
A
n accurate determination of
stresses and strains due to
time-dependent effects is im

portant in the analysis and design of
prestressed concrete structures. These
volume changes, caused by creep and
shrinkage of concrete and relaxation of
prestressed steel, manifest themselves
in the calculation of prestress losses.
This paper presents a rigorous method
for determining time-dependent
stresses in prestressed concrete sec
tions of general shape.

Fig. 1 shows a general shape of a
cross section of a reinforced concrete
member subjected to a normal force N
at a reference point 0 and moments
M and M about orthogonal axes x
and y. The position of the reference
point and the directions of the orthog
onal axes are arbitrary. The forces N,
M and M are assumed to be intro
duced at time to. The values of N, M
and M include the prestressing contri

butions: -F, -Py,, and -Px,,, respec
tively, where P is the absolute value of
a prestress force introduced at time t0,
and x and y,, are the coordinates of the
prestressing tendon.

The problem treated here is to deter
mine the stress and strain distributions
at time t0 and at a later instant t after
occurrence of creep, shrinkage of con
crete and relaxation of prestressed
steel. Examples of practical cross sec
tion shapes for which the procedure of
analysis presented can be applied are
shown in Fig. 2; these shapes are fre
quently used for concrete piles, poles,
bridge piers, box girders, chimneys,
shells and shear walls or corner
columns in buildings.

The forces are shown in Fig. 1 in
their positive directions. The loss of
prestress due to creep, shrinkage and
relaxation does not need to be esti
mated separately, as is done in con
ventional analysis of prestressed con-
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produce cracking of concrete and cal
culation of ultimate strength of pre
stressed cross sections are treated in
the companion paper.3

Adrian and Triantafillou (1992)bo

treated the same problem for cross
sections that can be described in rect
angular elements.

Recently, a paper by Kawakami et
al. (l996)’ has been published in
Japanese. The article analyzes differ
ent cross sections but essentially uses
the same analytical approach as the
present paper.

STRESS-STRAIN
RELATIONS FOR

CONCRETE

A stress increment z1j,, introduced
at time t0 and sustained, without
change in magnitude, produces at time
t a strain given by:

40
E(t)= C(l+,)

C

where EQ0) is the modulus of elasticity
of concrete at the instant t0 and
p[= p(t,t)j is the creep coefficient; the
value of ( representing the ratio of creep
to the instantaneous strain depends on
the properties of the concrete and the en
vironment in which it is kept. Values of

are proposed by ACI 20914 and the
FIP-CEB Model Code’5 (see Ref. 1).

Reference
Point 0

IMy

Fig. 1. General cross section shape of reinforced concrete
member. Positive sign convention.

crete structures. The analytical proce
dure presented below gives the time-
dependent change of the value of P in
the period t0 to t. Application of the
same procedure for sections having
one plane of symmetry, subjected to N
and M (with M = 0), is treated by
Ghali and Favre.’

Because member cross sections sub
jected to a normal force and biaxial
bending are often encountered in prac
tice, the problem of calculating the
stress and strain before and after
cracking and determining the ultimate
strength have been extensively
treated.2’2The present paper, and a
companion paper,’3 offer a more com
plete solution to the problem. The
time-dependent changes in stress and
strain due to creep, shrinkage and re
laxation are analyzed.

In the companion paper, after occur
rence of the time-dependent changes,
the section is subjected to incremental
forces 4N, zX1vI and representing
the effects of live load, wind, earth
quake, and other loads of increasing
magnitude up to failure. The analysis
allows the tracing of the variation of
deformations (axial strain and curva
tures) beyond the ultimate load; this
information is needed in modern de
sign for earthquakes, where both the
strength and ductility are of concern.
Any stress-strain (o-E) relation can be
used for concrete, prestressed steel
and nonprestressed steel. Thus, the
ductility can be assessed when new
materials, such as high strength con
crete, are used.

