
high shear forces may develop), 
Gilliland 13 and Gauvreau 14 have shown 
that it has little effect on the increase 
in tendon stress at ultimate. 

MODEL VERIFICATION 
An extensive verification process 

for UBCPB was conducted by Al­
louche.• Predictions from the model 
were compared with test data from 
continuous and simply supported, par­
tially prestressed, unbonded concrete 
members and some comparisons were 
made with other analytical predictions. 
Analyses were carried out for different 
patterns and types of loading. Loading 
patterns included loading of individual 
spans as well as all spans of the mem­
bers, while loading types included uni­
formly distributed load , two-point 
loads per span, and a single-point load 
per span. Results from three examples 
are presented. 
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b) Load vs. deflection c) Load vs. tendon stress 

Fig. 4 . Results for Slab PS-40. 
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Fig . 4a shows details of an un­
bonded prestressed slab (designated 
PS-40) continuous over two spans and 
tested by Ivanyi et al.' 5 The load­
deflection and the load-tendon stress 
relationships predicted by UBCPB are 
compared with test data in Figs. 4b 
and 4c, respectively . It can be seen 
that both the calculated deflection and 
increase in tendon stress are in good 
agreement with the test data. 

Details of a continuous two-span 
slab (designated C-2) loaded with a 
single-point load and tested by Chen '6 

are shown in Fig. Sa. Predictions from 
UBCPB are compared with test data in 
Figs. 5b and 5c. Again, the model pre­
dictions show good agreement with 
test data in terms of both tendon stress 
and midspan deflection in the east 
(loaded) span. 

Fig. 6a shows details of a slab con­
tinuous over three equal spans tested 
by Burns et al. '7 The slab, designated 
Slab A, was tested under three differ­
ent loading configurations (Tests 108-
110) in order to cause failure of one 
span at a time (Spans C, A, and B, re-

F 
, r 

spectively). In each test, load was ap­
plied simultaneously to one or more 
spans until one span failed, while the 
remaining spans were subjected to a 
constant load equal to 40 percent of 
the dead load. Model predictions and 
test data are compared in Figs. 6b and 
6c. Considering the complicated load­
ing patterns and the accumulated dam­
age to the specimen from test to test, 
the model predictions show reasonable 
agreement with the test data. 

These three examples demonstrated 
that UBCPB is capable of predicting 
the behavior of a continuous concrete 
member prestressed with unbonded 
tendons and subjected to various pat­
terns and types of loading. Conse­
quently, this model was used in the 
parametric study described in the next 
section. 

PARAMETRIC STUDY 
Part 1 of this paper' identified eight 

primary factors exhibiting a signifi­
cant influence on the increase in ten­
don stress at ultimate, J.fps• in an un-

bonded continuous prestressed con­
crete member. These factors are listed 
in Table 1. 

A closer examination reveals that 
these eight parameters are related di­
rectly to one of the following three 
factors, namely: 

1. Distance from the neutral axis to 
the centroid of the tensile force (de­
pendent on amount of prestressed rein­
forcement, amount of nonprestressed 
reinforcement, and concrete strength). 

2. Rotational capacity at the critical 
regions (dependent on confinement of 
concrete and amount of compression 
reinforcement) . 

3. Shape of the bending moment di­
agram and the number and length of 
plastic hinges (dependent on loading 
pattern, type of loading, and ratio of 
span lengths). 

Outline of Parametric Study 

The parametric study was conducted 
on a rectangular beam continuous over 
three spans of 24, 30 and 24 m (79, 98 
and 79 ft), and designed according to 
the provisions of A23 .3-94.2 The span 
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Fig. 5. Results for Slab C-2 . 
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c) Load vs. tendon stress Fig . 6. 
Results for Slab A. 

