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W ith the increased use of precast
prestressed concrete conies the

challenge to the engineer to more effi-
ciently design such products, If the
product is a prestressed column the de-
sign engineer has few options. Some
references include load versus moment
interaction curves for these columns,
but most curves are for a specific size
column and a specific prestressing steel
percentage. If the designer cannot de-
sign within these limitations, the alter-
natives are to calculate and draw spe-
cific interaction diagrams for the partic-
ular column under consideration or use
the computer to evaluate the column
capacity. In either case, the process can
be time consuming and costly.

The design aids presented here de-

scribe many different steel percentages
and prestressing levels in a few simple
curves. These curves are applicable to
symmetrically prestressed short col-
umns (no length effects arc included)
for both preliminary and final design.

Nondimensiona] load versus moment
interaction curves and associated equa-
tions for rectangular columns with 270
ksi (1861.7 N/mmx ) prestressing steel in
all four faces have been developed.
These curves are based on particular
concrete strengths, effective stress in
prestressing steel after losses, and the
distance between centers of steel in the
tension and compressive faces. Within
each chart there are curves which rep-
resent different percentages of pre-
stressing steel that can be present in
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the column. With an additional equa-
tion these charts can be used to obtain a
modified effective stress in prestressing
steel after losses. The generalized in-
teraction curves are presented in the
Appendix as well as design examples
illustrating how the interaction curves
and the stress modification equations
should be used.

Governing Equations

The derivation of equations gener-
ated for a general prestressed concrete
column parallels the development of
those for load-moment interaction rela-
tionships for any specific column. For
the general case, the equations depend
upon the assuming of a neutral axis lo-
cation and satisfying the compatibility
of strains. The concrete compression
force and steel forces are calculated
from the strain distribution. These
forces are nondimensionalized and,
when used in the appropriate equations
of equilibrium, produce a single point
on the generalized load-moment curve.`
The entire interaction curve is obtained
by varying the neutral axis location
within an appropriate range.

The concrete compression force is
calculated from a concrete stress-strain
relationship which accounts for a por-
tion of the nonlinear region of the
curve. This solution is more accurate
over the entire range of the interaction
curve than one based on the rectangular
stress block approximation. The general
equations are designed so that any con-
crete stress-strain curve can easily be
substituted for the one used for the so-
hition presented.

The steel forces are calculated in
terms of a steel percentage rather than
for a particular number of strands. For
analysis, the prestressing strands have
been replaced by a thin rectangular
tube of prestressing steel with an
equivalent area of steel. The total strain
in the tube consists of the steel strain

Synopsis
A series of nondimensional ulti-

mate load- moment interaction
curves for short, rectangular con-
crete columns with axial prestress-
ing are presented. Several design
examples are included to show the
application of the design charts.

General nondimensional equa-
tions are given which are based on
nonlinear approximations for both
the concrete and prestressing steel
stress-strain curves, linear strains
across the cross section, strain
compatibility and equilibrium. The
steel location is generalized by re-
placement of individual strands with
a rectangular prestressed steel
tube.

The series of curves presented
are for a steel strength of 270 ksi
(1861.7 Nlmm2), concrete strengths
of 5, 6, 7, and 8 ksi (34.48, 41.37,
48.26, and 55.16 N/mm 2 ), and
geometric parameters correspond-
ing to the more commonly used col-
umns. In addition, full and partial
stressing of the prestressing steel
were considered.

due to prestressing, precompression of
the concrete and bending of the mem-
ber. The force in the steel tube is cal-
culated from these strains using an ac-
tual stress-strain relationship for pre-
stressing strand.

The stress stage in the steel is
analyzed using three specific cases:
Case 1 is appropriate when all the steel
strains are in the linear range of the
stress-strain curve, Case 3 is used when
all steel strains are in the nonlinear
range, Case 2 is a combination of Cases
1 and 3 and deals with steel strains in
both the linear and nonlinear portions
of the stress-strain curve. Other pre-
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Fig. 1. Assumed approximation for the concrete stress-strain relationship.

stressing steel stress-strain relation-
ships could he used in the analysis pre-
sented here; however, the translonna-
tion would be more involved than that
necessary for the replacement of the
concrete stress-strain relationship.