The analysis in this paper and the
companion paper’3 is given in suffi
cient detail to allow preparation of a
single computer program for use in
practice for reinforced concrete cross
sections of general shape, with or
without prestressing. The computer
program can be used to satisfy the de
sign requirements for serviceability,
ultimate strength, and ductility.

Computer programs that perform
the analyses in this paper and the com
panion paper’3 can be made available
by contacting the authors.

In this paper, it is assumed that the
concrete stresses are not too high,
thereby allowing use of a linear stress-
strain relation and ignoring cracking.
The case where the tensile stresses

When the stress increment is
gradually introduced from zero at time
t0 to its full value at time t, the strain at
time t is given by:

Acr
E(t) = (1 + xp) (2)

where z [= x(t,t,,) 0.8] is the aging
coefficient of concrete. The values of

z determined by numerical procedure
are presented in the form of graphs
(Ref. 1).

Eq. (2) is rewritten in the form:

(3)

E [= E(t,t0)] is the age-adjusted
elasticity modulus defined by:

E_(t0) (4)
1 + zc’

For analysis of the stress and strain
occurring immediately after load ap
plication on reinforced concrete sec
tions, the term “transformed cross sec
tion” is used to mean a section
composed of the area of concrete A
plus the areas of the nonprestressed
and prestressed steels A and A5, re
spectively, multiplied by:

E orE
or =

EC(tO)

(5)

where E, or E3 is the modulus of
elasticity of the nonprestressed steel or

(1)
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M = E(BEo + + J,) (14)

the prestressed steel, respectively.
When the analysis is for changes in

stress and strain due to creep, shrink
age and relaxation, the term “age
adjusted transformed section” is used.
This is composed of the area of con
crete A plus the areas of the nonpre
stressed and prestressed steel and

respectively, multiplied by:

= or
or

E(t0)

BASIC MECHANICS
EQUATIONS

In this section, basic mechanics
equations for the stresses and strains
in homogenous cross sections are re
viewed; they will be applied in the fol
lowing sections in various steps of the
analysis procedure.

The widely accepted hypothesis that
plane cross sections remain plane al

lows that the strain at any point be
presented by (see Fig. 1):

£ = £ + tjy +

where & is the strain at the reference
point 0; = ac/dy and = dIdx
represent the curvatures in the yz and
xz planes.

With a linear stress-stain relation,
the stress at any point and the stress

(6) resultants are expressed as:

(8)

N=JcrdA (9)

M=.1aydA (10)

M = I ax dA

Substitution of Eq. (7) in Eqs. (8) to
(11) gives:

N=E(Aco+B+B,) (12)

M=E(Bco+I+I) (13)

where B and I represent first and sec
ond moments of area about the x or y
axes:

B=JydA;B—_$xdA (15)

IxJY2d4,dX2th4 (16)

I=IxydA (17)

Eqs. (12) to (14) can be written in
matrix form:

N ABBEo

= E B I I (18)

M B I ii

This equation can be used to deter
mine the stress resultants N, M and
M when the strain or stress distribu
tions are known. The inverse of Eq.
(18) can be used to determine for
given values of N, M and M, the
axial strain and the curvatures that de
fine the strain distribution [Eq. (7)]:

A B B’N

=
---

B I M (19)

B I I, M

Multiplication of the matrix by E
gives three stress parameters defining
the stress distribution:

a0=Es0;=E;y=Ey, (20)

The stress at any point is:

cr=ao+yy+yx (21)

(7) where = daldy and = dcr/dx
(slopes of the stress diagram).

The intercepts of the neutral axis
with the x and y axes are, respectively:

a0
a=—-—;b=—-— (22)

2’

The resultants of the stress defined
by Eq. (21) are:

N ABBa0

M = B I i (23)

M B I, I,, y,

(11) The equations presented in this sec
tion apply to reinforced concrete cross
sections by using the area properties
A, B and I of the transformed or the
age-adjusted transformed section, as
will be indicated below.

