
Prestressed Concrete Tests
Compared With

Torsion Theories

Trehe current ACI Code (ACI 318-83)'
includes provisions for the design of

reinforced concrete members subjected
to torsion but does not contain similar
provisions for prestressed concrete
members.

Investigations relevant to the pre-
stressed case include those by Ewida,2
and Ewida and McMullen, 3 wherein the
skew bending theory first proposed by
Lessig 4 was extended and mathematical
models for predicting the behavior of
reinforced and prestressed concrete
beams under combined loading were
developed.

In another investigation, Collins and
Mitchell-' proposed design recommen-
dations for prestressed and nonpre-
stressed concrete beams in shear and
torsion using the truss model first
suggested by Rausch.e

More recently, Hsu and Mo 7 used a
stress-strain curve for softened concrete
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area and their overall length was 3600
mm (142 in.). Each beam had four lon-
gitudinal prestressing strands and four
longitudinal nonprestressed reinforcing
bars in addition to transverse reinforce-
ment in the form of closed stirrups. The
amount of reinforcement was varied
within each group of beams but the ratio
of longitudinal to transverse reinforce-
ment, m, was held constant at about 2.0.

The central third (1200 mm or 47 in.)
of the test specimen was the test length.
Heavier reinforcement was used in the
end thirds of the specimen to ensure
failure would occur within the test
length. Electrical resistance strain gages
were mounted on the nonprestressed
reinforcement within the test length.

Before transfer of the prestressing
forces to the concrete 7 days after cast-
ing, twelve pairs of Demec gage points
were attached to both long (vertical)
sides of each beam, i.e., three pairs on
each side at each end of the test length.
To calculate the prestress loss due to
elastic shortening of the beam, Demec
gage readings were taken immediately
before and after the transfer of pre-
stressing forces. Another set of readings
was taken just before the test (generally
28 days after casting) to calculate the
prestress loss due to creep and shrink-
age. Initial and effective prestresse are
given in Table 1.

The instrumentation for measuring
load, twist and strain was connected to a
computer controlled data acquisition
system capable of reading and storing
ten readings per second. After the zero
readings of load cells, inclinometers and
strain gages had been taken, the load
was applied in predetermined incre-
ments; readings were taken when the
desired load was reached.

Once the angle of twist reached a par-
ticular value close to but greater than
the twist at cracking, the system was
switched to automode. In automode, the
system automatically took readings
when the angle of twist reached
specified multiples of the particular

Synopsis
Results of thirteen symmetrically

prestressed concrete rectangular
beams tested under pure torsion are
presented.

All beams had essentially the same
concrete strength, concrete cross-
sectional area and m, the ratio of the
yield force of the longitudinal rein-
forcement to the yield force of the
transverse reinforcement per unit
volume, was approximately equal to
2.0.

The layout, type, and strength of
reinforcement was similar in all
beams; the principal variables studied
were aspect ratio and amount of rein-
forcement.

The behavior of the beams is com-
pared to the behavior predicted by the
space truss with spelling of the con-
crete cover, the space truss with sof-
tening of the concrete, and skew
bending.

It is shown that the torsional
strength of beams with moderate to
heavy reinforcement is essentially in-
dependent of the aspect ratio. Design-
ers should be aware that this is con-
trary to the predictions of all three
theories and in some cases could lead
to unsafe design.

value of twist. The applied load was also
monitored using a digital voltmeter so
that the cracking and maximum loads
could be determined.

The test was discontinued when the
storage capacity of the data acquisition
system was reached; in all cases this was
well beyond the maximum load. Incor-
rect input data to the computer for cali-
bration of the inclinometers resulted in
incorrect readings of angle of twist for
Beam PAl. Consequently, the test was
repeated as PAIR.
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Tanta 1 fetails of the test beams

Longitudinal Transverse
reinforcement reinforcement

Prestressed	 Nonprestressed

Size
in.

f,,
MPa

Size
No.

f',
MPa

Size
No.

fi,
MPa

s
mmBeam

fe
Wit

Jan

MPa
xi

mm
fi

mm rrir

fW
MPa

fve

MPa

PAt 44.3 4.59 222 222 rA 1638 3 435 2 310 65 2.03 1207 1103
PAIR 43.6 4.72 222 222 V 1638 3 435 2 310 65 2.03 1207 1109
PA2 45.6 5.01 216 216 %6 1663 4 483 2 310 35 2.02 1207 1098
PA3 41.8 4.59 219 219 % 1744 5 389 3 435 80 1.98 1303 1168
PA4 42.2 4.81 219 219 'Ire 1709 6 419 3 435 55 2.00 1303 1152

PB1 45.8 4.73 146 324 1/4 1638 3 435 2 310 65 1.92 1207 1099
PB2 45.8 5.22 140 318 5ha 1663 4 483 2 310 35 1.90 1207 1096
PB3 45.5 4.95 143 321 % 1744 5 389 3 435 85 1.98 1303 1168
PB4 45.5 4.31 143 321 7ha 1709 6 419 3 435 60 2.06 1303 1150

PCI 42.2 5.25 114 406 `A 1638 3 435 2 310 75 2.00 1207 1103
PC2 45.1 4.61 108 400 slis 1663 4 483 2 310 40 1.96 1207 1090
PC3 41.3 4.30 111 403 ^ 1744 5 389 3 435 95 2.00 1303 1162
PC4 42.1 4.47 111 403 % 1709 6 419 3 435 65 2.02 1303 1149

• Stress at 1 percent strain. 	 Note: 1 mm = 0.0394 in., 1 MPa - 0.145 ksi.

tm _ (Aafar } Arfr)s
2A. (xi+9^)f,



Overall

Test Length

I	 1200mm	 I	 1200mm	 I	 1200mm

254mm

LJIE

Group PA

178mm	 146m

fl-fj
EilI'.s'"iii M 

01H4Group PB

Group PC

• Non - Prestressed Reinforcement
o Prestressing Steel

Fig, 1. Beam details.

TEST RESULTS

The principal test results are tabu-
lated in Table 3. Torque-twist curves for
each beam are shown in Figs. 3, 4 and 5.
Pictures of crack patterns for Beams PB2
and PC2 taken subsequent to testing are
shown in Fig. 6.

EVALUATION OF RESULTS
General Behavior

The crack pattern depended on the
amount of reinforcement. With an in-
crease in the amount of reinforcement,
the number of cracks increased and the
inclination of cracks to the longitudinal
direction decreased. After first cracking,
the number of cracks parallel to the ini-
tial cracks increased with increasing

applied torque until maximum torque
was reached.

