Flexural Strength of Prestressed Concrete Sections by Programmable Calculator

Alan H. Mattock Professor of Civil Engineering University of Washington Seattle, Washington

t has always been recognized that the approximate Eq. (18-3) in ACI 318-771 for the stress in bonded prestressing steel at flexural ultimate, f_{ps} , was in general conservative. A more precise value for f_{ps} , and hence for the flexural strength, can be obtained by solving the equations of equilibrium of forces and of compatibility of strains across the section, making use of the actual stress-strain relationship for the prestressing steel. Until the advent of the computer and the programmable calculator, this was a time-consuming process and hence was little used.

In a 1977 paper, Naaman² discussed the more precise approach. He showed how more accurate values of flexural strength could readily be obtained using a computer to solve the equations of equilibrium and compatibility, if the stress-strain curve for the prestressing steel were expressed algebraically.

Since the time of Naaman's studies, there has been an explosion in the availability and the capabilities of small programmable electronic calculators. These machines now make it feasible and economic for any engineer to use the more precise method of calculation for flexural strength, with consequent economic advantages.

Prestressing Steel, Stress-Strain Curve

The stress-strain curve for prestressing steel typically consists of a linear part (corresponding to the region of elastic behavior), a sharply curved part in the vicinity of the nominal yield point stress, and an alThe author presents calculator programs for the flexural strength of bonded prestressed or partially prestressed concrete sections of general form. The calculations make use of the actual stress-strain properties of the prestressing steel and in general result in less conservative values for flexural strength than are obtained through use of the approximate Eq. (18-3) of the ACI Building Code. Several detailed design examples show the application of the calculator programs.

most linear, slightly strain-hardening part reaching to failure.

Naaman represented the stressstrain curve by three separate equations, corresponding to the three parts of the curve identified above. He used two different linear equations for the first and third parts, and a fourth degree polynomial for strains between 0.006 and 0.014. The eight coefficients of these equations were determined using the computer, so as to give the best fit.

This approach to algebraic representation of the steel stress-strain curve does not lend itself to use with a small calculator. Other possibilities were therefore investigated.

It has been found possible to represent the stress-strain curve of prestressing steel very closely using a single equation of the form:

$$f_s^* = (1 - Q) \frac{\epsilon^*}{(1 + \epsilon^{*R})^{1/R}} + Q\epsilon^* \quad (1)$$

where $f_s^* = f_s/f_{so}$ and $\epsilon^* = \epsilon/\epsilon_o$.

In the above, f_s is the stress at a strain ϵ , f_{so} and ϵ_o are a reference stress and its corresponding strain.

This form of equation was used by Menegotto and Pinto³ to represent the stress-strain relationship for reinforcing bars subjected to cyclic loading beyond their yield point. The curve represented by Eq. (1) is shown in Fig. 1. The first part of the curve is linear with a slope of unity; the second part is curved, the radius of curvature becoming larger as the coefficient R decreases; and the third part is linear with a slope equal to the coefficient Q.

This form of curve has been adapted to represent the stress-strain curve of prestressing steel by making:

$$f_{so} = K f_{py}$$
 and $\epsilon_o = K f_{py}/E$

Fig. 1. Curve corresponding to Eq. (1).

33

Fig. 2. Typical stress-strain curve for prestressing steel as represented by Eq. (2).

where

- K = a coefficient
- f_{py} = specified yield strength of prestressing steel
 - E = modulus of elasticity of prestressing steel

The equation then becomes:

$$f_{s} = \epsilon E \left[\begin{array}{c} Q + \frac{1 - Q}{\left\{ 1 + \left(\frac{\epsilon E}{K f_{py}} \right)^{R} \right\}^{1/R}} \end{array} \right]$$
(2)

where

$$Q = \left(\frac{f_{pu} - Kf_{py}}{\epsilon_{pu}E - Kf_{py}}\right)$$

The coefficient R is determined by solving Eq. (2) for the condition $f_s = f_{py}$ when $\epsilon = 0.010$. The values f_{pu} and ϵ_{pu} are the specified tensile strength and the strain at tensile failure of the prestressing steel, respectively.

The curve corresponding to Eq. (2) is shown in Fig. 2. The initial slope is equal to the modulus of elasticity, the curve passes through the nominal yield point and the final slope corresponds to the measured strain-hardening behavior of the steel.