Evaluation of the area properties of

Folded Plate Roof
çrypical bay)

Fig. 2. Practical shapes of cross sections. Location of reference Point 0 is arbitrary.
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sections of general shape can be per
formed by the numerical procedure
given in Appendix A. The procedure,
suitable for automatic computation, is
particularly useful when cracking is
considered and concrete in tension is
ignored. In this case, the calculation re
quires iteration to determine the neutral
axis and the area properties will have
to be determined in each iteration.’3

FOUR ANALYSIS STEPS
Four steps can be followed to deter

mine the stress and strain distributions
at time to, immediately after applica
tion of N, M and M (see Fig. 1) and
at time t after occurrence of creep,
shrinkage and relaxation.

Step 1

Apply N, M5 and M on a trans
formed section composed of A plus
(a5A3 + a,A5). The transformed
section includes only the prestressed
and nonprestressed steel bonded to the
concrete at prestress transfer. Thus,
A,,3 should be included when preten
sioning is used, but when all the pre
stressing steel is post-tensioned in one
stage, A,,5 and the area of the duct
should be excluded.

When the structure is statically inde
terminate, the indeterminate normal
force and moments should be included
in the values of N, M5 and M.

Apply Eq. (19) to determine e0(t0),
i,i(t0) and (t0), which define the dis
tribution of the instantaneous strain
[Eq. (7)]. Multiplication by E(t0)
gives cr0(t0), 1(t0) and y,(t0), which
define the distribution of the instanta
neous concrete stress [Eqs. (20) and
21)]. Multiplication of the concrete
stress by c,(t0) gives the stress in the
nonprestressed steel.

When pretensioning is used, the
stress in the prestressed steel immedi
ately after prestress transfer is equal to
the concrete strain, £(t0)E5,plus the
initial tension. When post-tensioning
is used, the stress in the prestressed
steel at t0 is simply equal to the initial
tension.

Step 2

Determine the hypothetical change,
in the period t0 to t, in the strain distri

bution due to creep and shrinkage if
they were free to occur. The strain
change at Point 0 is equal to
[q(t,t0)E0(t0)+ s] and the changes in
curvatures are: [(t,t0)w(t,)i and
[q(t,t0)i,(t0)]; where £, is the free
shrinkage of concrete in the period t.,

to t. It is assumed here that a has a
constant value over the section.

Step 3

Calculate the artificial stress that,
when gradually introduced in the con
crete during the period t0 to t, will pre
vent occurrence of the strain deter
mined in Step 2. The restraining stress
at any point is [see Eqs. (3) and (7)]:

restrained = Ec[Ecs + q9(t,t0)
80(t0)+ (t0)y + cr(t0)x}]

This stress distribution is defined by
a stress value at Point 0 and two yval
ues [Eq. (21)). The three stress param
eters are equal to (-Es) multiplied by
the three strain parameters determined
in Step 2.

Step 4

Determine by Eq. (18) a force at
Point 0 and two moments, which are
the resultants of4’restrained

The change in concrete strain due to
relaxation of the prestressed steel can

be artificially prevented by the appli
cation, at the level of the prestressed
steel, of a restraining force equal to

where Ad,,,. is the reduced
value* of stress relaxation in the pe
riod t,, to t. Substitute the restraining
force by a force of the same magni
tude at Point 0 plus moments about
the x and y axes. Summing up gives
uN, A&fr, 4M } restrained’ the restrain

ing forces required to artificially pre
vent the strain change due to creep,
shrinkage and relaxation.

To eliminate the artificial restraint,
apply {L]V, AMX, AAiI} restrained in re
versed directions on an age-adjusted
transformed section composed of A
plus a5A5 + calculate the
corresponding changes in strains and
stresses by Eqs. (19) and (20).