After maximum torque, the number of
cracks remained almost constant and
spalling of the outer concrete shell
began. The load step in which spalling
began is shown in Figs. 3, 4 and 5.
SpalIing began in Beams PA1 and PAIR
at the maximum torque, whereas no
spalling was observed in any of the
other beams until after the maximum
torque had been reached.

The torque-twist curves are almost
linear up to the cracking torque. After
cracking, the slope of the curves pro-
gressively decreases until the maximum
torque is reached. After maximum, the
torque decreases with an increase in the
angle of twist. Comparison of Figs. 3, 4
and 5 shows that, at cracking, the twist
that occurs at constant torque decreases

PCI JOURNALiSeptember-October 1985 	 99



Table 2. General properties of the strands.

Nominal strand diameter, in. '/a die % v/se
Grade, ksi 250 250 270 270
Nominal area, mm 2 23.2 37.4 51.6 74.2
Minimum breaking strength, kN 40.0 64.5 96.1 138.2
Load at I percent strain, kN 38.0 62.2 90.0 126.8
Modulus of elasticity, 103 MPa 188.9 195.1 198.6 192.4
Ep, 0.0065 0.0070 0.0075 0.0080

p2
0.0120 0.0130 0.0140

e m 0.040 0.040 0.040 0.040
c,	 103 MPa 16454 15017 12415 8525
cs	 10' MPa 389 354 319 238

MPa 603 379 206 —178
c{	MPa 1483 457 630 705
c6	MPa 1665 1706 1837 1834

Note: I tum = 0.394 in.; 1 mm = = 0.00155 in.'; I kN = 0.2248 kip;

1 41Pa = 0.145 ksi.

with an increase in the amount of rein-
forcement provided and also with an in-
crease in aspect ratio.

As shown in Table 3, the values of
TT IT„ for beams of Group PA are greater
than for the corresponding beams of
Group PB which, in turn, are greater
than for the corresponding beams of
Group PC. This decrease in TT /T. with
increasing aspect ratio is primarily a re-
sult of T, decreasing with an increase in
aspect ratio while T,, remains relatively
constant with respect to aspect ratio.

Torsional Stiffness
Since the computer controlled data

acquisition system took readings when a
desired load or a specified angle of twist
was reached, the exact values for angle
of twist at cracking and maximum load
are not available. As mentioned before,
the cracking and maximum loads were
determined by monitoring a digital
voltmeter. However, in defining the un-
cracked and cracked torsional stiff-
nesses, the data acquisition output re-
sults were used.

Uncracked Torsional Stiffness
The uncracked torsional stiffness is

defined as (Fig. 7):

k	 T	 (1)

where
T = torque measured by the data

acquisition system just before
cracking of the beam

tp, = measured angle of twist at Tbr

Table 4 gives the values of uncracked
torsional stiffness of the beams. The un-
cracked torsional stiffness is not signifi-
cantly affected by the amount of rein-
forcement provided, which supports the
finding of Ewida and McMullen.' How-
ever, it significantly decreases with an
increase in aspect ratio. This is consis-
tent with the well known expression for
elastic torsional stiffness.

Cracked Torsional Stiffness
The cracked torsional stiffness is de-

fined as (Fig. 7):

L = T.. T^	 (2)
O. —Obc

where

T55 - torque measured by the data
acquisition system at load stage
just prior to maximum load

qfaza = measured angle of twist at T,,,,

tt
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Fig. 2. Load-elongation curves for prestressing strands.

Table 4 gives the values of cracked
torsional stiffness of the beams, Com-
parison ofthe values of cracked torsional
stiffness within each group shows that
increasing the amount of reinforcement
increases L. Beam PC3 being an ex-
ception,

The values of k, a for beams of Group
PB are greater than the corresponding
values for the beams of Group PA,
whereas the values for Group PC are, in
general, less than the corresponding
values for the beams of Group PB, Beam

PC2 being an exception.
The increase in k, with an increase in

aspect ratio from 1 to 2 is due principally
to the decrease in T, while i(r, , T,, and
0„a remained nearly constant. The de-
crease in kua with a further increase in
aspect ratio from 2 to 3 is due principally
to a large increase in tr aa with T. re-
maining nearly constant.

The ratio L/k b, increases signifi-
cantly both with an increase in aspect
ratio and with an increase in amount of
reinforcement provided.
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Table 3. Principal test results.

Nonprestressed longitudinal reinforcement Transverse reinforcement

Top Bottom Shori legs (vertical} Long legs (horizontal)
P T„ T

Beam kN•m kN•m T. yli fit MPa yli* fit MPa rill• ft MPa Ali' ft MPa

PAL 18.7I 22.7 2 0.824 1/4 279,199,309 2/4 333,266 5/7 235,237 —
PAIR 18.57 21.75 0,854 314 309 214 216,203 5/7 181,248 —
PA2 22.84 29.34 0.779 0/5 147,291,158,161,274 015 320,360,347,339,314 3/9 210,192,244,237,230,265 —
PA3 25.11 33.99 0.739 076 192,130,110,146,74,59 0/6 172,215,161,156,192,186 2111 427,230,376,373,282,293, — —

344,327,312
PA4 27.96 37.43 0.747 0/7 127,86,137,81,142,80,137 6/7 60,105,98,113,13I,164,88 0/13 295,312,290,333,346,307,

363.306, 251,333,355, 383,
310

PB 1 16.39 22.17 0.739 014 177,235,278,333 0/4 267,290,417,327 315 290, - - - 5/5
PB2 18.86 27.54 0.685 0/5 213,255,263,200,218 0/5 345,346,252,219,258 117 286,237,223,305,238,190 2/7 259,289,254,307,226
PB3 21.80 32.61 0.668 0/6 150,156,193,195,241,200 0/6 251,142,177,154,160,124 219 • 351,399,350,416,342,390, 4/9 283,323,362,416,413

400
P134 24.10 37.60 0.641 0/7 34,34,122,65,118,53,61 017 134,88,110,118,107,108, 0111 311,362,309,332,402,32,4, 0111 251,288,314,361,338,277,

99 321,373,305,311,282 334,305,369,348,292

PCI 13.92 I9.74 0.705 014 312,374,347,368 0/4 335,340,278,263 415 250 415 30R
PC2 17.23 28.59 0.603 0/5 231,316,316,2.33,248 0/5 331,311,347,301,275 6/7 306 2!7 300,309,282,267,275
PC3 18.48 32.78 0.564 0/6 121,186,183,225,195,182 06 305,296,241,203,196,162 219 416,340,367,427,333,335, 5!9 433,398,383,397

277
PC4 21.63 38.52 0.561 07 93,75,134,159,188,183, 0/7 229,184,257,133,86,113, 0/11 290,283,344,290,364,383, 1111 395,327,325,345,362,380,

162 122 288,372,291,267,2268 402,372,412,378

`Numerators are number of gages showing yield 51 inaximmun torque; denominators are number of gages installed.
tTensile stresses at maximum torque at gages not showing yield.
Note: 1 kN •m – 8.85 kip-in.; I MPa = 0.145 ksi.
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Fig. 3. Torque-twist curves: Group PA -
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Fig. 4. Torque-twist curves: Group PB.
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Fig. 5. Torque-twist curves: Group PC.