NONDIMENSIONAL PARAMETERS
The governing equations are used to

generate nondimensional load versus
moment interaction curves for pre-
stressed concrete columns. The evalu-
ation of the equations is accomplished
by incrementing the depth of the com-
pressed concrete area (k xt) which is
measured from the extreme fiber on the
compression face. The solution of each
increment of k„t produces nondimen-
sional loads (K) and corresponding
nondimensional moments (R) which
represent a point on an interaction
curve. Each of the two nondimensional
terms can be considered in two parts
which correspond to the contribution of
the concrete and steel respectively.

These nondimensional terms K and R
are defined as:

P

K fcb = K, + Kt
8

R 
= f bts 

R` + R,

where
P„ = ultimate axial load acting on

column
M„ = ultimate moment acting on

column
= concrete strength

b = width of cross section
t = depth of cross section
K, = portion of K due to compres-

sive force in concrete
Rc = portion of R die to compres-

sive force in concrete
K8 = portion ofK due to steel forces
R s = portion ofR due to steel forces

CONCRETE COMPRESSION
PARAMETERS

The parameters KC and R1 are depen-
dent upon the compressive force of the
concrete (C c) and the moment (M e) of
this force about the bending axis of the
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column cross section. These quantities
are derived based on the following as-
sumptions and approximations.

1. The concrete area displaced by
the prestressing steel in the com-
pression zone has been neglected,

2. The tensile strength of the con-
crete has been neglected.

3. The approximation for the stress-
strain relationship for concrete is
shown in Fig. 1.2

A rectangular column cross section
without the prestressing steel is shown
in Fig. 2 where the concrete stress dis-
tribution and the depth of the neutral
axis (k„t) are also illustrated.

The following equations can be
written from Fig. 2.

Cr. = faaebkat	 (1)

M e = ycC C	 (2)
where

fa re = average stress
ye = distance between centroid of

stress distribution and bending
axis

In order to obtain K, both sides of
the equation for C e are divided by f ht
and to obtain R, both sides of the equa-
tion for M, are divided by_f^ht 2. The re-
sulting expressions are:

K c	 G.=

	

	 (3?
}fbt

M`	 (4)
1'ebt2

STEEL FORCE PARAMETERS
The dimensionless expressions (KB

and R 8) for the prestressing steel are
based on the following assumptions and
approximations:

1. The bending strain in the pre-
stressing steel and in the concrete
are compatible.

2. Complete bond exists between the
prestressing steel and the con-
crete.

3. The prestressing steel is assumed
to be a thin rectangular tube as
shown in Fig. 3. One-fourth of the
total steel area is in each side of
the rectangular tube.

The total strain in the steel at any lo-
cation is evaluated in terms of three
components; the strain in the steel due
to prestressing (En8 ), the strain in the
concrete due to prestressing (€), the
strain due to bending (EB ). The strains
E„ and E,. e are defined as follows:'

pp f"	 1 a,
ESQ = 	 and Epg = 

E,	 E,
where
fHe = effective stress in prestressing

steel after losses
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E ps = modulus of elasticity of pre-
stressing steel

E e = modulus of elasticity of con-
crete

p, = Ap t l(bt) = total steel percent-
age

A, = total area of prestressing steel
The strain due to bending is that

which exists in the column concrete as
a result of a failure strain at the com-
pression face of the column. The di-
mensions and variables required to cal-
culate the steel strains due to bending
are shown in Fig. 4.