(24) The concrete strain distribution at
time t is the sum of the strains deter
mined in Steps 1 and 4; the corre
sponding stress is the sum of the stress
at t,, calculated in Step I and the time-
dependent changes calculated in Steps
3 and 4. Superposition of strains or
stresses in the various steps can be
done by summing up the increments

C The reduced relaxation of prestressed steel is equal
to the intrinsic relaxation multiplied by a reduction
factor equal to 0.8 approximately; a more accurate
value can be determined (see Ref. 1). The intrinsic
relaxation is the time-dependent change in stress
(a negative value) in a tendon stretched between
two fixed points.

A5 /tendon = 4.12 in2
Area of duct = 19.0 in2

Fig. 3. Prestressed concrete cross section of a bridge pier.
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{ziE0, z, 4’} or {zio0, A, Ay}.
This is possible because of the use of
the same reference Point 0 in all
steps.

The long-term change of stress in
any steel bar or prestressed tendon is
equal to a5 or a, multiplied by the
change of stress determined in Step 4
in the adjacent concrete plus, in the
case of prestressed steel, the reduced
relaxation, 3pr

The analysis satisfies the require
ments of compatibility and equilib
rium, i.e., the strain changes in con
crete and steel are equal at all
reinforcement layers. The time-
dependent effect changes the distribu
tion of stresses between the concrete
and the reinforcements, but does not
change the stress resultants. The same
four-step analysis applies to rein
forced concrete sections without pre
stressing, simply by setting A5 = 0.
The same procedure can also be used
for the analysis of composite sec
tions, made of more than one type of
concrete cast, prestressed in stages, or
made of concrete and structural steel
(see Ref. 1).

IMMEDIATE AND LONG-
TERM DEFLECTIONS

The curvatures and at time t0

and at time t can be used to give the
immediate or long-term deflections at
any section of a concrete structure by
virtual work:

D = J Mdl + Jí3JvIdl (25)

where and are the bending
moments due to a unit load applied at
the location and direction in which the
deflection is to be calculated. The inte
grals can be evaluated numerically,
over the length of each member of the
structure using curvature values at a
limited number of sections (e.g., three
per mernber)(see Ref. 1).

NUMERICAL EXAMPLE
Fig. 3 shows the cross section of a

prestressed concrete bridge pier. The
nonprestressed steel is uniformly ar
ranged over the perimeter and its
cross-sectional area A5 amounts to
O.O2Ag, where Ag is the gross concrete
area.

Twelve unbonded prestressed ten
dons, symmetrically located, are used
with a prestressing force per tendon
equal to 780 kips (3470 kN) at time t0.
At the same instant, additional normal
compressive force of -27,000 kips
(-12.0 MN) is applied at the reference
Point 0 together with moments M =

1.8 x 106 kip-in. (203 MN-rn) and M =

1.8 x 106 kip-in. (203 MN-rn).
It is necessary to find the stress dis

tribution at t0 at time t after occurrence
of creep, shrinkage and relaxation.

The given data are:
E(t0) = 5000 ksi (34.5 GPa)
gQ,t0) = 2.1
E(t,t0) = -300 x 106

LIOpr = -12 ksi (-83 MPa)

E05 = 29,000 ksi (200 GPa)
E5 = 27,500 ksi (190 GPa)

Properties of the transformed sec
tion at time t0:

E05 29,000
a =5.8flS

E(t0) 5000

The transformed section can be con
sidered to be composed of the gross
area Ag minus the prestress ducts plus
O.O2Ag(ans — 1). This gives the follow
ing properties:

A = 25,270 in.2 (16.30 m2)
= 216.2 x 106 in.4 (89.97 m4)

I, = 331.2 x 106 in.4(137.8 m4)
B = B =0

The age-adjusted modulus of elas
ticity of concrete [Eq. (4)1 is obtained
from:

5000
E(t,t0)= = 1866 ksi

1+ 0.8(2. 1)

29,000

1866
=15.54

275000 1474
1866

The age-adjusted transformed sec
tion can be considered to be composed
of the concrete area, Ag, plus O.O2Ag

— 1) plus ( —
1)A5.This gives

the following properties:
A= 30,700 in.2 (19.81 m2)

4 = 259.3 x 106 in.4 (107.9 m4)
I, =412.2x lO6in.4(171.6m4)
x=y=0

The four steps described above are
followed below.