lengths were chosen to give approx- Table 1. Classification of parameters affecting Mw 
imately equal maximum positive 
moments in the internal and external 
spans for the case of a uniformly 
distributed load on all three spans . 
Details of the beam are shown in 
Fig. 7, and a summary of its proper­
ties is given in Table 2. The beam 
was partially prestressed and the un­
bonded tendon s had a profile fol­
lowing a second order parabola. The 
span-to -depth ratios were equal to 
24 and 30 in the external and inter­
nal spans, respectively . 
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Parameter 

Loading pattern 

Combined reinforcement ratio (q0 ) 

Partial prestressing ratio (PPR) 

Type of loading 

Compression reinforcement 

Concrete strength 

Presence and level of confinement 

Ratio of span lengths 

Remarks 

Uniform loading, alternate spans, adjacent 
spans, external span, internal span 

Describe the amounts of prestressed and non-
prestressed reinforcements 

Single-point load, third-point loading and 
uniformly distributed load 

At internal supports 

Normal strength and high strength concrete 

Provided by transverse reinforcement 

Two and three spans 

65 



t~- ---- - - · - -- .- ·- - -- - - - - - J -- - - -- -- -
9 y 

2400) . - + 30COO t 2400) 

The beam was represented in the 
model using 78 segments. Each seg­
ment had a length of 1000 mrn (39.4 
in.) except in the vicinity of the criti­
cal regions where the length was 
equal to the effective depth in the 
middle span [925 mm (36.4 in.)], and 
near the free ends of the beam and at 
the locations of contraflexure where 
the length was 1150 mm (45.3 in.). 
The values of L1fps as determined for 
each of the 30 case studies are listed 
in Tables 3 and 4. 

A's (supports only) 
600 

--·- -- ., 
I -No. 10 bars 

.--..-~ 
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§I l I !dP 

.... Aps = 2800 mm2 

~&-+ " ---r-
As (mid span only) 

~ ..... i . 
" 

TYPICAL CROSS SECTION 
Effect of Loading Pattern 
and Type of Loading (Dimensions in mm) 

Fig. 7. Profi le and cross section of three-span beam used in parametric study. 

According to the ph ilo sop hy 
adopted by the A23.3-94 prediction 
equation, most of the deformation in 
an unbonded member takes place in 
the high moment regions, where plas­
tic hinges form. Thus, the increase in 
tendon stress, L1fps, would be propor­
tional to the number of plastic hinges 
that can develop under a given pattern 
of loading. Fig. 8 shows the variation 

In the first part of the parametric 
study, the beam was analyzed for fif­
teen configurations of varying patterns 
and types of loading (see Table 3). In 
the second part, the beam was sub­
jected to five patterns of uniformly 
distributed loading assuming three 
different degrees of confinement of 
the concrete compression zone (see 
Table 4). Each degree of confinement 
was designated by its corresponding 
Zm value, 18 which is related to the 
slope of the descending branch of the 
concrete stress-strain curve, and de­
fined in Eq. (1): 

z = 0.5 

m ( 3+0.29J; ) 0 75 
145J; -1000 + . Psh X rn -0.002Kf 

(1) 

where 

K = I+ Psdyh 
f J; 

h" = width of concrete core measured 
to outside of peripheral stirrups 

s = center-to-center spacing of stir­
rups 

fyh = yield stress of stirrup reinforce­
ment 

Psh = ratio of volume of peripheral 
stirrup to volume of concrete 
core of length s contained 
within outside of stirrups 

A value of Zm = 600 corresponds to 
an unconfined member, while the val-

66 

ues zm = 110 and zm = 45 correspond 
to the amount of lateral reinforcement 
required by the shear provisions of 
A23 .3-94,' and the same area of trans­
verse reinforcement at half the spac­
ing, respectively. 

Table 2. Properties of the three-span beam. 

