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A
s the span of prestressed concrete
beams has been growing over the

years, lateral stability during handling
and shipping has become increasingly
important. Many designers only con-
sider lateral stability of the finished
structure, which is seldom a problem
once the beam is integrated with a floor
or deck. The problems of stability dur-
ing construction are left to the fabrica-
tors and contractors.

The lateral buckling formulas in most
textbooks are not adequate to deal with
the special cases of a beam suspended
on cables or a beam on "springy" sup-
ports. This paper deals with these spe-
cial cases and provides the background

and derivations of the proposed formulas.
The material is prepared in two parts.

Part 1 deals with the lateral bending
stability of beams when suspended from
lifting loops. This method was first de-
veloped by the author in 1963 and was
the basis of the PCI Design Handbook'
provisions for lateral stability during
Iifting, although it appears in modified
form in the Handbook.

Part 2 extends the analysis of lateral
bending stability to the more general
case of beams whose supports provide
elastic restraint to rolling. This includes
beams supported on elastomeric pads
and on trucks and trailers, and includes
the effects of superelevation.
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Synopsis
A theory for the lateral bending sta-

bility of prestressed concrete girders
free to roll at the supports is pre-
sented. The factor of safety is depen-
dent on the height of the roll axis, the
initial lateral eccentricity, the lateral
stiffness, and the maximum permissi-
ble tilt angle of the beam. The theory
is compared to the PC! Design Hand-

book and to field experience. Methods
for improving the lateral stability of
long beams are discussed. A numeri-
cal example is included to demon-
strate the proposed method. A simple
computer program is furnished to
solve more general cases. Derivations
of some of the major equations are
given in an Appendix.

CONCLUSIONS
1. When a beam hangs from lifting

points, it may roll about an axis
through the lifting points.

2. The stability and safety of a hang-
ing beam are dependent on four
quantities:
e l = initial lateral eccentricity

of the center of gravity of
the beam with respect to
the roll axis

y, = height of the roll axis above
the center of gravity of the
beam

zo = theoretical lateral deflec-
tion of the center of gravity
of the beam, computed
with the full dead weight
applied Iaterally

9m S = maximum permissible tilt
angle of the bean

These quantities may be reduced to
two dimensionless ratios,
and 9mu. f9 i (where 9, = e i lyr , the

initial roll angle ofa rigid beam).
3. The net factor of safety of a hanging

beam, after accounting for initial
imperfections, is the lesser factor of
safety calculated from the follow-
ing two equations:

FS=-.
u i	 B' 	 (1)

FS = Bm s (I — x°)	 (2)
As	 `	 rlr

4. Eq. (5.2.3) of the PCI Design
Handbook is a reasonably con-
servative approximation of Eq. (1).

5. Several methods are available for
improving the lateral stability of
hanging beams. The most common
and effective method is to move the
lifting point in from the end by a
small amount.
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BACKGROUND

Classic studies of lateral buckling of
beams are reported in Timoshenko 2 and
Roark. s These analyses are based on the
assumption that the beams are rigidly
restrained from rotation at the supports.
Buckling is caused by the middle part of
the span twisting relative to the support,
creating a sideways deflection. This
type of buckling is important in steel

I-beams, which have low torsional stiff
ness.

The torsional stiffness of an I-beam
varies as the cube of the thickness of the
web and flanges. Concrete I-beams,
with relatively thick webs and flanges,
are 100 to 1000 times stiffer in torsion
than steel I-beams. As a result, lateral
buckling of the type described by Timo-
shenko is seldom critical in a concrete
beam. But, when the supports have roll

CENTER OF GRAVITY OF THE CURVED
BEAM ARC LIES DIRECTLY
BENEATH THE ROLL AXIS AXIS

Fig. 1 a. PERSPECTIVE OF A BEAM FREE TO ROLL AND DEFLECT LATERALLY

LIFTING LOOPS
DEFLECTION OF BEAM
DUE TO BENDING
ABOUT WEAK AXIS

Ili
COMPONENT OF	 S,^$
WEIGHT ABOUT
WEAK AXIS---

CENTER OF MASS OF
DEFLECTED SHAPE
OF THE BEAM — --

w^ROLL AXIS

CENTER OF GRAVITY	 Ij
OF CROSS SECTION	 SI sn

1	 AT LIFTING POINT

w

Fig. lb. END VIEW
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Fig. 1. Equilibrium of beam in tilted position.
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flexibility, the beam may roll sideways,
producing lateral bending of the beam.

This is the cause of most lateral sta-
bility problems of long concrete I-
beams. Muller' gave solutions for the
critical buckling load of beams on sup-
ports that have roll flexibility. A similar
approach is given by Libby.' Swann and
Goddeng showed how numerical inte-
gration may be applied to find the buck-
ling load of beams on elastic supports.