Step 1

N = -27,000— 12(780)
= -36,360.0 kips (161700 kN)

M = 1.8 x 106 kip-in. (203 MN-m)
M = 1.8 x 106 kip-in. (203 MN-m)

The parameters defining the strain
distribution at time t0 are [Eq. (19)]:

N —36 360
=o

E(t0)A 5000(25,270)

=—288xl0

—

_______

1.8x106

E(t0)I = 5000(216.2x106)

=1.665x106in.1

(t )—
M — 1.8x106

vfy °
E(t0)I5OoO(331.2x1O6)

=1.087x106in.1

Substitution in Eqs. (20) and (21)
gives the stress distribution in concrete
at time t0 [see Fig. 4(a)]:

= (-1.439 + 8.325 x
lO3y + 5.435 x 103x) ksi

The intercepts of the neutral axis
with the x and y axes are [Eq. (22)]:
a(t0) = 264.8 in. (6.726 m); b(t0) =

172.9 in. (4.392 m). The maximum and
minimum stresses are 0.245 and -3.123
ksi (1.69 and -21.4 MPa), respectively,
at Points A and B (see Fig. 3).

At time t0, immediately after pre
stressing, the stress in the nonpre
stressed steel is equal toa05(t0)0(t0)=

5.8 0(t0); this gives:

= -8.346 + 48.29 x
lO3y + 31.52 x l0’x ksi

The stress in the prestressed steel at
the same instant is equal to the initial
tension:

189.3 ksi (1305 MPa)

Step 2

The distribution of the strain that
would occur if shrinkage and creep
were unrestrained is defined by the
strain change at Point 0 = 2.1(-288 x
106) — 300 x 106 = -905 x 106 and the
changes in curvatures = 2.1 (1.665 x
10-6) = 3.497 x 10-6 in.-’ and 2.1(1.087
x 10-6) = 2.283 x 106in:’
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Step 3

The distribution of artificial stress to
restrain shrinkage and creep is given
by [Eq. (24)]:

°‘restrained
= -1866(-905 + 3.497y + 2.283x)106
= (1.689 - 6.525 x l03y —

4.260 x 10’x) ksi

Step 4

The concrete cross section proper
ties, including grouted prestressed
ducts, are:

= 22,750 in.2 (14.68 rn2)
= 193.9 x 106 in.4 (80.71 m4)
= 299.6 x 106 in.4 (124.7 m4)

The resultants of LlO’,estrained are
found from Eq. (18):

(‘-1’1)creep + shrinkage = (22,750) X

(1.689) 38,420 kips (170.9 MN)

(1Mx)creep + shrinkage = (193.9 x 106) x
(-6.525 x 10) = -1265 x 10 kip-in.

(-142.9 MN-m)

(Lht1Jy)creep + shrinkage = (299.6 x 1 06) x
(-4.260 x 10) = -1276 x 10 kip-in.

(-144.2 MN-rn)

(/iJV)reiaxation = 12(4.12)(12)
= -593 kips (-2638 kN)

No moments are required to restrain
relaxation. Sum up and apply the re
straining forces in reversed direction
on the age-adjusted transformed sec
tion to obtain the stress parameter in
crements [Eqs. (19) and (20)1:

J1cT=
1

(—38,420+593)
30,700

=—1.232 ksi

= 1
(1265x1o)

259.3x 106

= 4.879 x i0 ksi/in.