Beam property 

Overall 

Dead load 

Live load 

Total length 

Depth 

Width 

Area of prestressed reinforcement 

Effective level of prestress 

Yield strength of prestressed reinforcement 

Ultimate strength of prestressed reinforcement 

Modulus of elasticity of prestressed reinforcement 

Compressive strength of concrete 

Modulus of elasticity of concrete 

Yield strength of bonded reinforcement 

Modulus of elasticity of bonded reinforcement 

Depth to bonded bottom reinforcement 

Depth to bonded top reinforcement 

External spans 

Length 

Area of bonded bottom reinforcement at midspan (A,) 

Tendon eccentricity (midspan) 

Area of bonded top reinforcement at support (A,') 

Tendon eccentricity (over support) 

Internal span 

Length 

Area of bonded bottom reinforcement at midspan (A,) 

Tendon eccentricity (midspan) 

Dimensions 

14.1 kN/m 

20.0 kN/m 

78 m 

1000 mm 

600mm 

2800 mm2 

1116 MPa 

1674 MPa 

1860 MPa 

190000 MPa 

50MPa 

35800 MPa 

400 MPa 

200000MPa 

940mm 

60mm 

24m 

3000 mm2 

350mm 

7900mm2 

175 mm 

30m 

3600 mm2 

425 mm 

Note: 1 mm = 0.039 in. ; I mm2 = 1.55 x J0·3 sq in .; 1 m = 3.28 ft ; 1 MPa = 145 psi ; 1 kN/m = 68.5 lb/ft. 
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of t1fps with the maximum number of 
plastic hinges, m, developing in the 
beam for three different types of 
loading, namely a single-point load 
per span, two-point loads per span 
and a uniformly distributed load. 

It can be seen in Fig. 8 that, for a 
particular type of loading, the larger 
the value of m, the larger is the in­
crease in tendon stress predicted by 
the model. For example, in the case 
of a uniformly distributed load, the 
predicted value of t1fps for the fully 
loaded beam (represented by m = 5) 
is one and a half times that obtained 
when two adjacent spans are loaded 
(m = 4) , and nearly twice that ob­
tained when a single external span is 
loaded (m = 2). 

Also, a larger value of t1fps was 
predicted when the internal span was 
loaded (m = 3) than when one of the 
external spans was loaded (m = 2). 
In addition, the trend of an increas­
ing value of t1fps with an increase in 
the maximum possible number of 
plastic hinges appears to be indepen­
dent of the type of loading. 

Fig. 8 also shows that signifi­
cantly lower values of t1fps are pre­
dicted for the beam subjected to a 
single-point load, as opposed to 
third-point loading or a uniformly 
distributed load. This may be at­
tributed to the fact that, in the case 
of single-point loading , plastic 
hinges developed rapidly in the seg­
ments adjacent to the loads, leading 
to failure before full redistribution 
of moment could take place. Thus, 
plastic hinges could not develop at 
all of the critical sections. 

On the other hand, when a uni­
formly distributed load was applied 
to the beam, the development of 
plastic hinges over the supports was 
followed by extensive cracking in 
the vicinity of the maximum posi­
tive moment zones . Because signifi­
cant softening occurred at all of the 
critical sections, it is believed that a 
complete moment distribution took 
place prior to failure. When the 
beam was subjected to two-point 
loads in each span, an intermediate 
behavior was observed at failure , 
with plastic hinges developing pri­
marily in the segments over the 
supports. 

January-February 1999 

Table 3. Pattern and type of loading on three-span beam. 

Number of !Jfps 
Type of loading loaded spa ns Span loaded m (MPa) 

Single-point load One External 2 76 

Single-point load One Internal 3 117 

Single-point load Two Alternate 4* 125 

Single-point load Two Adjacent 4* 130 

Single-point load Three All 5 155 

Third-point loading One External 2 106 

Third-point loading One Internal 3 151 

Third-point loading Two Alternate 4* 182 

Third-point loading Two Adjacent 4* 161 

Third-point loading Three All 5 272 

Uniformly distributed loading One External 2 141 

Uniformly distributed loading One Internal 3 174 

Uniformly distributed loading Two Alternate 4* 182 

Uniformly distributed loading Two Adjacent 4* 191 

Uniformly distributed loading Three All 5 287 

Note: l MPa = 145 psi. 
* Average value for each pattern of loading was used in Fig. 8. 

Table 4. Degree of confinement in three-span beam. 