The approaches given in Refs. 4
through 6 may he greatly simplified by
assuming the beam to be rigid in torsion.
For concrete I-beams with webs and
flanges 6 in. (150 mm) or more in thick-
ness, the torsional stiffness of the beams
will normally be much greater than the
roll stiffness of the supports when the
beam is hanging (see Appendix E). The
assumptions of torsional rigidity for the
beam transforms the problem from a
buckling problem to a simple bending
and equilibrium problem.

BASIC THEORY OF
ROLL EQUILIBRIUM

When a beam hangs from flexible
supports such as lifting loops, it is free to
roll, The center of rotation is the point at
which the flexible support joins the
rigid body. This is normally at the top
surface of a concrete beam. A line pass-
ing through the center of rotation (roll
center) at each support forms a roll axis.

If the beam were perfect, it would
hang in a plumb position, with the cen-
ter of gravity of the beam directly be-
neath the roll axis. But, sweep toler-
ances and lifting loop placement toler-
ances always cause the center of gravity
of the beam to be slightly to one side or
the other of the roll axis. This causes the
beam to tip about the roll axis by a small
angle, 8, where:

9 3 = initial roll angle, radians, of a
rigid beam

= e i /y,[more precisely, tan (e;/t,)]
e ! = initial eccentricity of the center

of gravity from the roll axis

i,.= distance from the center of grav-
ity to the roll axis, measured
along the (original) vertical axis
of the beam

The slight tipping of the beam causes
a component of the beam weightW to be
applied about the weak axis of the beam.
This component is W sin 9, and it causes
a lateral deflection of a flexible beam,
which further shifts the center of gravity
of the mass of the beam. This causes an
increase in the roll angle 0, which
causes further lateral load component
and further deflection, etc. Depending
on the lateral stiffness of the beam, it
may reach equilibrium at a roll angle B

slightly larger than 8, or 0 may increase
to the point where the lateral bending is
sufficient to destroy the beam. The lat-
eral stiffness necessary to prevent fail-
ure may be computed as follows.

The final equilibrium position of the
hanging beam is shown in Fig. 1. The
beam is assumed to be uniformly tipped
by an angle 0. The component of the
dead weight acting about the weak axis,
W sin 0, has caused an additional lateral
deflection z of the center of gravity of
the mass of the now curved beam. To
find the equilibrium angle 6, one must
find z, but z is determined by the weight
component W sin 0, which is itself de-
pendent on 0.

TUe problem may be solved by first
computing a theoretical deflection z o of
the center of gravity of the mass of the
beam with the full weight W applied
about the weak axis. Then, because the
weak axis component of the weight is
Wsin 0, z may be found from z = 7 o sin 0.

The midspan deflection of a uniformly
loaded simple span beam may be com-
puted by the well-known formula:'-'

5	 wd'	
(5.2.2)

^" – 384 E1„

where p,, is the weak axis deflection and
1,, is the weak axis moment of inertia.
But, z, is the distance to the center of
gravity of the deflected arc of the beam,
not the maximum deflection of the arc;'
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zb is approximately 2 of $ . More pre- sufficiently small (say 0.2 radian or less)
eisely:	 so that the approximation 0 = sin 0 -- tan

0 may be used. The equilibrium equa-
_ 1	 u^1 4 	 (3)

„° 120 EI –0.64/3,,  

The derivation of Eq. (3) is given in
Appendix F. Note that the quantity z, is
a fictitious quantity because most beams
would fail if the frill weight were ap-
plied laterally. But, do is used to compute
the smaller quantity, z = za sin 0.

The equilibrium equation (see Fig.
le) may now he written:

tan8= (zo sinB+e i)/yr	(4)

For a given beam and span, Y r is
known, zo may he computed, and e f may
be assumed. The only unknown is 0,
which may he found by successive ap-
proximations. For most applications, 0 is

tion then simplifies to:

9 =	 e f	 (5)
Yr — zo

This may also be written (recalling
that 8 i = e;lyr):

D = Bf	 (5a)

The quantity 11(1 – ze /y r) may be
thought of as a multiplier that increases
the tilt of the beam and is dependent on
the lateral elastic properties of the
beam. Note that as zo approaches y,., the
denominator approaches zero and the
multiplier becomes very large. When za
is equal to y,., the beam is totally on-
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stable even if the initial imperfections
are virtually -zero, and this represents
the limiting (critical) case for lateral
buckling stahility.