Eq. (2) can be made to correspond very closely to actual stress-strain curves, as shown in Fig. 3, by use of appropriate values for the coefficients K, Q, and R. Using Eq. (2) it has been found possible to calculate the stress corresponding to a given strain to within 1 percent or less, for a number of actual stress-strain curves.

If the complete stress-strain curve for the steel is available, K is determined as follows:

Produce the two linear parts of the stress-strain curves until they meet. The stress corresponding to the point of intersection is Kf_{py} . Hence, obtain K. If the complete steel stress-strain curve is not available, a reasonable value to assume for K in the case of seven-wire strand is 1.04.

In Appendix A are given the user instructions and the listing of a program for the Hewlett Packard HP-67/97 programmable calculators, which will:

- 1. Determine the values of Q and Rfor the stress-strain curve for a particular steel, given f_{pu} , f_{pu} , E, ϵ_{pu} , and K.
- 2. Calculate the stress and the force in a tendon of cross section A_s , for any given strain ϵ . (Agreement between the calculated and experimental stress-strain relationships can therefore be checked readily.)
- 3. Calculate the strain ϵ_{se} corresponding to the effective prestress f_{se} in a particular prestressed beam, and store as needed for a subsequent flexural strength calculation.

The solution of Eq. (2) to obtain R is carried out using an adaptation of Newton's method.⁴ This involves an iterative procedure and typically takes about 45 seconds. For this program to work, Kf_{py} must be less than f_{pu} and greater than about 0.75 f_{pu} . This covers the characteristics of prestressing steels meeting the relevant ASTM specifications.

Fig. 3. Comparison of calculated values of f_s and ϵ with experimental stress-strain curves.

Calculation of Flexural Strength

The calculation of flexural strength is based on Section 10.2—Design Assumptions, of ACI 318-77; except that the stress in the reinforcement is assumed to be related to the strain in accordance with Eq. (2) above. Both the prestressed and the non-prestressed reinforcement is assumed to have the same stress-strain curve. Such a situation arises when sevenwire strand is used as both prestressed and non-prestressed reinforcement.

The stress and strain conditions in a bonded prestressed concrete beam are shown in Fig. 4. A single-tee section with a tapering flange and fillets at the web-flange junction is shown, but the equations developed and the calculator program based on them are applicable to a variety of beam sections, as shown later.

Use is made of the equivalent rectangular stress distribution defined in Section 10.2.7 of ACI 318-77 when calculating the resultant compression force in the concrete at ultimate, and its center of action.* The width of the section at the bottom edge of the equivalent rectangular stress distribution is designated as b', i.e., at distance "a" from the maximum compression fiber.

The resultant concrete compression force C for various possible locations of the neutral axis is given by:

^{*}The applicability of the equivalent rectangular stress distribution to non-rectangular sections has been verified experimentally.^{5,6}

Fig. 4. Stress and strain conditions in a prestressed single-tee.

(a)
$$a \leq t;$$
 $C = 0.85 f'_c Ba$ (3)

(**b**)
$$t < a < t_1; \quad C = 0.85 f'_c \left[A_1 + (a-t) \left\{ B - \left(\frac{B-b}{2} \right) \left(\frac{a-t}{t_1-t} \right) \right\} \right]$$
 (4)

(c)
$$t_1 \le a \le t_2;$$
 $C = 0.85 f'_c \left[A_2 + (a - t_1) \left\{ b - \left(\frac{b - b_w}{2} \right) \left(\frac{a - t_1}{t_2 - t_1} \right) \right\} \right]$ (5)

(d)
$$t_2 < a$$
; $C = 0.85 f'_c \left[A_3 + (a - t_2) b_w \right]$

where
$$A_1 = Bt$$
 and $A_2 = A_1 + \left(\frac{B+b}{2}\right)(t_1 - t)$
and $A_3 = A_2 + \left(\frac{b+b_w}{2}\right)(t_2 - t_1)$

Since the reinforcement is bonded to the concrete, the change in strain in the reinforcement can be assumed equal to the change in strain in the adjacent concrete. The strain in the prestressed reinforcement at flexural ultimate ϵ_{ps} , is therefore given by:

 $\begin{aligned} \boldsymbol{\epsilon}_{ps} &= \boldsymbol{\epsilon}_{se} + \boldsymbol{\epsilon}_{cp} + \boldsymbol{\epsilon}_{1} \\ \boldsymbol{\epsilon}_{ps} &= \boldsymbol{\epsilon}_{se} + \boldsymbol{\epsilon}_{cp} + 0.003 (d_{p} - c)/c \quad (7) \\ \text{where} \end{aligned}$

 $\epsilon_{se} = \operatorname{strain} \operatorname{in reinforcement} A_{ps} \operatorname{due}$ to effective prestress f_{se}

and

 ϵ_{cp} = compressive strain in concrete adjacent to A_{ps} , due to prestress The strain ϵ_{cp} is very small compared to ϵ_{se} and ϵ_1 , and for simplicity may be neglected. Hence we may write:

(6)

$$\boldsymbol{\epsilon}_{\boldsymbol{ps}} = \boldsymbol{\epsilon}_{\boldsymbol{se}} + 0.003 (\boldsymbol{d}_{\boldsymbol{p}} - c)/c \tag{8}$$

The strain in the unprestressed reinforcement at flexural ultimate ϵ_s , is given by:

$$\epsilon_s = 0.003(d-c)/c \tag{9}$$

The stresses f_{ps} and f_s in the prestressed and unprestressed reinforcement at flexural ultimate, can be obtained by substituting the strains ϵ_{ps} and ϵ_s in Eq. (2). The total tensile force in the section at flexural ultimate is then given by:

$$T = A_{ps}f_{ps} + A_{s}f_{s} \tag{10}$$

Equilibrium of forces in the section requires that:

 $T = C \tag{11}$

Solution of this equation yields the depth of the neutral axis at failure, c. Unfortunately, because of the variation in the width of the section and the complex stress-strain equation for the reinforcement, it is not possible to obtain a closed form solution for this equation. However, "c" can be evaluated by an iterative process, with the help of a programmable calculator.

In Appendix B are given the user instructions and the listing of a program for the HP-67/97 programmable calculators, Part 1 of which will calculate the neutral axis depth at flexural ultimate, using the following iterative process:

(a) Assume an initial value for "c."

(b) Calculate the strains in the

reinforcement using Eqs. (8) and (9).

- (c) Calculate the stresses in the reinforcement using Eq. (2) and hence the total tensile force in the reinforcement, $(A_{ps}f_{ps} + A_{s}f_{s})$.
- (d) Calculate the resultant concrete compression force C, using Eqs.
 (3), (4), (5), or (6), as appropriate.
- (e) Compare the calculated resultant compressive force C with the resultant tensile force $(A_{ps}f_{ps} + A_sf_s)$. If they are not within 1 percent of being equal, adjust the assumed value of "c" and recycle as often as necessary until this degree of agreement is reached. When the compressive and tensile forces are sufficiently close, the corresponding value of "c" may be assumed to be the neutral axis depth at flexural ultimate.

When the neutral axis depth has been obtained, the flexural strength may be calculated using whichever of the following equations is appropriate.

(a)
$$a < t;$$
 $M_n = C\left(d_p - \frac{a}{2}\right) + A_s f_s(d - d_p)$ (12)

(b)
$$t < a < t_1;$$

$$M_n = 0.85f'_c \left[A_4 + \left(\frac{B+b'}{2} \right) \left(a-t \right) \left\{ d_p - t - \left(\frac{a-t}{3} \right) \left(\frac{B+2b'}{B+b'} \right) \right\} \right]$$

$$+ A_s f_s (d-d_p) \quad (13)$$

where
$$b' = \left\{ B - \frac{(B-b)(a-t)}{(t_1-t)} \right\}$$
 (13A)

(c)
$$t_1 < a < t_2;$$

 $M_n = 0.85f'_c \left[A_5 + \left(\frac{b+b'}{2} \right) \left(a - t_1 \right) \left\{ d_p - t - \left(\frac{a-t_1}{3} \right) \left(\frac{b+2b'}{b+b'} \right) \right\} \right]$
 $+ A_s f_s (d-d_p)$ (14)