Number of !J/ps 
Degree of confinement loaded spans Span loaded m (MPa) 

Zm = 600 One External 2 98 

Zm = 600 One Internal 3 120 

Zm = 600 Two Alternate 4* 116 

Zm = 600 Two Adjacent 4* 125 

Zm = 600 Three All 5 161 

Zm = 110 One External 2 126 

Zm= 11 0 One Internal 3 172 

Zm= 110 Twp Alternate 4* 163 

Zm= 110 Two Adjacent 4* 185 

Zm= 110 Three All 5 264 

Zm =45 One External 2 197 

z, =45 One Internal 3 282 

Zm =45 Two Alternate 4* 278 

Zm =45 Two Adjacent 4* 310 

Zm =45 Three All 5 402 

Note: I MPa = 145 psi. 
* Average value for each pattern of loading was used in Fig. 9. 

Effect of Degree of Confinement 

The value of t1fps is related directly 
to the amount of deformation in the 
concrete over the length of the beam at 
the level of the tendon . Thus, the 
higher the ductility of the sections in a 
beam, the larger will be the value of 
t1fps· One of the factors that governs 
the ductility of a concrete section is 
the amount of lateral confinement of 

the concrete in the compression zone. 
Fig. 9 shows the increase in tendon 

stress vs. m, the maximum possible 
number of plastic hinges, for three lev­
els of confinement defined by the vari­
able Zm [Eq. (1)]. A uniformly dis­
tributed load was used and the number 
of loaded spans (i.e., pattern of load­
ing) was varied to obtain different val­
ues of m. 
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PROPOSED 
MODIFICATIONS TO 
A23.3-94 EQUATION 

It can be seen that the predicted 
value of t1fps increases significantly 
with the level of confinement, regard­
less of the pattern of loading em­
ployed. Because a certain degree of 
confinement will be present in most 
unbonded members, the value of J;,s at 
failure will be higher than that pre­
dicted based on assumptions that the 
concrete is unconfined. 

An equation based on a modifica­
tion of the current A23 .3-94 predic­
tion equation2 to account more gener­
ally for the pattern of loading, a 
parameter that was shown in the para­
metric study to have a significant ef-
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feet on the value of t1/ps• is presented 
in this section. In addition , a lower 
limit for t1fps is proposed in order to 
avoid possible prediction of a nega­
tive value (Naaman and Alkahiri '9), 

and a correction term that results in 
more favorable agreement between 
predictions and test data for members 
with a small lever arm (i.e., high c/dP 
ratio) is introduced. 

Pattern of Loading 

The effect of the number of plastic 
hinges is accounted for in A23.3-94 by 
means of a parameter called the effec­
tive length, le, defined as: 

L 
l=-e n 

(2) 

where L is the length of tendon be­
tween anchorages, and n is the number 
of plastic hinges required for failure of 
the loaded span under consideration. 

For a simply supported beam n = 1, 
whereas in a continuous beam n = 2 
for an external span and n = 3 for an 
internal span. The influence of the 
number of loaded spans can be incor­
porated into the effective length by re­
placing n with the parameter m, de­
fined as the maximum possible 
number of plastic hinges that can de­
velop in a member at failure under a 
given loading pattern. Thus, the modi­
fied effective length, Le: is defined as: 

l' = .!:._ 
e 

(3) 
m 

A drawback of the above approach 
is that it assumes the development of 
full plastic hinges at all possible criti­
cal sections. However, during some of 
the tests reported in the literature,4 it 
was observed that the deflection in 
one of the loaded spans tended to 
grow faster than in the others until 
failure occurred in that span. Thus, it 
is probable that fewer than m plastic 
hinges will develop fully in the mem­
ber at ultimate. To account for this, a 
reduction factor a 2 may be incorpo­
rated into Eq. (3), giving: 

(4) 

Allouche4 proposed the values of a2 

listed in the last column of Table 5 for 
each loading pattern . The recom­
mended value is taken as intermediate 
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to the upper and lower limiting values 
of a 2. The upper limit of a 2 (= 1) is 
based on the assumption of develop­
ment of plastic hinges at all critical 
sections, while the lower limit of a 2 

(= nlm) is related to the minimum 
number of plastic hinges required to 
cause failure in a single span. 