Cracking Torque
The cracking torques tabulated in

Table 3 show that for similar beams with
different aspect ratios, the cracking
torque decreases with an increase in the
aspect ratio.

Cracking occurs when the maximum
tensile stress due to torsion reaches the
tensile strength of the concrete. Pre-
stressing, by inducing initial compres-
sive stresses, increases the torque at
which cracking occurs. Zia and McGee°
and Zia and Hsu1° showed that the tor-
sional capacity of a prestressed concrete
beam without closed stirrups is pre-
dicted by:

T„_Xx 2y(0.5 .') 1+l0, , (3)

where the torsion coefficient, a, has
been given values:

0.35A _

	

	 (Zia and McGee)
0.75 + x/g

A = 3 (Zia and Hsu)

Note that 0.5 (MPa) is the tensile
strength of the concrete (6 /f psi), and
`I 1 + 10o-/f is the effect of prestress.

Solving Eq. (3) for A and assuming that
the maximum torque of a prestressed
concrete beam without closed stirrups is
equal to the cracking torque of a pre-
stressed concrete beam with closed stir-
nips enables calculation of x using the
experimental values of cracking torque.
These are plotted against the aspect
ratio in Fig. 8.

Using the vertical intercept of
TM lxgy versus A: x i y 1 f /sx 2J c
curves for reinforced concrete beams,
McMullen and Rangan l ' •1z proposed a
torsion coefficient given by:

0.5

(4)1 + x/y

For comparison with the computed
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values of A, the A proposed by Zia and
McGee, Zia and Hsu, and McMullen
and Rangan are also shown in Fig. 8.

Fig. 8 shows that:
1. The torsion coefficient is depen-

dent on the aspect ratio, y/x.
2. For sections having a low aspect

ratio, Zia and Hsu's proposal is uncon-
servative.

3. Zia and McGee's equation signifi-
cantly underestimates the values of A
calculated from the test results.

4. Eq. (4) slightly underestimates the
values of A calculated from the test re-
sults.

Therefore, the torsional capacity of a
prestressed concrete beam without
closed stirrups can be satisfactorily pre-
dicted by Eq. (3), where the coefficient
A is given by Eq. (4).

Hsu found that the cracking torque of
a reinforced concrete beam is about 1.0
to 1.3 times the failure torque of the cor-
responding plain concrete beam. This
strengthening, apparently clue to the
reinforcement, increases with increas-
ing the amount of reinforcement.1'

From Fig. 8, it can be seen that this is
also true for prestressed concrete beams
because the apparent value of A in-

creases with increasing the amount of
reinforcement. This occurs because A was
computed assuming that TT = Tp ; this as-
sumption becomes less accurate as the
amount of reinforcement is increased.

Maximum Torque
For similar beams with different as-

pect ratios, the maximum torque de-
creases with an increase in the aspect
ratio only for lightly reinforced beams,
and it is almost constant for beams with
moderate to heavy reinforcement (Fig.
9).

Three computer programs were de-
veloped to predict the behavior of rec-
tangular prestressed concrete beams.
The first program was based on the
space truss model with spalling of the
concrete cover.5 The second was also

Fig. 6. Crack patterns for Beams
PB2 and PC2.

based on the space truss model hut with
softening of concrete.' This model,
originally developed for reinforced con-
crete, was extended' 4•15 to include pre-
stressed concrete. The third was based
on the skew bending model. "•3

For each of these three models, Ap-
pendix A gives the derivation of the ap-
propriate equations and the solution
technique used for each set of equa-
tions. Table 5 gives the maximum
torque and reinforcement strains at
maximum torque predicted by the three
models along with the measured values.
Fig. 9 shows the predicted and mea-
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Fig. 7. Torsional stiffness.

sured values of maximum torque as a
function of aspect ratio. Fig. 10 presents
the torque-twist curve for a lightly rein-
forced beam, PB1, and a heavily rein-
forced beam, PB4, along with the curves
predicted by the three models.

Table 5 and Fig. 9 indicate that for
lightly reinforced beams (PA1, PAIR,
PB1 and PC1) the three models give a
satisfactory but slightly conservative
prediction of the maximum torque. Both
the measured and predicted values de-
crease with increase in aspect ratio,

For beams with moderate to heavy
reinforcement the predicted values of
maximum torque are very close to the
measured ones when the aspect ratio is
2, while they are higher for an aspect

ratio of 1 and lower for an aspect ratio of
3. Examination of test results available
in the literature shows that this trend is
true not only for prestressed beams but
also for reinforced concrete beams.

This can be seen from Collins and
Mitchell's prediction for the reinforced
concrete beam they tested" and from
Hsu and Mo's7 and Ewida and McMul-
len's3 prediction for some of Hsu's 13 re-
inforced concrete beams, Mitchell and
Collins' 16 partially over-reinforced beam
P6 had an aspect ratio of 1.21; the space
truss theory with spalling of concrete
covets predicts a strength that gives a
^'.^e.1v) /T (h) of 0.88.

Hsu's' a over-reinforced beams C4, G5
and K4 had an aspect ratio of 1, 2 and
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Table 4. Torsional stiffness.