PCI JOURNAL/January-February 1979

37

Program	Dimension to be Entered								
Use Step	Single-Tee	(a) Rect.	(b) T-beam	(c)DblTee	(d)	I (I)	(e)InvTee	(f) Box A	(g) Box B
3 E	В	B	В	B	1.	В	В	В	B
3 F	b	*	bw	2b+		b _w	b	26	(B - 0.3D)
3G	b _w .	*	bw	2b.,	}	b,	Ь	2b	(B-D)
3H	t	h	t	t		+	h,	-	(h, ~ 0.5D)
3J	. † ₁	*	t	† .		t _i	h,	t	(h, - 0.5D)
3K	t2	*	h	h		h	h	ti	$(h_1 - 0.2D)$

No entry

(1) a≯ h₁

Fig. 5. Use of program for various sections.

where
$$b' = \left\{ b - \frac{(b - b_w)(a - t_1)}{(t_2 - t_1)} \right\}$$
 (14A)

(d)
$$t_2 < a;$$

 $M_n = 0.85 f'_c \left[A_6 + (a - t_2)(b_w) \left\{ d_p - \left(\frac{t_2 + a}{2} \right) \right\} \right] + A_s f_s (d - d_p)$ (15)

where $A_4 = (Bt)(d_p - t/2)$

$$A_{5} = A_{4} + \left(\frac{B+b}{2}\right)\left(t_{1}-t\right)\left\{d_{p}-t-\left(\frac{t_{1}-t}{3}\right)\left(\frac{B+2b}{B+b}\right)\right\} \quad (17)$$

(16)

$$A_{6} = A_{5} + \left(\frac{b+b_{w}}{2}\right) \left(t_{2} - t_{1}\right) \left\{d_{p} - t_{1} - \left(\frac{t_{2} - t_{1}}{3}\right) \left(\frac{b+2b_{w}}{b+b_{w}}\right)\right\}$$
(18)

Part 2 of the calculator program given in Appendix B calculates the nominal flexural strength M_n and the design flexural strength ϕM_n , using whichever of the above equations is appropriate. The program also prints out the reinforcement stresses at flexural ultimate and indicates whether the prestressed reinforcement has yielded. This corresponds to checking whether ω_p , $(\omega + \omega_p)$ or $(\omega_w + \omega_{pw})$ is less than 0.30, as required by ACI 318-77.

Although the program was written initially for the single-tee section shown in Fig. 4, it can also be used for a variety of other sections, such as those shown in Fig. 5. All that is necessary is to make the substitutions shown in Fig. 5 when entering the section dimensions in User Instruction Steps 3E through 3K (Table B1).

Examples of Use of the Programs

In the following examples, the calculator "print out" is shown in *italics*.

Example 1

Calculate the coefficients of the stress-strain curve equation, and ϵ_{se} corresponding to $f_{se} = 160$ ksi, given:

 $\begin{array}{lll} f_{pu} &= 270 \ \mathrm{ksi} & f_{pv} = 240 \ \mathrm{ksi} \\ K &= 1.04 & E &= 28,000 \ \mathrm{ksi} \\ \epsilon_{pu} &= 0.05 & A_s = 0.153 \ \mathrm{in.^2(1/2-in.} \ \phi \ \mathrm{strand}) \end{array}$

1. Load "Prestressing Steel, Stress-Strain Curve" program.

2. Switch at "MAN,"-No input data record.

3. Store data using keystrokes:

240 <u>STO</u> A ,	[STO] B, 270 [STO] C,	
0.05 STO D,	28,000 STO E, 0.153 STO	4.

4. Press $\overline{A} \rightarrow 0.0177 \text{ (coefficient } Q)$

5. Press $\mathbb{B} \rightarrow 7.9694 \ (\text{coefficient } R)$

6. Check stress at $\epsilon = 0.01$ (i.e., f_{py}), using keystrokes

 $\boxed{\mathbf{C}} \quad 0.01 \quad \boxed{\mathbf{R/S}} \rightarrow 0.0100 \quad (\epsilon)$

7. For any other strain " ϵ ," use keystrokes:

$$|\mathbf{R}/\mathbf{S}| \rightarrow$$

$$f_s$$
 (ksi)
 F_s (kip)

8. Calculate ϵ_{se} for $f_{se} = 160$ ksi, using keystrokes:

$$E 160 \overline{R/S} \rightarrow 160.0 \ (f_{se}, ksi)$$

0.0057 (ϵ_{se})

Example 2

Calculate the flexural strength of an 8ST 36 Single-Tee, prestressed with 18, $\frac{1}{2}$ -in. ϕ , 270K strands with an effective depth of 31 in. In addition, six unprestressed $\frac{1}{2}$ -in. ϕ , 270K strands are provided, with an effective depth of 33.5 in. The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 5000 psi.