From the linear strain distribution, it
is possible to calculate the bending
strain in the top steel (E R4 ) and the bot-
tom steel (€B1):

_ d, – k„ t	 _ 1 +g-2k

	

E81 — k r	
Ecu — 	

2k	
Ecu

	

y	 LL

_k„t-d4	_1-g-2kg
EE4	 k t	 Ecv —	 2k	 Ecu

	

u	 ,,

The total strain in the top steel (ep4)

and bottom steel (e px ), respectively, is:

= l.e + pg Le + 1 + g – 2kv E
Ep1	

ru (5)
Eve	 E 	 2 ku

	

__ f,,	 Pnfse 1 – g – 2k„
E } E } 	 2kw 	 Eau (6)

	

va	 r

Since the stress-strain curve for pre-
stressing steel becomes nonlinear at
higher strains, three possibilities of
stress-strain relationships occur in the
cross section. All, part, or none of the
steel strains can be in the linear range
of the stress-strain curve. Each of these
possibilities is examined in the follow-
ing three cases.

Case 1 — Steel Stresses Within the
Linear Range

The first case considers a rectangular
section in which all of the prestressing
steel stresses are within the linear por-
tion of the stress-strain curve.

fn1 ^ ENL Ea4 C FNL

where ENL is the strain at which the
stress-strain curve becomes nonlinear
(see Fig. 5).

For this case the nondimensional
force and moment due to steel (K„ Rs)
can be calculated by the following ex-
pressions:

Ks --E 8 	 + €84)	 (7)

s 	 /
R= 6 fc E Da (€81 — EY4) 	 (8)
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Case 2 -- Steel Stresses in Both
Linear and Nonlinear Ranges

The second case considers a rectan-
gular section in which the prestressing
steel strains are in both the linear and
nonlinear portions of the stress-strain
curve:

EPI > E NL	 EP4 C ENL

It now becomes essential to adopt a
stress-strain relationship for the pre-
stressing steel. The stress-strain curve
shown in Fig. 5 has been used in these
derivations.* The following equations
describe this curve.

With Ep < FNL = 0.008:
f, = EpEps	 (9)

With €1,> ENL = 0.008:

0.075
Ip =268-	 C0.9$fP,

E P - 0.0065	 (10)

where f„ is the stress in the prestressing
steel.

For this case, the nondimensional
force and moment due to the pre-
stressing steel (K,, R,) can be calcu-
lated by the following expressions:

xt _ Pp Ep s lD,	
+ 

( ENL — Ep4 )+ Ep4 

	

4j;	 EP.	 (En, — £p4

2 ( C NL — EPI ) f7 1	
(1.1)

(Ep1 — Ep4 ) 	 Epa J

R, = 9PP Eye 
L 
f" — Ep4 + 2i Epq x

o.fl,	 Epp

( ENL — Epi)( ENL — Ep4) +

( Eyl — E1^4 ^S

(4ENL — Ep 4 — 3Ep 1) (EN — E ) 2 — 2'fP7 X
L	 p4

	

3 Epl —	 E EP4	 E,

12EP7 — 	 E, 4 ) ( E NL — CPT ) ] 	 (12)
( Ep l — E4 14

where
fp , is calculated from Eq. (10).
f 7 is the average stress between

strains of ENL, and EP, (corresponds
to ?,, , see Fig. 5)

fp, is the strain at the centroid of the
area under the stress-strain curve
between ENL and Epi (A7).

Case 3 — Steel Stresses Within the
Nonlinear Range

The third case considers a rectangu-
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Fig. 5. Stress-strain curve for 270 ksi (1861.7 Nlmrre ) prestressing steel.

lar section in which all the prestressing
steel stresses are within the nonlinear
portion of the stress-strain curve.