It should be noted that, for design 
purposes, evaluation of !J.fps should be 
based on a si ngle- span loaded, for 
which m = n, because this will give a 
lower bound value for !J.fw However, 
defining the effective length according 
to Eq. (4) facilitates application of the 
equation for !J.fps when more than one 
span is loaded, a situation which may 
be of interest in evaluation of the over­
all capacity of an unbonded structural 
system. 

Based on the recommended values 
of a 2, a chart for obtaining the value 
of le' was developed and is presented 
in Fig. 10. Knowing the total number 
of spans (e.g., three) in the beam, a 
vertical line is drawn upward to the 
diagonal line corresponding to the 
number of loaded spans (e.g. , two). 
The solid diagonal lines are used in 
the case of an external span, while the 
broken diagonal lines are used in the 
case of an internal span (as in the ex­
ample given in Fig. 10) . 

From the point of intersection, the 
diagonal line is followed to obtain the 
ratio le'l L, from which the value of le' 
can be determined. The values for four 
and five spans were derived assuming 
arbitrary values for a 2 of 0.7 and 0.6, 
respectively . Theoretically, the chart 
presented in Fig. 10 can be extended 
to any number of spans. 

Correction Factor for M embers 
with High Reinforcement Ratio 

Allouche4 found that predictions of 
!J.fps obtained from the A23.3-94 equa­
tion are significantly more conserva­
tive for members with a high c/dP ratio 
than for members with a low c/dP 
ratio. He showed that predictions of 
!J.fps can be significantly improved, 
while maintaining the conservative na­
ture of the A23.3-94 equation, by mul­
tiplying by the correction factor: 

(5) 
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Table 5. Lower limit, upper limit and recommended values for a2. 

Lower limit 
Loading configuration a2 =nlm 

Single-span beam 1.0 

Two-span beam 

I span loaded 1.0 
2 spans loaded 0.667 

--
Three-span beam 

I span loaded (interior) 1.0 
I span loaded (ex terior) 1.0 

2 spans loaded (interior) 0.75 
2 spans loaded (ex terior) 0.5 

2 spans loaded (ex terior) 0.5 
2 spans loaded (exterior) 0.5 

3 spans loaded (interior) 0.6 
3 spans loaded (exterior) 0.4 

where cy is the depth to neutral axis at 
yield of prestressed reinforcement and 
dP is the effective depth of prestressed 
reinforcement. 

Lower Limit on !J. fps 

As indicated by Naaman and Alka­
hiri,'9 a negative value of !J.fps may be 
predicted by the A23.3-84 prediction 
equation, particularly in the case of 
heavily reinforced beams with a flanged 
cross section. A way to avoid such an 

0.18 

Upper limit Recommended 
a2 = unity value fo r a 2 

·-

1.0 1.0 
-

1.0 1.0 
1.0 0.85 

-

1.0 1.0 
1.0 1.0 

1.0 0.85 
1.0 0.85 

1.0 0.85 
1.0 0.85 

1.0 0.8 

I 1.0 0.8 

inconsistency is to specify a lower 
bound for the value of /p5 • Specifying a 
zero increase in stress as a lower bound 
for !J./ps can be viewed as overly conser­
vative. A lower limit of70 MPa (10 ksi) 
is suggested for !J.fps based on a lower 
bound for the test data presented in 
Table 1 of the Part 1 paper. ' 

Proposed Equation 

In view of the above discussion, the 
following modified equation is sug-

0.18 

/ No. of Loaded Spans 5: 

5 0.2 ' 0.2 

~ 4 ,' ...... ~ Cll ...... 
~ Cll 

c; 0.25 
~ 

0 0.25 c; 
~ 0 

"' 3. -· ~ 

'6 ' "' c; " " '6 
Q; c; 