FACTORS OF SAFETY
For stability, the height of the roll

center yr must he greater than za , and the
ratio yr z. may be thought of as the fac-
tor of safety against lateral buckling in-
stability:

FS = Jr	 (6)
zo

Eq. (6) gives the gross factor of safety
against total instability for a near perfect
beam. Beams with initial imperfections
may fail before total instability is
reached, as there is a limit on the angle 0
that the lateral bending strength of the
beam can tolerate. This maximum angle
is defined as B„, and (yrl zo)cuui is
defined as the ratio of y,.!, which
makes 0 = 0ma.r . From Eq. (5a):

Yt	 1	 (7)
zo rrin i	 I —

Eq. (7) gives the critical value of the
ratio ;J ,./ , which would cause the tilt
angle 0 of the beam to he equal to the
angle O,,, which would cause failure in
lateral bending. The actual ratio of yT / 7o

must exceed that given by Eq. (7) by a
factor of safety:

1/d ^o
FS = 

(Yr'—'u)cre^ica^

Substituting Eq. (7) into the above:

FS = !!r (1 –	 i` 
I

I	 (1)
za	 8maa 

Note that when e, = 0, i.e., no imper-
fections, 0, = 0 and Eq. (1) reduces to
Eq. (6).

The Eqs. (1) and (6) defining the fac-
tor of safety were derived assuming the
important parameter to be the lateral

elastic properties of the beam repre-
sented by  o . The effect of a and O,,,,,,,
was taken to be a modifying effect on the
basic stability represented by y,l To in

Eq. (1). The basic stability is represented
by fir' za , but it is reduced by the quantity
(I – o t /B ), accounting for the effects of
initial imperfections.

If the beam is stiff laterally (and thus
z„ is small), the factor of safety may not
he as large as indicated by Eq. (1). Even
very stiff beams have a maximum toler-
able roll angle 9,rtrtr beyond which the
beam would fail in lateral bending. In
this case, the effect of the initial eccen-
tricity would be the dominant effect,
and it would be more logical to define
the factor of safety as the ratio of B,„a,.1 B.

Assume:

FS – 

Substituting Eq. (5a) for 0:

FS = $ rrtaa	
(2)^1 — x0 

J 

Eq. (2) is very similar to Eq. (1), but in
Eq. (2), 8mar / 0i is the main parameter
and the quantity (1 — z o ly,) is the modi-
fier. Swann" gives an equation identical
to Eq. (2) The true factor of safety is the
lower of that given by Eqs. (1) and (2).
These equations give equal factors of
safety when yr 1 zo = 9,,,a,. /0^. Fig. 2 shows
a plot ofEqs. (1) and (2).

COMPARISON TO
PCI DESIGN HANDBOOK

The material presented on p. 5-14 of
the PCI Design Handbook, Third Edi-
tion, was based on the above consiclera-
tions, but is presented in a simplified
form:

FS = Yy	 (5.2.3)

Eq. (5.2.3) is similar to Eq. (6), but
with q, replacing y, and 8„ replacing zo,
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Because y, is approximately equal to y,,
and ° is approximately 2A of j3,„ Eq.
(5.2.3) produces a factor of safety about
¼ that of Eq. (6). However, Eq, (5.2.3)
produces results approximately equiv-
alent to Eq. (1) in a worst case situation,
as may be seen by considering a numer-
ical example.

Assume a 120 ft (36.6 m) beam with y,
= 36 in. (914 mm), 3 in. (76 mm) of
camber, and 93„ – 18 in. (457 mm). By
Eq. (5.2.3):

	

FS= f3	 18 2

Assume a lifting loop placement toler-
ance of 1 in. (25.4 mm) and a sweep of %
in./10 ft, or 1.5 in. (38 min). The
maximum value of e„ measured to the
center of gravity of a parabolic arc, is 2
in. (51 mm). Assume the camber is
parabolic, so that yT, the distance from
the center of gravity to the roll center, is
y, – 2/3 x camber, or 34 in. (864 mm).
The quantity ° – 0.64 /3 y or 11.5 in. (292
mm). Assume the roll angle is limited to
0.2 radian at failure, i.e., Bmar ° 0.2•
From Eq. (1):

	

FS= -1– I– 0,	 34 1– 204
z°	H,n„x	 11.5 '	 0.02

= 2.1

The above example with e, = 2 in. (51
mm) represents a worst case situation.
For this case, Eq. (5) gives 6 = 0.089
radian or 5.1 degrees when the beam is
lifted, This- excessive tilt would give
warningthate, is excessive.

One normally computes the strength
of a member assuming the member to he
straight and true_ The effect of toler-
ances is covered by the safety factor.
The gross safety factor on a straight and
true member, computed from Eq. (6), is:

FS =yr/k°

This produces a total safety factor
about 1.5 times that given by the PCI
Design Handbook; the PCI Design

Handbook method has a "hidden" factor
of safety of 1.5. Tolerances normally of
feet the strength of a member by a few
percent. The effect of tolerances can be
much more drastic in the analysis of lat-
eral bending stability. The hidden factor
of safety accounts for this. The effect of
tolerances may be evaluated explicitly
by the use of Eq. (1).