E vl > E NL	 E 94 > EYL

The nondimensional farce and mo-
ment due to steel (K„ R 1 ) can be cal-
culated for this case with the following
expressions:

K

	

	 pp (3 Al + f94 + 2177) 	 (13)
4 f'

R• gpP 
I
J PI S48f

+ 2€ 	 — Eg1 Jl\ 	 !PT

The quantity fA7 is the average stress
between strains of E94 and E p , ; Ep7 is the
strain at the centroid of the area under
the stress-strain curve between €94 and
Epp,

The equations presented here corre-
spond directly to those used to develop

load versus moment interaction curves
for a specific column. Points on an in-
teraction curve are calculated by as-
suming a neutral axis location, satisfy-
ing the compatibility of strains, calcu-
Iating the concrete compression force
and steel forces, and solving the equa-
tions of equilibrium. For general use,
the concrete compression force and the
steel forces were nondimensionalized.
With this one deviation a general de-
sign aid was developed for rectangular
prestressed concrete columns.

For all points above the balance
points on the interaction curves, the
prestressing steel strain was found to be
in the linear portion of the stress-strain
relationship. Therefore, a change in the
effective prestressing level causes a
vertical translation of the interaction
curve in the compression control re-

Modification for Partial
(1 4) Prestressing
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gion. The amount the curve translates
(AK) for a change in the effective pre-
stressing level (Af, ) can be found by
modifying the basic nondimensional
equation for the nondimensional load
K:

K =K, +K&

Since all prestressing steel strains are
in the linear portion of the stress-strain
curve, equations for modification to
K(AK) were developed in terms of the
change in prestressing (Afte ),

	AK = P. O .f e	 I + 	 (15)

	

r	 Pp

This equation can be solved for Af1e :

	

4 }ae =	
.fc AK	

(16)

	

Pv f	 ET

	

L	 Er.

With Eqs. (15) and (16) and the inter-
action curves, a prestressed concrete
column can be designed with any level
of effective prestressing provided all
the strands are stressed to the same
level. Complete derivations of all
equations are available in a previous
publications

Effects of Derivation
Approximations

Concrete Stress-Strain
Relationship

A nonlinear approximation for the
concrete stress-strain relationship is
used in order to produce more accurate
results regardless of the location of the
neutral axis. This capability is impor-
tant since the development of an inter-
action diagram requires the depth to
the neutral axis to vary from zero to in-
finity. The details of the concrete
stress-strain approximation are shown
in Fig. 1.

The concrete stress-strain approxi-
mation is especially useful as the depth
to the neutral axis becomes larger than

the depth of the section. This allows a
smooth reliable curve between the bal-
ance point and the load axis. However,
at higher steel percentages and lower g
values, the concrete stress-strain rela-
tionship used in this derivation also
shows a slight inconsistency. This is
caused by the inability of the stress-
strain approximation to give accurate
results for the concrete force and its lo-
cation as the nonlinear portion of the
curve moves oil' the cross section. At
higher steel percentages and lower g
values, the concrete compression force
and its location is a major determinant
of the load and moment capacity of the
column. The result of this inconsistency
is a small discontinuity in the curves
near the load axis.

Prestressed Steel Tube
Approximation

The replacement of the prestressing
strand with a prestressed steel tube is
the primary approximation in the deri-
vation of the equations used to generate
the load vs. moment interaction curves.
The accuracy of the solutions obtained
with this approximation was checked
by calculating points on the interaction
curves for specific columns. These spe-
citie columns consisted of various steel
percentages, numbers of strand, tub val-
ues, and values of g. The values ob-
tained were then nondimensionalized
and checked with the general interaction
curves.

For the case in which all the pre-
stressing steel strains are in the linear
portion of the stress-strain curve, the er-
rors were in the range of 2 percent.
However, certain factors determine the
magnitude of the error. For a given
steel percentage, the column with the
largest number of strands had the least
error. Increasing the g value or the tlb
value increased the error produced by
the prestressed steel tube, Increasing
the steel percentage increased the
magnitude of the error.

For the case in which all the pre-
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stressing steel strains are in the nonlin-
ear portion of the stress-strain approxi-
mation, the errors were on the order of
4 percent. The increase in error is due
to the inability of the prestressed steel
tube to accurately evaluate the discrete
forces through the nonlinear portion of
the stress-strain relationship. The max-
imum error occurs at large steel per-
centages and the higher values ofg and

tlb. The errors decrease as the value of'
g, tlb, and the steel percentage de-
creases.