;c ·~! 
Q; 

w 0.39 
.. , I 0.294 £ 

-' I 

2 3 4 5 

Total Number of Spans 

Fig. 10. Chart for selecting value of /~. 
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gested. In S.l. units, the stress (MPa) is: 

!, .~, • • 8~(d,-c,)H~n 
(6a) 

In U.S . customary units , the stress 
(psi) is: 

!,, • !,, • ll,~o(d, -c,JH ~)'] 
(6b) 

with the limitation: 

fse + 70 MPa (10 ksi) 5,fps 5,fPY 

where le' is obtained from Fig. 10. 
Predictions from Eq. (6) in terms of 

jjfps are in good agreement with the 
test data listed in Part 1 of this paper, 
as shown in Fig. 11. Computation of 
fjfps' according to Eq. (6), for a three-
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•• 

span beam with uniformly distributed 
loading on all three spans is given in 
Appendix B, where it is compared 
with values obtained from UBCPB 
and ACI 318-95.3 

In summary, the proposed modifica­
tions for the current A23 .3-94 equa­
tion improve the correlation of the 
predicted values with the available test 
data for unbonded beams and slabs in 
which more than a single span is 
loaded, without compromising its gen­
erally conservative nature. 

CONCLUSIONS 

This two-part paper focused on pro­
viding a better understanding of the 
factors affecting the increase in tendon 
stress at nominal strength, jjfps, in un­
bonded partially prestressed continu­
ous concrete members. Based on the 
findings of the study described in this 

Perfect correlation line 

•• 

• 

A 

A 

400 500 600 700 800 

Fig. 11. Prediction for M ps from Eq. (6) vs. test data. 
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APPENDIX A- NOTATION 

Aps = area of prestressed reinforcement 
As = area of nonprestressed tensile reinforcement 
As'= area of compression reinforcement 
b = width of compression zone 
c = depth of neutral axis 

cy = depth to neutral axis at yield of prestressed 
reinforcement 

d = effective depth of non prestressed tension 
reinforcement 

dP = effective depth of prestressed reinforcement 
EI = secant bending stiffness 
hs = stress in unbonded tendons at ultimate 
fpy = yield strength of prestressed reinforcement 
fs = stress in nonprestressed tensile reinforcement 

fse = effective stress in prestressed reinforcement 
(after all losses) 

fy = yield stress of nonprestressed reinforcement 
/yh = yield stress of stirrup reinforcement 
fc' = compressive strength of concrete 

L1.fps = increment in tendon stress at ultimate 
h" = width of concrete core measured to outside of 

peripheral stirrups 
K = curvature 

K = l + Psdyh 
I J: 
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L = length of tendons between anchorages 
le =Lin 
le'= Lim 

M = bending moment 
m = maximum number of plastic hinges 
n = number of plastic hinges for failure in a span 

PPR = __ A....!.P.::..Sf,....!.P.::..S­

Apsfps + Asfs 

s = spacing of stirrups 
Zm =parameter defined in Eq. (1) 
a 1 = ratio of average stress in rectangular compression 

block to specified concrete strength 
a 2 =reduction factor in Eq. (4) 
{3 1 = ratio of depth of rectangular compression block to 

depth to neutral axis 
Pp = prestressed reinforcement ratio ( = Ap,l bdp) 

Psh = ratio of volume of a peripheral stirrup to volume of 
concrete core of length s contained within outside of 
stirrups 
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APPENDIX B- COMPUTATION OF L1fps 

Computation of fps, using both the suggested equation 
[Eq. (6)] and Eq. (18-4) of ACI 318-95,3 for the three-span 
beam used in the parametric study with all three spans sub­
jected to uniformly distributed load is shown in this ap­
pendix. Details of the beam are given in Fig. 7 and Table 2. 