Beam kN • m

4 er
10-s

rad/m

k,
10$

kN • m l

T4,

kN • m

Oua
10	 1

rad/m

ku..
10

kN•m2
k4a

k-rd^l rail

PAIR 18,48 3.1 5.96 21.6.1 70,9 0.046 0.008
PA2 21.71 3.7 5.87 28.62 49,6 0,151 0.026
PA3 24.40 4.2 5.81 33.94 46.3 0.227 0.039
PA4 26.31 5.0 5.26 37.15 51.5 0.233 0.044

P81 15.40 3.5 4.40 21.72 78.9 0.084 0.019
PB2 17.84 4.6 3.88 27.08 46.0 0.213 0.055

PB3 20.67 5.9 3.50 32.45 52.6 0.252 0.072
PB4 21.94 4.9 4.48 37.46 46.5 0.373 0.083

PCI 13.25 4.6 2.88 19.64 91.2 0.074 0.026
PC2 16.56 5.1 3.25 28.23 58.3 0.219 0.067
PC3 17.02 6.0 2.84 32.72 82.3 0.206 0.073
PC4 21.62 8.5 2.54 38.34 66.7 0.287 0.113

Note: 1 kN • m = 8.85 kip-in,; 1 rad/m = 0.0254 radlin.;
I kN •mYlrad = 345.4 kip-in 2/rad.

a PC4

PC3
P84.	 .^PC2

0.45

0.35

w030

12
0.25

PA4
PA3
PA2

PA 1

PPC1

and HsuIo

Rangan 1 ,12

1

	

	 2	 3

Aspect Ratio y /x

Fig. 8. Variation of torsion coefficient with aspect ratio.
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Table 5. Comparison of experimental and theoretical results.

Experimental Space truss with spalling of concrete cover

Steel strain at Steel strain at
Ty maximum torque Failure Ta Td (exp) maximum torque Failure

Beam kN•m microstrain mode kN•m microstrain mode
`l'„ (th)

Longitudinal Transverse Longitudinal Transverse

PAl 22.72 5253 10222 Under 19.82 1.15 4929 14040 Under
PAIR 21.75 4648 11294 Under 19.78 1.10 4809 13775 Under
PA2 29.34 1798 4124 Partially 29.90 0.98 2044 6775 Partially
PA3 33.99 1076 2389 Partially 35.59 0.96 1109 3471 Partially
PA4 37.43 819 1913 Over 41.19 0.91 606 2000 Over
PB1 22.17 1981 12046 Partially 18.38 1.21 4924 12987 Under
PB2 27.54 1734 2514 Partially 27.02 1.02 1980 5837 Partially
P$3 32.61 1253 3856 Partially 32.70 1.00 1207 3754 Partially
PB4 37.60 670 2012 Over 37.98 0.99 680 2088 Over
PC1 19.74 1871 15508 Partially 15.64 1.26 4270 12044 Under
PC2 28.59 1735 2119 Partially 22.82 1.25 1911 5603 Partially
PC3 32.78 1525 2565 Partially 26.89 1.22 1039 2980 Partially
PC4 38.52 1286 2193 Partially 30.70 1.25 582 1909 Over

Note: I kN •m = 8.85 kip-in.	 Average	 = 1.10
Standard deviation = 0.129



Table 5 (cont.). Comparison of experimental and theoretical results.

Space truss with softening of concrete Skew bending

Steel strain at Steel strain at

T. T. (exp) maximum torque Failure Softening T. T. (exp) maximum torque Failure

Beam kN• microstrain mode coefficientcoefficien kN•m microstrain mode T.(th)
T (th)

Longitudinal Transverse Longitudinal Transverse

PA1 20.69 1.10 2181 5587 Under 0.376 17.61 1.29 4947 7300 Under
PAIR 20.59 1.06 2174 5642 Under 0.380 17.60 1.24 4973 7300 Under

PA2 31.14 0.94 1489 2996 Partially 0.454 30.30 0.97 5956 8750 Under

PA3 36.07 0.94 911 2081 Over 0.527 39.34 0.86 4189 6200 Under

PA4 40.78 0.92 546 1674 Over 0.563 52.85 0.71 2195 3450 Under

PB1 19.75 1.12 2178 5022 Under 0.377 16.43 1.35 13948 18400 Under

PB2 29.38 0.94 1492 2699 Partially 0.464 27.53 1.00 2886 4400 Under

PB3 34.58 0.94 998 2140 Over 0.520 33.74 0.97 1922 3175 Partially

PB4 38.71 0.97 612 1736 Over 0.556 37.56 1.00 1185 1975 Over

PC1 17.26 1.14 2135 5243 Partially 0.389 14.30 1.38 13985 19350 Under

PC2 26.25 1.09 1496 2775 Partially 0.464 23.14 1.24 2138 3450 Partially

PC3 29.40 1.11 906 2016 Over 0.528 25.47 1.29 1222 2050 Over
PC4 33.39 1.15 556 1616 Over 0.564 27.85 1.38 743 1575 Over

Average	 = 1.03	 Average	 = 1.13	 Note: 1 kN • an = 5.85 kip-in_
Standard deviation = 0.091 	 Standard deviation = 0.220
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Fig. 9. Variation of experimental and theoretical maximum torque with aspect ratio.



PBi

3.25; the space truss theory with soften-
ing of concrete' predicts a strength that
gives aT K,,p) IT.oh) of 0.99, 1.11 and 1.20,
respectively. The skew bending theory
predicts a strength that gives a Tuexp)/
T(h) of 0.90, 1.09 and 1.32 respectively.

Thus, design engineers should be
aware that all three theories give a high

(unsafe) prediction of torsional strength
for beams having moderate to heavy
reinforcement and an aspect ratio of 1.0,
and they predict a low (over-safe) tor-
sional strength for similar beams having
an aspect ratio of 3.0.

Table 5 and Fig. 9 indicate that the
space truss theory with softening of con-
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Fig. 10. Experimental and theoretical torque-twist curves for Beams PB1 and PB4.
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Crete gives the best prediction of maxi-
mum torque for the beams tested in this
investigation (Average Tu(esp) IT h)
1.03 and Standard Deviation = 0.091).
The space truss theory with spalling of
concrete cover gives a better prediction
(Average T ) 1T ) = 1.10 and Stan-
dard Deviation = 0.129) than the skew
bending theory (Average T„(ezp) 1T.(jh) =

1.13 and Standard Deviation = 0.220).
Also, Fig. 10 indicates that the truss
theory with softening of concrete gives

the best prediction of the torque-twist
curves.

Reinforcement Strains

Fig. 11 presents the torque-
longitudinal bar strain curves predicted
by the three theories along with the ex-
perimental curve for the lightly rein-
forced beam PB1. Fig. 12 presents the
torque-stirrup strain curves for the same
beam. Figs. 13 and 14 present similar
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35

curves for the heavily reinforced beam
PB4,

In Beams PAl and.PA1R both the lon-
gitudinal and transverse steel yielded
before the maximum torque was
reached, and thus they are identified as
under-reinforced beams (Table 5). In
Beams PA2, PA3, PB1, PB2, PB3, PCI,
PC2, PC3 and PC4 only the transverse
steel yielded before the maximum
torque was reached so they are iden-
tified as partially over-reinforced beams.

In Beams PA4 and PB4 neither the lon-
gitudinal nor the transverse steel
yielded before the maximum torque was
reached. Consequently, they are iden-
tified as completely over-reinforced
beams.