The case in which the prestressing
steel strains are in both the linear and
nonlinear portion of the stress-strain
curve resulted in errors on the order of
3 percent. The magnitude of the errors
follow the same pattern mentioned in
the two previous cases.

CONCLUDING REMARKS
The purpose of this study was to pro-

vide the engineer with a versatile de-
sign aid for rectangular prestressed
concrete columns without accounting
for length effects. This was accom-
plished by the development of a gen-
eral formulation for a prestressed col-
umn analysis and of nondimensional
load versus moment interaction curves.

The input information necessary in
order to use these design aids is only

the concrete and steel strengths and the
ultimate load and moment acting on the
column. From these parameters various
column sizes, steel percentages and
effective prestressing levels can be
evaluated until a combination is found
which satisfies the design require-
ments. This method offers efficiency
and versatility in either preliminary or
final design of rectangular prestressed
concrete columns.
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APPENDIX A - DEVELOPMENT OF
DESIGN CHARTS

The following charts were formulated
using the numbered equations in the
previous presentation. Two variables f,
and g are considered in various combi-
nations for rectangular columns with
equal prestressing steel in each face.
The steel percentage pp , is based on
the gross cross section of the column.

The following data were used in the
development of the design charts:

= OA03 in./in. (0.003 cm/cm)
E, = 57.5 v' .) (psi) (ksi)
fp„ = 270 ksi (1861.7 Nlmm2 )
fde = 154.9 ksi (1068.0 N/mm2)
E= 27,500 ksi (189.61 kN/mm2).
The charts were developed without

accounting for column length effects.
Also, the workmanship factor, 0, has not
been applied to the curves. Therefore,
the first step in design would be to ad-
just the loads for slenderness effects by
using a moment magnifier approach
and applying the workmanship factor,

. The appropriate design charts can

then be used as illustrated in the design
examples.

The design curves for prestressed
concrete columns are similar to those
for regular reinforced columns in shape.
The prestressed concrete column
curves exhibit a less defined balanced
point but do have a concrete compres-
sion control region and a tension con-
trol region for each steel percentage
(see Fig. B2, Appendix B).

An interesting feature of the charts
presented here is that the curves for
prestressing steel percentages cross
each other. This occurs because in the
compression control region, the higher
the prestressing steel percentage, the
lower the column capacity. Hence, in
the compression control region it is de-
sirable to use less prestressing steel.
However, in the tension control region
the higher the percentage of prestress-
ing steel, the higher the moment car-
rying capacity of the column.

FULL-SIZED DESIGN CHARTS
Because of the PCI JOURNAL size and the necessity
to save expensive PCI JOURNAL space, the sixteen
design charts in this article were reduced 50 percent.
Readers interested in securing (at cost of reproduction
and handling at time of request) photostats of the
original charts should contact PCI Headquarters.
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APPENDIX B — DESIGN EXAMPLES

4-318 Strands

i	 N	 (D

N
2'I	 1 2"	 , 2"I

16" 

Fig. Bi. Trial design 1.

DESIGN EXAMPLE 1
A square prestressed concrete col-

umn in the concrete compression con-
trol region is to be designed using the
following data:

Pa = 550 kips;	 f1 = 270 ksi
M. = 875 kips;	 f e = 154.9 ksi

f	 6ksi;	 0 =0.7
The minimum cover to center of pre-

stressing steel is 2 in.

Trial Design 1
By initially assuming that b = f = 16

in. and taking the design parameters
into account the following parameters
can be calculated.

K- Pu =	 550 	
=0.512

	

O f/ ht	 0.7(6)16(16)

R = K e = M1

t	 doff bt2

	

_	 875	 = 0.051
0.7(6)16(16)2

gt = (16 in.) - 2(2 in.) = 12 in.
Therefore, g = 12/16 = 0.75.
The (A factor is applied to the param-

eters K and R since this workmanship
factor has not been applied to the inter-
action curves.