Suggested Equation 

The parameter cy at a section is computed using the fol­
lowing relationship:2 

Apsfpy +AJY c = ---'----'-''----'--
y aJ;bf31 

where a1 = 0.85- 0.0015fc' and {31 = 0.97- 0.0025!/ 

The following parameters are constant over the length of 
the beam: Aps = 2800 mm2

; b = 600 mm;.fc'= 50 MPa (7250 psi); 
fPY = 1674 MPa; andJ;, = 400 MPa 

Forfc'= 50 MPa: a 1 = 0.775 and {31 = 0.845 

Exterior span (midspan): 
dP = 850 mm and As= 3000 mm2 

c = 2800 x 1674 + 3000 x 400 = 299_7 mm 
y 0.775 X 50 X 600 X 0.845 

(dp- cy) = 850-299.7 = 550.3 mm 

cyfdp = 299.7/850 = 0.352 

(d,- c, )[1 + (%) '] ~ 550.'{1 + (0.352)'] ~ 618.5 mm 

Interior span (midspan): 
dP = 925 mm and As = 3600 mm2 

C = 2800 X 1674 + 3600 X 400 = 31 1.
9 

mm 
y 0.775 X 50 X 600 X 0.845 

(dp- cy) = 925-311.9 = 613.1 mm 

cyfdp = 311.9/925 = 0.337 

(d, -c, )[1 + ( i,) '] ~ 613.'[1 +(0.337)']- 682.7 mm 

Interior support: 
dP = 675 mm and As = 7900 mm2 

c = 2800 x 1674 + 7900 x 400 = 339.4 mm 
y 0.775 X 50 X 600 X 0.845 
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(dp- cy) = 675- 399.4 = 275.6 mm 

cyfdp = 275.6/675 = 0.408 

(d, -c, )[1 + ( i,) '] ~ 27541 + (0.408)']~ 321.5 mm 

Assuming all three spans loaded, the maximum number of 
hinges forming would be five, one at each of the three 
midspan regions, and one at each of the two interior 
supports. 

The overall contribution from the five hinges can be ex­
pressed as: 

= 2 X 618.5 + 682.7 + 2 X 321.5 = 2562.7 ffiffi 

giving an average contribution of 2562.7/5 = 512.5 mm 
If a2 = 1 is assumed, then: 

l' = _!:__ = 78 x 103 = 15600 mm 
e a 2m 1 x5 

and 

,1f, = 8000 x 512.5 = 263 MPa 
ps 15600 

This compares favorably with the relevant value of 278 
MPa given in Table 3. 

A value of a2 = 1 is acceptable in this comparison be­
cause UBCPB accounts for deformation at all potential plas­
tic hinge locations in the beam. 

If the term: 

is neglected in the above calculation, a value of t1/ps = 232 
MPa would be obtained. 

If an a2 value of 0.8 is included, as indicated in Table 5 
for all spans loaded, then: 

l' = _!:____ = 78 x 
103 

= 19500 mm 
e am 0.8x5 

and 

,1f, = 8000 x 512.5 = 210 MPa 
ps 19500 
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ACI 318-95 equation 

The governing equation in ACI 318-953 is: 

fps = fse + IO,OOO+_L 
100pP 

because the span-to-depth ratio is less than 35. 

Exterior span (midspan): 

Aps 2800 3 
p = - = = 5.49 x 10-

p bdp 600 X 850 

,1f. = 10 000 + _____£__ = 10 000 + 
7250 

ps ' 100pp , 100 X 5.49 X 10-3 

= 23,200 psi (160 MPa) 

Interior span (midspan): 

= Aps = 2800 = 5.06 X 10-3 
Pp bdp 600 X 925 
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J; 7250 
Nps = 10,000+-- = 10,000+ 3 100pp 100 x 5.06 x 10-

= 24,330 psi (168 MPa) 

Interior support: 

Aps 2800 3 
p =-= =6.91x1o-

P bdp 600 X 675 

N ' = 10 000 + _____£__ = 10 000 + 
7250 

~ps , lOOpp ' 100 X 6.91 X 10-3 

= 20,490 psi (141 MPa) 

The average value of L1/ps is 22,670 psi (156 MPa). 
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