Beams PA1 and PAIR, PB1 and PCI
had the same properties except that
their aspect ratio was 1, 2 and 3, respec-
tively. Examination of longitudinal and
transverse steel stresses at maximum
torque (Table 3) for these beams shows
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that most of the strain gages installed on
the'transverse steel showed yielding.
Half of the strain gages installed on the
longitudinal steel for Beams PA! and
PAIR showed yielding but no gages on
the longitudinal steel showed yielding
in either Beam PB1 or PC1.

The maximum strains measured in the
longitudinal steel for Beams PB1 and
PC1 were 96 and 86 percent of the yield
strain, respectively. Since strain will be
at a maximum at the cracks and since the
position of an electrical resistance strain
gage seldom coincides exactly with a
crack, when the recorded strains at
maximum torque are all less than the
yield strain it cannot be stated conclu-
sively that yielding did not occur, espe-
cially when the maximum recorded
strains are very close to the yield strain.
Thus, Beams PB1 and PC1 perhaps
could be considered to be under-
reinforced beams.

Only one strain gage out of the 22 in-
stalled on the stirrups for Beam PC4 in-
dicated yielding just before the
maximum torque was reached, while
none of the 14 strain gages installed on
the longitudinal steel indicated yielding
at maximum torque. This means that
Beam PC4 perhaps could be considered
to be an over-reinforced beam.

For heavily reinforced beams having
an aspect ratio of 1, the steel strains pre-
dicted by the skew bending theory are
significantly higher than the measured
strains. Consequently, the predicted
failure mode is different from the failure
mode indicated by experimental results.
This is also true for reinforced concrete
beams as can be seen from Ewida's2
prediction for some of Hsu's" beams.
The theory predicted two over-reinforced
beams (C3 and C4) having an aspect ratio
of 1 to be under-reinforced beams; it also
predicted another over-reinforced beam
(C5) having an aspect ratio of 1 to be a
partially over-reinforced beam.

On the other hand, for heavily rein-
forced beams having an aspect ratio of 3
the strain predicted by the skew bend-

ing theory is lower than the experimen-
tal results. Consequently, the predicted
failure mode is different from the failure
mode indicated by the experimental re-
sults. Again, this is also true for rein-
forced concrete beams as can be seen
from Ewida's2 prediction for some of
Hsu's` 3 beams. The theory predicted an
under-reinforced beam (K3) having an
aspect ratio of 3.25 to be an over-
reinforced beam.

It can he noted from Figs. 11, 12, 13
and 14 that in general the space truss
theory with softening of concrete gives
predictions closest to the experimental
torque strain curves; however, from
Table 5 it can be noted that the pre-
dicted failure modes are different from
the failure modes indicated by experi-
mental results.

This observation is also valid for re-
inforced concrete beams as can be seen
from Hsu and Mo's' prediction for some
ofMcMullen and Rangan's" beams. The
theory predicted three under-reinforced
beams, A3, A4 and B4, to be partially
over-reinforced (A3) and over-rein-
forced (A4 and B4). In general, the space
truss theory with spalling of concrete
cover gave the best prediction of failure
mode far the beams tested in this inves-
tigation.

CONCLUSIONS
Thirteen rectangular, symmetrically

prestressed concrete beams were tested
in pure torsion. All beams had essen-
tially the same concrete cross-sectional
area, length, concrete strength, layout of
reinforcement, type of prestressed
reinforcement, and ratio of longitudinal
to transverse reinforcement, in. The
strength of prestressed and nonpre-
stressed reinforcement, and the effec-
tive stress in the prestressed reinforce-
ment were similar in all beams.

On the basis of the observations and
results reported in this paper it can be
concluded that:
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1. Spalling occurs either at or soon
after the maximum torque has been
reached. Hence, the full cross section of
beams such as those tested should be
used in calculating the maximum
torque.

2. The torsional strength of lightly
reinforced beams decreases with an in-
crease in aspect ratio, all other parame-
ters being constant. This is consistent
with the predictions of all three
theories.

3. The torsional strength of beams
with moderate to heavy reinforcement is
essentially independent of the aspect
ratio. Designers should be aware that
this is contrary to the predictions of
available theories,

4. Both of the space truss theories and
the skew bending theory give a satis-
factory but slightly conservative predic-
tion of torsional strength for lightly
reinforced beams.

5. All three theories yield a prediction
of torsional strength that is satisfactory
for design purposes for beams that have
moderate to heavy reinforcement and an
aspect ratio of 2.0.

6. Designers should note that all three
theories give a high (unsafe) prediction
of torsional strength for beams having
moderate to heavy reinforcement and an
aspect ratio of 1.0, whereas all three
theories give a low (over-safe) predic-
tion of torsional strength for similar
beams having an aspect ratio of 3.0.

7. The space truss theory with sof-
tening of concrete gives the best overall
prediction of torsional strength.

8. The space truss theory with sof-
tening of concrete gives the most realis-
tic prediction of torque-strain curves,
but the predicted failure modes are
often different from the failure modes
indicated by experimental results. In
general, the space truss theory with
spilling of concrete cover gives the best
prediction of failure mode for the beams
tested in this investigation.

9. The torsional capacity of a pre-
stressed concrete beam without closed

stirrups or the cracking torque of a pre-
stressed beam with closed stirrups can
be predicted using Eq. (3), with the tor-
sion coefficient being calculated using
Eq. (4).

10. The ratio of cracking to maximum
torque decreases with an increase in as-
pect ratio, all other parameters being
kept constant. This results from the
cracking torque decreasing with an in-
crease in aspect ratio whereas the
maximum torque is relatively insensi-
tive to an increase in aspect ratio.

11. The torsional stiffness of the un-
cracked member is not significantly af-
fected by the amount of reinforcement
provided but decreases with an increase
in aspect ratio, as predicted by the elas-
tic theory.

12. The torsional stiffness of the
cracked member increases with an in-
crease in the amount of reinforcement.

13. Increasing the aspect ratio from 1
to 2 causes an increase in the torsional
stiffness of the cracked member. This is
due principally to the decrease in
cracking torque with increase in aspect
ratio, while the twist at cracking, the
maximum torque, and the twist at
maximum torque remained nearly con-
stant over this range of aspect ratio.