The values of 6m°r and 0, vary from
case to case. The above example gives a
worst case value for O. The quantity H,,,°,r

is determined by the lateral bending
strength of the beam, which is depen-
dent on the amount of precompression
in the top flange. Imper and Laszlo"
have suggested using temporary post-
tensioning in the top flange; this im-
proves O,,,, and the factor of safety.

EFFECT OF LIFTING
POINT LOCATION

Locating the lifting point even a small
distance in from the end can dramat-
ically improve the lateral bending sta-
bil ity. Not only is the deflection reduced
by approximately the fourth power of
the net span, but z° is improved even
further, as the weight in the overhang-
ing ends is on the opposite side of the
roll axis.

Anderson ? and Imper and Laszlo9
show how the midspan deflection is im-
proved as the lifting points are moved in
from the end. Fig. 3 shows the effect on
z° of moving the lifting points in from the
ends. The equation for z° was obtained
by integrating the shape of the deflec-
tion curve to find its centroid.

z°	
1211(-L1,1–,:11,-+3a-1,+±a-)

 O
	 5

(8)

When a = 0:

= 
w14

	

zO	 120E1
(3)
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The slope 8o at the support is:

^°	
Z4EI (l,' —6a 2l) 	(9)

Note that moving the lifting points 6
percent of the span virtually halves za
and doubles the factor of safety. Of
course, one must not overdo it as the top
fiber stresses should remain compres-
sive. Fortunately, very long concrete
girders normally have top compression
and can tolerate being lifted a short dis-
tance from the end.

APPROXIMATE
COMPUTATION OF 10

Eq. (8) may readily be used to find zp
for a uniform beam with equal over-
hangs. For cases that do not quite meet
these conditions, an approximate pro-
cedure may be used to find z^.

1. Compute the midspan deflection f3„
with the full dead weight applied
laterally.

2. Assume the slope at the supports, Bo
= 3.2 1,Il, .

3. Compute the distance to the cen-
troid of the uniform load between
supports as 2/3 of,.

4. Compute the distance to the cen-
troid of the overhangs, assuming
the overhangs are straight, at a
slope equal to O.

5. Estimate the centroid of any other
masses (i.e., end blocks, stub dia-
phragms) on the beam.

6. Combine the above components to
find the zo of the total mass of the
beam.

MISCELLANEOUS EFFECTS
End blocks normally have a stabil-

izing effect, as their weight is close to
the supports and decreases the tendency
to roll. In most cases, the weight of end
blocks may be safely (and conserva-
tively by 5 to 10 percent) disregarded to
the computation of `o.

Camber raises the centroid of the
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mass of the beam, and thus decreases
the distance Yr between the roll axis and
the centroid of the mass. It is sufficiently
accurate to assume the centroid of the
mass is shifted upward by 2/3 of the
mid span camber.

Beams are sometimes lifted using in-
clined cables. The critical buckling load
Pr'r is:

EI,,
Per – I z

The quantity z. will be magnified by
(approximately) the quantity (1 -
P/Pcr ), where P is the horizontal com-
ponent of the tension in the inclined
cable, multiplied by a factor of safety.

HOW TO INCREASE
BEAM STABILITY

1. Move the lifting points inward.
This is by far the most effective
means of improving lateral stabil-
ity while hanging. As shown in
Fig. 3, moving the lifting points a
few percent of the length may
more than double the factor of
safety. Top stresses must be
checked. Imper and Laszlo" have
suggested using temporary post-
tensioning in the top flange where
necessary to control top stresses.

2. Raise the roll axis. This may be
done by providing a yoke attached
to the beam at the lifting point, or
by using a pair of inclined lifting
loops. Either method can effec-
tively raise the roll axis (and in-
crease yr ) by a foot or two.

3. Increase the modulus of elasticity,
E. Because E varies as the square
root of the concrete strength, in-
creasing f, and therefore E results
in only a slight improvement in
lateral stability.

4. Add bracing. This commonly used
method is one of the less effective
methods. The quantity zp is deter-
mined by the lateral stiffness of the

member, and bracing using V in.
(12.7 mm) strands adds very little
to the lateral stiffness. Bracing
using angles or other rolled sec-
tions with substantial steel area can
be much more effective. Bracing
can add significantly to the lateral
bending strength and thus to 0....
This improves safety when high B

angles are encountered, such as on
superelevated curves. This will be
discussed in Part 2.