Enter Chart No. 6 with K = 0.512,
K(elt) = 0,051 and find that a steel per-
centage of 0.001 is adequate (see Fig.
B2). This steel percentage is also ade-
quate when checked with Chart No. 7
with ag of 0.8. For a steel percentage of
0.001, the area of prestressing required
(A,,) is given by the following equa-
tion.

A,, = pp bt = 0.001(16)16 = 0.256 in.'
This requires four %-in. diameter

strands (A9 = 0.34 in. ). The results of
trial design 1 are shown in Fig. B1.

Analysis of Trial Design
The interaction curves can be used to

find the load and moment capacity of a
column. For trial design 1 the following
parameters are calculated:

K=0.5120.01- _- = 

R = 0.051

_ 0.34
g = 0.75 Pp = t 	 lfi(lfi) = 0.0013

A line is drawn from the origin,
through the point K = 0.512, R = 0.051
to a steel percentage of 0.0013 (see Fig.
B2). The coordinates corresponding to
this end point are as follows:
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Fig. B2. Design chart for Example 1.

K = 0.63 and K(e/t) = 0.063
The actual design load capacity of the

column is given by the following egi . ia-
tions:

Pu = (^ K fG f7t
=0.7(0.63)6(16)j6
= 677 kips > 550 kips

M= O(K t )S, b(t)^

= 0.7(0.063)6(16)(16)2
= 1083 in. -kips > 875 in. -kips

The 16 x 16-in. column with four
3/s-in. diameter strands is adequate.

DESIGN EXAMPLE 2

Design a 14 x 14-in. prestressed con-
crete column with four ½-in, diameter
strands with the following data:

P„ = 425 kips	 = 270 ksi
M„ = 700 in.-kips	 f P =
f, = 5ksi 	 = 0.7

First calculate K, K(elt), g and pn.

K = P°

425 	 = 0.62
0.7(5)14(14)
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K e _ M,
t 	 Offb2

700
0.7(5)(14)(14)2

= 0.073

gt	 = (14 in.) - 2(2 in.) = 10 in.

10
g	 = 14 = 0.71

_ 4(0.153)

Ap	 14(14)	
0.0031

The column will be checked for the
fully prestressed case. Enter Chart No.
2 with K = 0.62 and K(elt) = 0.073 (see
Fig. B3). This point lies outside the pp
= 0.0031 interaction curve, hence the
column will not work when fully pre-
stressed &, = 154.9 ksi).

To calculate the required level of
prestressing, locate the intersection of
elt = 0.12 line and the pp = 0.0031 in-
teraction curve. This point is the lower
limit of AK as shown in Fig. B3.

AK=0.62-0.58=0.04
The differential stress Af, e can be

calculated from Eq. (16):
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8-1/2" Strands

4-
Lr+	 ^NI}

Fig. B4. Trial Design 1.

f ee =

5(0.04)

0.0031 I 1 + 0.0031(	
27500	 ) j

L	 ( 57.5 V1 5000 .

= 63.2 ksi

The required prestressing level is:

fe= 154.9-63.2=91.7ksi

The 14 x 14-in, column with four
1/z-in, diameter strand will work with f8e

91,7 ksi.

DESIGN EXAMPLE 3

Design a rectangular column using
the following data:

Assume strong axis bending.