= 1
(1276x1o3)

412.1x106

= 3.096 x i0 ksi/in.

The stress in concrete at time t is the
sum of the stress determined in Steps
1, 3 and the present step [see Fig.
4(b)]:

0(t) = -1.439 + 1.689 — 1.232
+ (8.325 — 6.525 + 4.8’79)1O3y
+ (5.435 — 4.260 + 3.096)103x

-0.982 + 6.679 x lO3y +

4.271 x 10-3xksi

Intercepts of the neutral axis at time
t with the x and y axes are from Eq.
(22):

a(t) = 229.9 in. (5.839 m)
b(t) = 147.0 in. (3.733 m)

The axial strain and the curvatures
at time t are the sum of the values de
termined in Step 1 and the present step
[= the stress parameters (4o,
Ay,) divided byEj:

e0(t) = -287.8 x 10 - 1.232/1 866
=-948.Ox 106

= 1.665 x 106 + 4.879 x 10/1866
= 4.280 x 10-6 in:’

(t) = 1.087 x 10-6 + 3.096 x 10-/1 866
= 2.746 x 10-6 in:1

The stress in the nonprestressed
steel at time t is the sum of oç(t0) and

times the change in concrete stress
calculated in the present step:

Ons(t) = -8.346 + 48.29 X lO3y + 31.52
x 103x + 15.54 (-1.232 + 4.879
x lO3y + 3,096 x 103x) ksi

or

0ns(t) = -27.49 + 124.1 X

+ 79.63 x 103xksi

The stress in the prestressed steel at
time t is the sum of the initial tension,
the reduced relaxation -1-pr and
times the change in concrete stress
calculated in the present step:

oQ)

+189.3 — 12.0 + 14.74 (-1.232 +

4.879 x lO3y + 3.096 x 103x) ksi

or

,5(t)= 159.1 + 71.92 x lO3y
+ 45.64 x 103xksi

The stresses in concrete at time t at
Points A and B [see Fig. 4(b)] are
0.358 and -2.323 ksi (2.469 and -16.02
MPa), respectively. The compressive
stress at the extreme fiber dropped
from -3.123 at time t0 to -2.323 at time
t (25 percent) due to creep, shrinkage
and relaxation.

Long-term stresses for prestressed
concrete structures are often deter
mined by considering a plain
concrete section subjected to the sus
tained forces and a reduced prestress
ing force; the reduction represents
the loss of force in the prestressed
steel due to creep, shrinkage and re
laxation. Such an analysis ignores
the presence of the nonprestressed
steel and does not ensure compatibil
ity of strains between concrete and
all layers of the two types of steel in
the section. This conventional analy
sis typically underestimates the time-
dependent change of concrete stress.

It should be noted that creep, shrink
age and relaxation change the distribu
tion of stresses between the concrete,
the prestressed steel and the nonpre

Fig. 4. Stresses in concrete at time t, and tin example.
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stressed steel, without change in the
magnitude and location of the stress
resultants. Thus, it can be verified that
the stress distributions depicted in
Figs. 4(a) and 4(b) and the forces in
the steel at times t0 and t are statically
equivalent to f N, M, M} introduced
at to. The compatibility of strain in
concrete at any point and the rein
forcement bonded to it can also be
verified at t0 and t.

CONCLUDING REMARKS

An analysis procedure is presented
for calculating the immediate and the
long-term stresses and strains in pre
stressed or nonprestressed concrete
sections of general shapes. Require
ments of equilibrium and compatibil
ity are satisfied. Equilibrium means
that, for each of the two stages, the
calculated stresses on the concrete and
the reinforcements have resultants
equal to the normal force and mo
ments applied on the sections. To sat
isfy the compatibility requirement, the
strains in the concrete and the rein
forcement bonded to it are equal at all
locations.