14. Increasing the aspect ratio from 2
to 3 in general causes a decrease in the
torsional stiffness of the cracked
member. This is due principally to the
twist at maximum torque increasing sig-
nificantly with an increase in aspect
ratio, while the maximum torque re-
mained nearly constant over this range
of aspect ratio.
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APPENDIX A - DERIVATION AND SOLUTION
TECHNIQUES OF TORSION THEORIES

In this appendix three theories will be
presented. The first one is the space
truss theory with spalling of the con-
crete cover,-, the second one is the space

truss theory with softening of con-
crete,' ," , 15 and the third one is the skew
bending theory. "•a Derivation of equa-
tions and solution techniques are given.

Al. SPACE TRUSS THEORY WITH SPALLING
OF CONCRETE COVER

Derivation of Equations
The space truss model is shown in

Fig. Al. The torsion is resisted by com-
pression diagonals consisting of the
concrete between cracks which spiral
around the beam at a constant angle a.
The tangential components of these
stresses provide the shear flow "q"
needed to equilibrate the torsion:

q = fd td sin a cos a	 (A1)

The normal component of the diago-
nal stresses creates a longitudinal com-
pression force which must he balanced
by the tension in the longitudinal steel:

'Aft + Anfn = fd tQ cosx a p 	 q po
tan a

(A2)

Examination of a corner element
shows that the diagonal compression in
the concrete tends to "push-off" the
corner of the beam. This outward thrust
of the concrete is balanced by the ten-
sion developed in the closed stirrups.

A Rfa =fd toSsin'a=gstana	 (A3)

From Eqs. (A2) and (A3), an expres-
sion for the shear flow can be obtained:

q = r A lfa + AP.fn) (ft')j (A4)
l J

T = 2 A o q	 (A5)

Also, from Eqs. (A2) and (A3) an ex-
pression for the angle of inclination of
the diagonal compression can be ob-
tained:

tan a=^ AiflpoA} l ^ASfg1I

	

J	

IJ J (A6)

The curvature, 0, of the diagonal
struts is related to the twist of the beam,
¢, and the angle of diagonals, a (see Fig.
A2). The relationship can be formulated
in terms of a Mohr's circle:

	

0= ipsin2a	 (A7)

The curvature can also be related to
the maximum diagonal compressive
strain at the surface e, and the thickness
of the diagonals td:

t 
—

eds =	 Edn	 (A8)4 0	 0 sin 2a

The twist can he determined" as.

2
 1)$	 (A9)
A„,

From Mohr's circle of strain (see Fig.
A2):

2 (E,., + Et)
Yr8 =	 tan a	

(A10)

The torque is obtained from the
equilibrium equation: 	 and
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Fig. A1. Space truss model and its equilibrium.

*Asfs	 Detail C
S^

yty = 2 (E d , + e,) tan a

	

	 (All) stress block coefficients, k, and k2 , can
be calculated from the stress-strain

If the concrete strain distribution is curve of the concrete:
known, the magnitude and position of
the resultant compression can be calcu-
lated by using the stress-strain charac-
teristics of the concrete. Collins and
Mitchell used a parabolic stress-strain
curve:

IC = fr [ 2 
Eo — ^u z ]	

(Al2)

For a given surface strain, e d „, the

k, _ ERA (1 – E')	 (A13)
eo ( 	 3 E„ J

and
4– Edj

k^ =	 EA 	 (A14)

12 – 4(-
-
	 s

The resultant diagonal compression
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Fig. A2. Curvature of the diagonals and resultant of diagonal compression.

will act at a distance k2 td below the sion for the thickness of the diagonals td
spalled concrete surface. The position of is:
this resultant defines the path of shear
flow and hence the terms A1, and	 I. ' 1A i fi + Ap fp	 A^ fsl

Pa •	 fd =	 L	 + —J (A17)
From Eqs. (A2) and (A3): 	 k1fc	 Po	 s

From Eqs. (A2), (A$), (A9), (A10) andA 1 fz + A P fp + ARf" _' f, 
td	 (A15) (A16), the following expression for the

n°	 S	 longitudinal nonprestressed steel strain
can be obtained:

The stress resultant is:

	

1'	 E _ E	 Po kl}f A.	
—

	

,	 1 (Al8)
fd td = k1f td	 (A16)	 r^	 [ 2pa (AIfz + AAf )

From Eqs. (A15) and (A16) an expres-	 The prestressing steel strain can be
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expressed as:

Ep = 0 Ep + E^	 (A19)

Knowing the stress-strain relation-
ships for the nonprestressed reinforce-
ment and prestressing steel, Eqs. (A18)
and (A19) can he solved for the stresses
in the nonprestressed reinforcement
and prestressing steel, ff and f, respec-
tively.

The stress-strain curve for prestress-
ing steel is nonlinear and can be divided
into several continuous curves (see Fig.
2). The stress in the prestressing steel,
f„ can be defined as a function of pre-
stressing steel strain, Ep , as follows:

fp =f1 (Ep ) where 0<Ep {Ep1 (A20)

f =f2 (Ep) where EA1 El Ep2 (A21)

f,. =f (s r ) where Ep2 Ey Epu (A22)

Using Eqs. (A3), (A8), (A9), (A11) and
(A16), the following expression for the
stirrup strain can be derived:

_ E r sk1fs A0,

L	
– Il	 (A23)F	 d8	

J2pa Aj,

Knowing the stress-strain relationship
for the stirrup steel, Eq. (A23) can he
solved for f, .

The strength of the member in torsion
will be based on the spalled section, i.e.,
A,,. Thus:

Ao = A01 – kl td pF	 (A24)

and

Po = p, – 8 Iq t d	 (A25)

Solution Technique
1. Input the data.

2. Initiate a value for the concrete
surface strain, E d , .

3. Calculate the average stress coef-
ficient, k 1 [Eq. (A13) I.

4. Calculate the depth to resultant
coefficient,k2 [Eq. (A14)].

5. Assume the thickness of the diag-
onals, td .

6. Calculate the perimeter of the
shear flow path, Po [Eq. (A25)].

7. Calculate the strain in the non-
prestressed reinforcement, E, [Eq.
(A18)] and the corresponding
stress, ft.

8. Calculate the strain in the pre-
stressing steel, E, [Eq. (A19)] and
the corresponding stress, f.

9. Calculate the strain in the stir-
rups, e, [Eq. (A23)] and the corre-
sponding stress,/.

10. Calculate the thickness of the di-
agonals, td [Eq. (A17)J.

11. Calculate the residual of td; if it is
unacceptable, go hack to Step 6
using a new value for td.

12. Calculate the area enclosed by
the shear flow path, A. [Eq.
(A24)1.

13. Calculate the shear flow, q [Eq.
(A4)].

14. Calculate the torque, T f Eq. (A5)l.
15. Calculate the angle of inclination

of the diagonal compression, a
[Eq. (A6)].