5. Modify the beam cross section.
This usually cannot he done on a
particular project. When the beam
shape can be changed, it is impor-
tant to realize that the bottom
flange contributes just as much to
lateral stability as the top flange. In
fact, adding material to the bottom
flange is more beneficial because it
lowers the center of gravity and in-
creases yr as well as I,,. Further-
more, the bottom flange is under
compression and not as subject to
loss of stiffness through cracking as
is the top flange.

EXAMPLE
The example in Appendix B repre-

sents an extreme case. It is taken from
real life. In 1963, the author designed a
barrel shell roof of approximately 150 ft
(45.7 m) span. The valley beam (which
was actually the tension flange of the
barrel shell) was a prestressed I-girder
normally used on bridge spans of about
100 ft (30 m). The beam was stretched to
145 ft (44.2 m), and was heavily pre-
stressed throughout its depth using high
strength concrete, Camber was
approximately zero. The beam was
carefully checked by classical lateral
buckling formulas and found to he
satisfactory.

Lifting loops were located 135 ft (41.2
m) center to center. The first beam to be
lifted was 42 hours old and was handled
without incident. The second beam, 18
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Flours old, tilted immediately on being
lifted from the form pan, and bent side-
ways approximately 1 ft (300 mm). The
beam was immediately set down on the
plant floor; fortunately, it righted itself
instead of rolling over. It was straight
and stable once it was resting on bunks
on the floor.

The theory presented here was de-
veloped to explain what went wrong.
The factor of safety against lateral
bending, computed after the fact, was
almost exactly 1.Q. (The initial eccen-
tricityea is not known for this case, but it
is believed to have been quite small.)
Apparently, the slight difference in E of
the two beams caused one to be stable
and the other to buckle.

After the lateral bending phenomenon
was discovered and analyzed, the lifting
loops were moved to 120 ft (36.6 m)
center to center with a 12.5 ft (3.8 m)
overhang at each end. The remainder of
the beams were handled without inci-
dent, although the computed gross fac-
tor of safety for this condition, 1.9, is
probably slightly less than desirable.
(These beams were never shipped over
the road; they were delivered by barge
and laterally braced against the barge.)

The recomputation was done by the
approximate method to demonstrate its
use. In this case, it would be about as
easy to use the more exact method,
which gives H^, = 14.95 in. (381 mm) and
FS=2.

WHAT FACTOR OF
SAFETY IS NECESSARY?
The necessary factor of safety cannot

be determined from mathematical
derivations; it must be determined from
experience. The PCI Design Handbook
suggests a factor of safety of 2, but this
produces an actual gross factor of safety
of about 3. The 1963 experience with
the 145 ft (44.2 m) beams appeared to
indicate that a gross factor of safety of 2
was adequate when the initial eccen-
tricity e l due to tolerances was very

small. Imper and Laszlo9 suggest using a
factor of 1.5 for yard handling and 1.75
for field handling, with the factor being
based on B3. This produces gross factors
of 2.3 and 2.7, respectively, based on zp.

The computation of a net factor of
safety requires a knowledge of e t and
Bm„r . The initial eccentricity e i may be
assumed, based on the worst case com-
bination of permissible tolerances, as
was done in the earlier example. How-
ever, that maximum eccentricity ej
would have caused the beam to hang at a
5.1 degree angle when first lifted, which
should serve as a warning that quality
control needs to be tightened in order to
reduce et.

The determination of H.,,,. also in-
volves some difficulties. Using a good
computer program for ultimate strength
in biaxial bending, the maximum lateral
bending moment in combination with
the vertical bending moment may be
found, and thus O,,,^ at ultimate load.
Unfortunately, once the lateral moment
exceeds the cracking strength, the stiff-
ness decreases and zo increases, calcu-
lated on a cracked section.

A conservative approach is to compute
8,,,s based on the lateral moment,
which, when combined with the vertical
moment, produces a tension in the top
corner equal to the modulus of rupture.
The "right” value of 9,,, . probably lies
between that computed by this ap-
proach Lind by the ultimate strength ap-
proach. This will be discussed in more
detai I in Part 2.

SUMMARY
A simple method for the analysis of

the lateral stability of hanging beams
has been presented. The method per-
mits the evaluation of the effects of ini-
tial imperfections. Several methods for
improving the lateral stability are
suggested. In Part 2, the analytical
method will be extended to the case of
beams on flexible supports such as
trucks and neoprene pads.
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APPENDIX A - NOTATION

a	 = length of overhang
b = width
e { = initial eccentricity of the center

of gravity of beam
E	 = modulus of elasticity
FS – factor of safety against lateral in-

stability or failure
G = shear modulus
I y = lateral moment of inertia
Ke = rotational spring constant of sup-

port
l	 – overall length
1 1	 = length between supports
M = moment
M = torsional moment
P	 = axial load
Per = critical compressive buckling

load
r = Ke1W
t	 – thickness

w = weight ofbeam per unit length
W = total weight of beam
x	 = length
y	 = deflection
yT = height of roll axis above center of

gravity of beam
yt = distance from center of gravity of

cross section to top of beam
= lateral deflection of center of

gravity of beam
zo = lateral deflection of center of

gravity of beam with the full
dead weight applied laterally

a = superelevation angle
,3„ = midspan lateral deflection
A9 = twist angle
9	 = roll angle
Bf	 = initial roll angle = e fly,
Ba = slope at support, when full dead

load is applied laterally
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APPENDIX B - EXAMPLE