P„ = 140 kips	 M	 2250 in.-kips

= 5 ksi	 f = 270 ksi

fire = 154.9ksi bit — 0.8 ¢=0.7

Trial Design 1
Initiall y assume that b = 16 in. and t

= 20 in. and calculate the following pa-
rameters:

K = 
P.
f^ bt

—	 140 	
= 0.125

0.7(5)(16)20

	

e	 M .	 2250

	

^t = K t 	 Of,' bt 2	0.7(5)(15)20)2

= 0.100
gt = (20 in.) — 2(2 in.)
g = 16120 = 0.8
Enter Chart No. 3 with K — 0.125 and

R = 0.100; the required prestressing
steel percentage is 0.0035. The re-
quired area of prestressing (A p1 ) is cal-
culated as follows:

A, = pbt = 0.0035 (16)20 = 1.12 in.R
This relates to eight ½-in, diameter

strands with a total prestressing steel

METRIC (SI) UNIT
EQUIVALENTS

1 in.	 = 25.4 mm
1 in. 2 — 645.6 mm2
1 ft	 = 0.3048m
1 f2	= 0.0929 m2
1 psf	 = 47.99 NIm2
1 psf	 = 47.88 Pa
1 psi	 = 0.006895 MPa
1 psi	 — 0.006895 N/mm2
1 pcf	 — 16.02 kg/m2
1 kip	 = 4.448 kN
1 kip/ft = 14.594 kN/m
1 in.-kip= 113.0N•m
1 ft-kip	 = 1.356 kN•m
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Fig. B5. Design chart for Example 3.

area of 1.224 in.' The results of trial de-
sign 1 are shown in Fig. B4.

Analysis of Trial Design 1
The interaction curves can be used to

find the load and moment capacity of
the column by using the following pa-
rameters:

K = 0.125 R=0.100 g=0.8
An , __ 1.224 

= 0.0038
P° = bt	 16(20)

A line is drawn from the origin on
Chart No. 3 through the point K =

0.125, R = 0.100 to a steel percentage of
0.0038 (see Fig. B5).

The coordinates corresponding to this
end point are as follows:

K = 0.13 and K(elt) = 0.012
The actual design load capacity of the

column is given by the following equa-
tions:

Pa = 0.7 (0.13) (5) (16)20
= 145.6 kips > 140 kips

0.7 (0.102) (5) (16) (20)2
= 2285 in.-kips > 2250 in.-kips

The 16 x 20-in, column with eight
b-in. diameter strands is adequate.
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APPENDIX C — NOTATION

A, = total area of prestressing steel
b	 = column width
B.A. = bending axis
C, = compressive concrete farce
d (.,cr ip, 7 = distance between ex-

treme compression fiber
and subscript location

E	 = modulus of elasticity of con-
crete

E, = modulus of elasticity of pre-
stressing steel

er	 = eccentricity of ultimate load
^ltiN^Ascrept7 = prestressing steel bend-

ing strain at subscript lo-
cation

E^^ = strain in concrete due to pre-
stressing

fek = ultimate concrete strain
E.KL = strain at which prestressing

steel stress-strain curve be-
comes nonlinear

Eo = concrete strain at which con-
crete stress-strain curves be-
come linear

En[,ur,Krrip[1 = prestressing steel strain
at subscript location

E (,(Nunsnrapr7 = strain at centroid of non-
Iinear portion at pre-
stressing steel stress-
strain curve

fe	 = concrete stress

fz	 = compressive strength of con-
crete

fp{.ue*eripI) = prestressing steel stress
at subscript Iocation

f. 	 = effective stress in prestressing
steel after losses

gt	 = distance between top and bot-
tom steel layer

K	 = nondimensional load
K, = portion of nondimensional Ioad

due to concrete
K 8 = portion of nondimensional load

due to prestressing steel
k„, = depth of concrete compression

block
M = moment due to concrete com-

pression force
M„ = ultimate moment acting on col-

unin
N.A. = neutral axis
Pa	 = ultimate axial load acting on

column
R	 = nondiniensional moment
R^ = portion of nondimensional

moment due to concrete
R, = portion of nondimensional

moment due to steel
pa	 = prestressing steel percentage
t	 = column depth
Jc = distance between centroid of

concrete stress distribution and
bending axis

NOTE: Discussion of this paper is invited. Please submit
your discussion to PCI Headquarters by September 1, 1982.
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