16. Calculate the corresponding twist
per unit length, tP [Eq. (A8)] i.e.,
tr = E d,/(t d sin 2 a).

17. Repeat Steps 3 to 16 for a number
of values of e,, to get the complete
torsional response.

Based on the foregoing, a computer
program capable of predicting the be-
havior of rectangular concrete beams
was developed.

A2. SPACE TRUSS THEORY WITH SOFTENING OF CONCRETE

Derivation of Equations
This theory is the same as the space

truss theory (previously described) ex-

cept that it utilizes the full cross section
(not the spalled one) and it takes the
softening of concrete into consideration.
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Fig. A3. Stress-strain curve for softened concrete.

The stress-strain curve for softened con-
crete is shown in Fig. A3. Since this
theory is the same as the previous one,
only the necessary equations will be
presented here.

The equation for the ascending por-
tion of the stress-strain curve is:

fc = fc 2(!.)_--()1
o 	 fr E o z	

(A26)

where

E^+Eh +2Ed- o.3]4 (A27)

The peak compressive strength and
the corresponding strain are;

fk = frf,:	 (A28)

E k = fro	 (.A.29)

The equation of the descending por-
tion of the stress-strain curve is:

f-fk 1- ( 

_

ZE -Ez
	

(A30)
o	 k

The average stress coefficient, k1 , is.
For Eds - Ek

	

kl = f as 1 -	 E—`r" 1	 (A31)

	

Ek	 3 Ek )

For Ede > Ek :

	k,^ I /	 1	
('+)

-  	 +

^

)

2

	

1 	 Ens	 i Edr

	

2	 Z E k 	 3 Ck

	

k Jr 	 }
(A32)

The torque is obtained from equilib-
rium equations as:

	

T = 2 ,f, to sina coca	 (A33)

The strains in the stirrups and in the
nonprestressed longitudinal steel are
obtained from compatibility conditions:

_	 A° f" _ 1	 (A34)

	

E`- p,Ttana	 2 X18
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and	 p, = 2 (x + y) — 4td 	 (A41)

I A.,fa — 1 }E

	

`po Trota	 2 !

The strain in the prestressing steel is:

EV = 4 eD + F i	 (A36)

The effective thickness td can be ob-
tained from:

	

td = Aj, + Ap.fP 	 Aafe	 (A37)
P.fd	 S fd

The angle a is given by:

Z	 Ajfr + Arfncos a =(A38)
PoJ

[ 
d td

The angle of twist can be obtained
from:

	

4Ed'	 (A39)
2td since cosa

The center line of the shear flow is
assumed to lie midway in the effective
thickness, td . Thus:

	

Ace = xy — td (x + y — td )	 (A40)

A3. SKEW BENDING THEORY

Derivation of Equations (Mode 1)

The failure surface for Mode 1 is
shown in Fig. A4. From the geometry of
the failure surface the following equa-
tion can be obtained:

tan,8 = a,tan0	 (A42)

where cv = (2y + x)/x
The following equation can he ob-

tained by considering equilibrium of
forces acting normal to the compression
plane.

1. Input the data.
2. Select e d, and assume t d , a and fT.
3. Find kz from Eq. (A31) or (A32).

Thenfd =k,f ff.
4. Calculate A. and p, from Eqs.

(A40) and (A41), respectively.
5. Calculate T from Eq. (A33).
6. Calculate E,, e j and fn from Eqs.

(A34), (A35) and (A36), respec-
tively.

7. Check id by Eq. (A37).
8. Check a by Eq. (A38).
9. Check ft by Eq. (A27), where Ed is

taken as E 12.
10. If t,r , a and f, calculated are not

sufficiently close to the assumed
values, repeat Steps 2 to 9.

11. Calculate ap from Eq. (A39).
12. Repeat Steps 2 to 11 for a number

of values of e d. to get the complete
torsional response.

Based on the foregoing, a computer
program capable of predicting the be-
havior of rectangular concrete beams
was developed.

Fi = 4 a, f, 	 (A45)

F— 4 ap f„	 (A46)

Feb = Aj, ' tanO (1 + w)	 (A47)

k1= E
SP (1 — 3 E)	 (A48)
0

Note that f,. is the softening coeffi-
cient, taken equal to 0.35 and the
stress-strain relationship for the con-
crete is given by Eq. (Al2).

Substituting Eqs. (A42), (A44), (A45),
(A46) and (A47) into Eq. (A43) gives:

(A35) Solution Technique

C —(F,+F,,)cosl3—F$„ sin/3=0 (A43) k= 4(a,f,+afn )+ Ap ,x, (cu+w2)(tan2B )Is

k ifr.fr d,x [1 t ((u tan 0)21
where	 (A49)

C = k,f,ffkd,x sec 0	 (A44)
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n _

T

The torsional moment is obtained
from the equilibrium of external and
internal moments about an axis n-n
parallel to the neutral axis and passing
through the point of application of the
compressive stress resultant:

T = [(2ajfj + a fp )!(a, tan 0) +

A,f, x' tan el (1–kk2)d1+
s	 J

[(2a,f,)/(cu tan g )] (y/2 – kksd,)

(A50)

where

4 – Ece

1c2 =	 E,	 (A51)
12 — 4 (^Cel

EoI

To determine the value of 0 corre-
sponding to the minimum value of T,
Eq. (A50) is differentiated with respect
to the crack inclination, 0, equated to
zero and solved;

8= tan-'{ [2arfr + apfp(1 + yldl)Js Jo

A,f, x1 w
(A52)

A plane strain analysis at the tension
side of the failure surface is used to de-
rive the following compatibility re-
lationship between the longitudinal
strain and the strain in the stirrups:

Yu = c8 + Eb„ tan0	 (A53)
tan B

E rm IE, = cotE 9 	 (A54)

The strain normal to the compression
plane at the tension side may be written
as:

C "O = E jM CUS20 + E$ Sin 1t + yry sin f3 cos/3

(A55)

Substituting Eqs. (A42), (A53) and
(A54) into Eq. (A55) gives:

(1 + w tan2B)2
E lm	 (A56)E nf3 = 

1 + w = tan2O
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Assuming linear strain distribution
normal to the compression plane, the
following equation may be written:

k =	 E°c	 (A57)
Ece + E,A

By substituting Eq. (A56) into Eq.
(A57), c, may be written as:

k	 (1 + w tan 2 6)__ 	
(A58)

Ece	 1—k 
Elm 

1 + w2 tan28

The twist of a beam can be visualized
according to the skew-bending model as
a rotation about a longitudinal axis
passing through the point of application
of the compression stress resultant. The
twist of a beam may be expressed in
terms of the shearing strain y t, as:

,r = yu ldr 	 (A59)

By using Eqs. (A53), (A54) and (A59),
41 can he obtained in the following

form:

= (2e tm tan0)/ y 2 Y` — kk,d,

(A60)

The prestressing steel strain can he
expressed as:

fP _ A Ev + e,	 (A61)

The stress in the prestressing steel
can be obtained using Eq. (A20), (A21)
or (A22).