Given

l = 145 ft; w = 0.61 kip/ft
End blocks are 5 ft long.
Added w = 0.53 kip/ft
1, = 135 ft center lifting points
a=5ft
E 4 55UQ ksi
I„= 15,000 in. 4; Jr = 30.1 in.

Required

Compute zo and the factor of safety while
hanging from loops. Include effect of
end blocks (see Fig. B1).

Solution

For unilorni load, use Eq. (8):

z
O	

12Fl1[101`^a21,+3 9 1 ' + 5 51

0.61 kip/ft (4,422, 781,000 ft 3)(1728 in.3lft3)
12 (5,500 kip/in. 2)(15,000 in. 4)(145 ft)

W = 145 (0.61) = 88.45 kips
Moment about roll axis:
M = `z°W = 2872 kip-in.

Effect of end blocks:
From Eq. (9):

9° =	 t j (1,' – a6 ^l, )2 

0.61 kip/ft (135'ft3 -6.5 2 x 135 ft')
_

24 (5,500 kip/in.") (15,000 in.4)

x (144 in.2/ft2)
B° = 0.1083 radian

z° to cg of end blocks = – 0, (1 to cg of end
block)

= 32.48 in.

END BLOCKS
^Hr

eO	 i

a=5' 	

135'	 ai51

Fig. 81. Computation of z,.

ASSUME	 5' END BLOCK
STRAKIHT

IhJ

9 0	 +

a =	 L^ 	 120'	 g z
12.5'

Fig. B2. Revised computation of zp.
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0.10R3 (2.5 ft) (12 in./ft)

° =- 3.25 inn.

W =2x5x0,53=5.3kips
M about roll axis = -°W = - 17 kip-in.

For total 1)camn:

- _ EM's _ 2872 - 17 kip-in.
SW's	 88.45 + 5.3 kips

= 30.46 in.

For nocamber,y,.= y r = 30.1 in.

	FS = i!	
30.1	

1.0 (!)

	

E. °	30.46
For further details, see the text.

Revise 1 1 to 120 ft (a = 12.5 ft) to improve
stability. Recompute zo and FS by ap-
proximate method (see Fig. B2).

For center 120 ft:

z
= 384E1 (51; - 24a2)

0.61 kip/1t (120 2ft2 ) (5 x 1201 - 24 x 12.52)ft21, =	 x (1728 in, a/$')$ 
384 (5500 kip/in. 2 ) (15,01)0 in.')

= 32.70 in.

= 3/3°= 21.80in.

W= 120(0.61)=73.2 kips
M about roll axis = 73.2 (21.80)

= 1596 kip-in.
0. = 3.2 f3^I1, = 3.2 x 32.701120.x 12
Bo = 0.0727 radian
For end 12.5 ft:
zo = - 00 (a12)= -0.0727 (75 in.)

= -5.45 in.
W 2 x 12.5 x 0.61 15.25 kips

M about roll axis = 15.25 (-5.45)
= -83 kip-in.

For end blocks:
_ -0 (Ito cg of end block)

No = -0.0727 (120 in.) _ -8.72 in.
W = 5.3 kips
M about roll axis = -46 kip-in.

For total beam:
_ E. M's _ 1596 - 83 - 46

°	 L. W's	 93.75

z° = 15.46 in.

FS = T̂ = 30.1 _ 1.94
15.46

For further details, see the text.
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APPENDIX C- A PREVIEW OF PART 2

When a beam is supported on flexible
supports such as bearing pads or truck
and trailer, a similar situation occurs in
which there is a tendency for the beam
to roll about a roll axis. In this case, the
roll center is below the beam, and te r is
negative (see Fig. Cl).

When the roll axis is beneath the
center of gravity, the support must be
capable of providing resistance to rota-
tion. This resistance is expressed as an
elastic rotational spring constant Ka.
Taking moments about the roll axis (see
Fig. Cl):

W [ (z. sin O cos B + e) cos 0 — yr sin 01

=K 9 (8— a)
	

(10)

where a is the superelevation angle or
slope angle of the support.