No empirical equation is used to
estimate the loss in tension in the
prestressed steel. A conventional
analysis, which uses such an equa
tion and applies the prestress force
after loss on a plain concrete section
to determine the long-term stresses,
generally does not satisfy the com
patibility requirement. Substantial
overestimation of the long-term
stresses and curvatures caused by
prestressing can result, particularly
when the nonprestressed steel ratio is
high (more than one percent).
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APPENDIX A — NUMERICAL EVALUATION OF AREA PROPERTIES
OF CROSS SECTIONS OF ARBITRARY SHAPES

A procedure is given below for evaluating an integral over an area of arbitrary shape [see Fig. A 1(a)]. The integral is:

Hmn =$x’y”dA (Al)

with m and n being positive integers. Setting m and n equal to 0, 1 or 2, the integral will give the values of A, B, B., I, I
or defined by Eqs. (15) to (17).

A curved perimeter is to be idealized by a closed polygon of N sides [see Fig. A 1(a)). The geometry of the polygon is
defined by the (x, y) coordinates of N nodes numbered in the sequence indicated in the figure.

The integral in Eq. (1) can be expressed as a summation:

N

Hmn = ,4 (A2)
i=1

where 4 is the value of the integral over the area between the x axis and the ith side of the perimeter [see Fig. A 1(b)].
Introduce the variable:

(A3)

The y coordinate of any point on the ith side may be expressed as:

(Y)th side = y + I (A4)

where = — x; zy = —

(A5)

The value of the integral in Eq. (Al) over the area between the x axis and the ith side of the perimeter is:

4y. -

dx1 Y+X

4= S .1 (x + I)myndy di (A6)
0 0

or m,,
1 -

A1=__-_J(xj+x)[1+xJ (A7)

Substitution of each of the two terms in Eq. (A7) by its binomial expansion and integration gives:

1 1 m n+lk )k 1

=

(
k +

(A8)

where the binomial coefficient:

m!
(A9)

j! (m —

Substitution of the appropriate integers m and n in Eqs. (A7) and (A3), the area properties of the cross section in
Fig. Al can be expressed as:

A = H
= +

L)] (AlO)

1 2
N 4y

(All)
i=i 2 3

B = H10
=_[( (A12)
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x

Same (x,y) coordinates
for points 3 and 11 and
for points 4 and 10

— 12
8

7
9 11

‘I

6 10
(Ni) 4

N 2J

Sequence of
1 corner numbering

(a) Hollow section of arbitrary shape idealized
as having a continuous polygonal perimeter

+ A.y.

I

____

A x

JAYi=Yi+i-Yi

Ax

y

(b) The ith side of the perimeter

Fig. Al. Evaluation of area properties of a cross section of arbitrary shape.

= H02
=

+ 3yy
+y(z1y1)2

+ (z)3]]
(A13)

I = H + .4L)+ 2x(zx1)2(+
4YL)+ç4x)3(Yi

+
(A14)

I =H11
+()2]

(A15)
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APPENDIX B — NOTATION

A, B, B, I, J,, I, nonprestressed and pre- t0 = instant at which forces and
= area of transformed section, stressed steel, respectively prestressing are introduced

its first and second mo- M = moment aboutx axis = normal strain
ments about x and y axes

M

= moment about y axis = free shrinkage of concrete
A, B, B, ‘x, Jy’ 1xy (generally a negative value)

N = normal force
= area properties of age-ad- ci = normal stress

justed transformed section flS, ps = subscripts referring to non
prestressed and prestressed = creep coefficient

a, b = intercepts of neutral axis steel, respectively x = aging coefficient
with x and y axes

0 = subscript indicating strain = reduced relaxation of pre
E = modulus of elasticity of or stress at the reference stressed steel (generally a
— concrete Point 0 negative value)
E = age-adjusted modulus of

t = instant at which time- , = slope of stress distribution
elasticity of concrete -

dependent strain or stress is (= th3IcIy and aci/ox,
E,3, = modulus of elasticity of determined respectively)
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