Derivation of Equations (Mode 2)

The failure surface for Mode 2 is
shown in Fig. A5. This mode can be
handled in a manner similar to that used
for Mode 1. Equations for Mode 2 will
be the same as those for Mode I except
that e, d, , x, x 1 , y and y, will he changed
to e', d2 , y, y, , x and xi, respectively,
where v – (2x + y)ly.
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Solution Technique

1. Input the data.
2. Initiate strain and stress in the

stirrups.
3. Assume the longitudinal strain,

Elm

4. Calculate strain and stress in the
prestressing steel [Eqs. (A61) and
(A20), (A21) or (A22), respec-
tively].

5. Calculate the angle of crack 9 [Eq.
(A52)].

6. Calculate the strain in the stirrups
[Eq. (A54)].

7. Calculate the residual of the
strain in the stirrups; if it is unac-
ceptable, go back to Step 4 using
a new value for longitudinal strain,
Elm

8. Assume the depth coefficient k.
9. Determine the strain distribution

across the failure surface [Eq.
(A58)1.

10. Calculate the coefficient k, [Eq.
(A48)l.

11. Calculate the coefficient k [Eq.
(A49)1

12. Calculate the residual of k; if it is
unacceptable, go back to Step 9
using a new value fork.

13. Calculate the coefficient k2 [ Eq.
(A51)].

14. Calculate angle of twist per unit
length, i [Eq. (A60)].

15. Calculate the corresponding
torque [Eq. (A50)I.

16. Repeat Steps 2 to 15 for a number
of values of strain in the stirrups
to get the complete torsional re-
sponse in Mode 1.

17. Using Mode 2 equations, repeat
Steps 2 to 15 for a number of val-
ues of strain in the stirrups to get
the complete torsional response
in Mode 2.

18. Select the mode giving the lowest
maximum torque.

Based on the foregoing, a computer
program capable of predicting the be-
havior of rectangular concrete beams
was developed.
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APPENDIX B — NOTATION

A, = total area of nonprestressed rein-
forcement

A, = total area of prestressing steel
A, = area of one leg of a closed stirrup
A. = area enclosed by shear flow path
Aa, = area enclosed by center line of

stirrup
a, = cross-sectional area of one non-

prestressed reinforcing bar
ap = cross-sectional area of one pre-

stressing steel strand
C = compressive force acting normal

to compression zone
C 1 , C2 , 4, c4 , and c5 = coefficients given

in Table 2
d,. = distance between axis of rotation

and center line of stirrups on ten-
sion side

d, = distance from extreme fiber in
compression zone to centroid of
longitudinal bars at tension side
in Mode 1

d, = distance from extreme fiber in
compression zone to centroid of
longitudinal bars at tension side
in Mode 2
modulus of elasticity of prestress-
ing steel

F, = total force in nonprestressed rein-
forcement

F„ = total force in prestressing steel
F,h = sun of forces in the two horizontal

legs of stirrups
F,,, = sum of forces in the two vertical

legs of stirrups
IC = compressive stress in a concrete

fiber corresponding to a strain of
Ec

fc = compressive strength of concrete
Id = compressive stress in diagonal

concrete struts
fk = peak compressive strength = fr f^

= stress in nonprestressed reinforce-
ment

ft„ = yield stress of nonprestressed re-
inforcement

fp = stress in prestressing steel
fv = effective stress in prestressing

steel
fp s = initial stress in prestressing steel
fp , = yield stress of prestressing steel

corresponding to 1 percent strain
f, = softening coefficient
18 = stress in stirrups
fp = splitting tensile strength of con-

crete
= yield stress of stirrups

k = coefficient used to determine
depth of compression zone

k . = uncracked torsional stiffness
k„a = cracked torsional stiffness
k, = average stress coefficient
kq = depth to resultant coefficient
m = ratio of yield torte of longitudinal

reinforcement to yield force of
transverse reinforcement per unit
volume

p, = center line perimeter of stirrup
po = perimeter of shear flow path
q = shear flow
S = spacing of stirrups
T = torque
Tr, = measured torque j ust before crack-

ing of beam
TC = cracking torque
T„ = torsional capacity of prestressed

concrete beam without reinforce-
ment

T. = maximum torque
TTa = maximum torque measured by

data acquisition system
td = thickness of diagonal concrete

struts
x = shorter overall dimension of rec-

tangular cross section
x, = shorter center-to-center dimen-

sion of a closed rectangular stirrup
x2 = shorter center-to-center dimen-

sion between two longitudinal
corner bars

y = longer overall dimension of rec-
tangular cross section

yi = longercenter-to-eenterdimension
of a closed rectangular stirrup

y2 = longercenter-to-center dimension
between two longitudinal comer
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bars
a = angle of inclination of diagonal

concrete struts
f3 = inclination of compression zone
y18 = shear strain between Iongitudinal

and transverse lines in plane of
stirrup center line

e, = compressive strain in a concrete
fiber

E,.e = compressive strain in concrete
at extreme fiber of compression
zone normal to compression plane

ed = strain in diagonal concrete struts
e,j8 = strain at surface of diagonal con-

crete struts
E k = strain corresponding toff ; (ek =

ft €)
el = strain in nonprestressed rein-

forcement
e, m = longitudinal strain at middle of

tension side caused by deforma-
tion of beam after loading

el„ = yield strain of nonprestressed re-
inforcement

e,o = strain normal to compression

plane at tension side
ep = strain in prestressing steel
Af„ = difference in strain between pre-

stressing steel and nonprestressed
reinforcement

E p„ = ultimate strain of prestressing
steel

eg l and e 12 = prestressing steel strain
given in Table 2

e„ = strain in stirrups
= yield strain of stirrups

eo = strain at maximum stress of non-
softened concrete, taken as 0.002

0 = inclination of crack (skew bend-
ing model)

X = torsion coefficient
P = (2x + Y)!y
u = effective uniform longitudinal

prestress
= curvature of the diagonal concrete

struts
= angle of twist per unit length

trr. = measured angle of twist at T^
= measured angle of twist at T,

w = (2y + x)lx
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