Using the approximations 0 — sin B
tan 9 and cos 0 ==1:

W (Zo9+et — yre) = Ke(B-- a)	 (11)

Let r = K a /W. The quantity r has a
physical interpretation. It is the height
at which the weight W could he placed
to cause neutral equilibrium with the

o

LATERAL
DEFLECTION
OF BEAM ^ I 1

CG OF
DEFLECTED	 . a - o sink «e
BEAM --1

W^ 4	 t

ROLL AXIS —

M = I( B (B- 0C

MOMENT IN
SPRINGS

EVATION

O-= ANGLE
AT SPRINGS

(2a sin a ei) case
- Yr sineAI SI'HINGS

Fig. CI. Equilibrium of slender beam on flexible support.
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w! 

FOR NEUTRAL
EQUILIBRIUM,
W (r9)= M -6(Ka)

r = Ke/W

M = 8(KO) 

Fig. C2. Definition of r.

spring (see Fig. C2). For neutral
equilibrium, the overturning moment
will just equal the resisting moment
when the rod supporting W is displaced
by a small angle. The quantity r might
he called the radius of stability.

Solving Eq. (11) For 0:

ar+e;
(12)r+1r —za

When r is very large, i.e., the support
is very stiff, 0 approaches a, the tiltangle
of the support. Whenr = 0:

eI

Yr -a

This formula is identical to Eq. (5).
Eq. (12) is an expanded version of Eq,
(5).

The definition of B„ the initial roll
angle of a rigid beam, may be expanded
by setting zo equal to zero in Eq. (12):

ar+ei
(13)

r +y,.

Expanded versions of Eqs. (1) and (2)
may he derived from Eq. (11) as follows,
with B,as defined in Eq. (13):

FS=	 tir (1 0i \	 (14)
Z o	 8maa

FS = 0Bi' (1–	 (15)r +°^ f
^rl

Part 2 will give the derivation of Eqs.
(14) and (15) and describe their use.
This requires the determination of Ka
and r, the location of the roll axis, and
the determination of O,, .
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APPENDIX 0-SIMPLE BASIC PROGRAM

A simple BASIC program is shown
(Fig. D1) which allows one to quickly
evaluate the effect on the factor of safety
created by varying the "A" distance, The
program computes the factor of safety
against cracking of the top flange. The
factor of safety against failure may be
considerably higher, but the computa-
tion of 9 and Ho at failure is a more
complex problem.

The Iogic of the program is very
straightforward. The user may readily
alter the program to suit his/her needs. A
few of the lines in the program are ex-
plained as follows:
Line 100 "A" is the distance from the

end of the beam to the lifting
point.

Line 110 The initial eccentricity e F is
estimated at one half the PCI
sweep tolerance plus '/4 in. for
lifting loop placement. The
user may wish to modify this
statement, to reflect his ex-
perience with actual toler-
ances. The actual initial ec-
centricities being experi-
enced may he evaluated by
finding the values of i which

produce the tilt angles 0 actu-
ally being observed while
beams are hanging.

Line 120 Eq. (8).
Line 140 Assumes maximum lateral

moment is that which pro-
duces tension equal to the
modulus of rupture in the top
corner of the top flange.

Line 160 Estimate of camber.
Line 170 B, = e Il sr.
Line 175 Eq. (5).
Line 190 Eq. (1).
Line 195 Eq. (2).
Line 300 Allows one to revise "A" dis-

tance without re-entering
other data.

Line 320 Allows one to change e1.

This program often produces quite
low factors of safety because the com-
puted factor of safety is that against
cracking. In most cases, the factor of
safety against failure will be higher. Ad-
ditional data from the field are needed
to find 0,,, qr at failure or, conversely,
what factor of safety against cracking is
adequate. Part 2 will discuss B,,,,, ,r at fail-
ure in more detail.
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1 PROGRAM ROLL
INPUT "AREA, SQ IN";AC
INPUT "DEPTH, IN";U
INPUT "YT, IN";YT
INPUT "VERTICAL MOMENT OF INERTIA, IN^4";I
INPUT "TOP FLANGE WIDTH, IN";B
INPUT "LATERAL MOMENT OF INERTIA, IN^4";IY
INPUT "OVERALL LENGTH, FT";L
INPUT "CONCRETE STRENGTH, PSI"; FCP
INPUT "CONCRETE DENSITY, PCF";GAMMA
INPUT "PRESTRESS FORCE, KIPS";P
INPUT "HEIGHT OF PRESTRESS FORCE ABOVE SOFFIT AT MIDSPAN., IN" ;YS

80	 E=33AGAMMA^1.5*SQR(FCP1/1000
85	 W=AC*GAMMA/144/1000
90	 ST=I/YT
95	 ECC=D-YS-YT
100	 INPUT "A DISTANCE, FT";A
105	 L1=L -2'4A
110	 EIN=L1/10'.125/2+1/4
120	 ZZEROBAR=W/(12*E+IY*L)*(L1^5/10-A^2AL1^3+3*A^4*L1+6kA^5/5)*1728
125	 MG=Wk(L1^2/8-A^2/2)*12
130	 FTOP=P/AC+(-P*ECC+MG)/ST
140	 MLAT=(7.5'SQR(FCP)/1000+FTOP)*IY/(B(2)
150 THETAMAX=MLAT/MG
160	 CAMBER= (0.11*P*ECC-5/48*MG)AL1^2/(EI)k144*1.85
165	 YR=YT-2/3*CAMBER
170 THETAIN=£IN/YR
175 THETA=EIN /(YR-ZZEROBAR)
190 FS1=YR/ZZEROBAR*(1-THETAIN /THEPAMAX)
195 FS2=THETAMAX/THETAIN*(1-ZZEROBARIYR)
200	 PRINT

PRINT "CAMBER = ";CAMBER
PRINT "INITIAL ECCENTRICITY = ";EIN
PRINT "ZZEROBAR = ";ZZEROBAR
PRINT "MG	 = ";MG
PRINT "MAX M LAT = ";MLAT
PRINT "THETA INITIAL - ";THFTAINA180/PI
PRINT "THETA	 ";THETA*180/PI
PRINT "THETA MAXIMUM = ";THETAMAX*180/PI
PRINT "F. S. EQ #1 = ";FSI
PRINT "F. S. EQ 42 = ";FS2
PRINT "THE ABOVE FACTORS OF SAFETY ARE AGAINST CRACKING OF

TOP FLANGE"
PRINT "THE FACTOR OF SAFETY AGAINST FAILURE MAY BE HIGHER"
PRINT

300	 INPUT "NEW 'A DISTANCE? Y OR N" ;A
IF A$="Y" THEN

GOTO 100
END IF

320	 INPUT "REVISE INITIAL ECCENTRICITY? Y OR N";ES
IF E$="Y" THEN

INPUT "INITIAL ECCENTRICITY, IN' ;EIN
GOTO 120

END IF
9999 STOP
32767 END

Fig. D1. Simple BASIC computer program.
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APPENDIX E -TORSIONAL STIFFNESS

Examine the validity of the assump-
tion of torsional rigidity by analyzing the
beam described in Appendix B of Ref. 9.
The beam is a PCI BT-72 on a span of
136 Et. Assume it to be tilted on an 8 per-
cent slope. The end reaction is 56.1 kips,
which produces a torsional moment Mt
of 159 kip-in. when tilted on an 8 per-
cent slope. The torsional constant,
Ibt 313, is estimated by idealizing the
beam as four rectangles (see Fig. E1).

26(8.25) 313 =	 4,866 in.3
63.75(6) 313 =	 4,590
2(18)(4.5)13 = _ 1,(14
Ibt ,3 = 10,550 in.3

Assume the shear modulus, G, to be
2000 ksi. The torsion is maximum at the
end, varying to zero at midspan, over a
length of 68 ft. The twist, OB, between
end and midspan is:

M1 x /2c

08=GIbt313

_ 159(68)(12)/2

20(10,550)
AO = 0.0037 radians = 0.18 degrees

R = 56•1 k	 Ti-- .08(35.4) = 2.83"
EA END ------:i—

M
Il

t

.08 RADIANS

Fig. El. PCI BT-72 beam on 8 percent slope.

This is small in comparison to other
uncertainties such as fabrication toler-
ances, and the beam may be assumed to
be torsionally rigid.
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APPENDIX F -- DERIVATION OF EQUATION FOR z

The quantity z ° is the deflection of the
center of mass of the deflected shape of
the beam, with the self weight applied
laterally. The quantity z° may be found by
integrating the deflected shape of the
1)eam.

– Y odx

l

The equation for the deflected shape of a
beam without overhangs may be derived
from the deflection equations given on p.
5-15 of the PCI Design Handbook.' Alter-
nately, the formula can be found from a
standard structural design manual.

= 24 1 (x — 21x 3 + lax)
u

w	 x' _ lx`	 lar 2 '
J y dx 

= 24E1 v 5	 2 	 2°

w i',

120E;1„

Therefore, zo = w
1

1	 (3)
120EI,

Similarly, the equations for the de-
flection curve of overhanging beams
given on p. 5-15 of the PCI Design
Handbook may be integrated to produce
Eqs. (8) and (9).

METRIC (SI) CONVERSIONS
1 ft = 0.3048 m	 1 kip	 4.45 kN
1 in. = 25.4 mm	 1 kip-in. = 0.113 kN -m
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