Assume that the "Prestressing Steel, Stress-Strain Curve" program has just been run, so that the data relating to the steel are in the correct locations.

- 1. Load "Flexural Strength of P.S.C. Beam, (Part 1)," program.
- 2. Switch at "MAN,"—No input data record.
- 3. Store data using keystrokes:

$31.00 \langle d_p \rangle$	STO	4,	33.50(d)	STO	5,
2.754 (A _{ps})	STO	6,	0.918 (A _s)	STO	7,
f P≈S					
96.00 (B)	STO	0,	14.00 (b)	STO	<u>1</u> ,
$8.00 (b_w)$	STO	2,	1.50 (t)	STO	3,
$4.50(t_1)$	STO	4,	$7.50(t_2)$	STO	5,
$5.00 (f'_c)$	STO	6,	0.85	STO	7,
f P≈S					

4. Calculate c, C, and T. (Initial estimate of c = 2 in., say.) Use keystrokes:

2.00 {c(initl.)} \overline{A} \rightarrow 3.08 (c, in.)

951.74 (C, kip)

- 958.74 (T, kip) 5. Load "Flexural Strength of P.S.C. Beam (Part 2)," program.
- 6. Store f_{py} in R8, using keystrokes:

240 STO 8

7. Calculate f_{ps}, f_s, M_n , and ϕM_n .

Press A

 $261.50 \ (f_{ps}, ksi)$

- 259.87 (f_s, ksi) 28976.58 (M_n, kip-in.) 2414.72 (M_n, kip-ft) 26078.92 (\$\phi M_n\$, kip-in.) 2173.24 (\$\phi M_n\$, kip-ft]
- Store E/(Kf_{py}) in R8 in preparation for analyzing next section, using keystrokes:

112.18 STO 8 112.18 (E/Kf_{py})

Example 3

Calculate the flexural strength of a 24IT48 Inverted Tee, prestressed with 20, $\frac{1}{2}$ -in. ϕ , 270K strands with an effective depth of 45 in. The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 5500 psi.

1. Load "Flexural Strength of P.S.C. Beam (Part 1)," program.

- 2. Say switch at "NORM" for record of input data.
- 3. Store data using keystrokes:

$45.0 (d_p)$	STO	$\underline{4} \rightarrow$	45.00 STO4
3.06 (A _{ps})	STO	6 →	3.06 STO6
0 (A _s)	STO	$\overline{7} \rightarrow$	0.00 STO7
f P≈S		\rightarrow	P₴S
12 (B)	STO	<u>0</u> →	12.00 STO0
24 (b)	STO	$1 \rightarrow$	24.00 STO1
	STO	2 →	STO2
$32(h_1)$	STO	3 →	32.00 STO3
	STO	4 →	STO4
48 (h)	STO	5 →	48.00 STO5
$5.5~(f_{c}')$	STO	6 →	5.50 STO6
0.85	STO	7 →	0.85 STO7
f P₹S			P₽S

4. Calculate c, C, and T. (Initial estimate of c = 12 in., say.) Use keystrokes:

12.00 {c(initl.)} $\overline{A} \rightarrow 12.00 \text{ GSBA}$

17.10 (c, in.) 743.42 (C, kip) 745.59 (T, kip)

5. Load "Flexural Strength of P.S.C. Beam, (Part 2)," program.

6. Store f_{py} in R8, using keystrokes:

240 STO 8 240.00 STO8

7. Calculate f_{ps} , M_n , and ϕM_n .

Press A

GSBA

243.66 (f_{ps}, ksi) 28528.22 (M_n, kip-in.) 2377.35 (M_n, kip-ft) 25675.40 (ϕ M_n, kip-in.) 2139.62 (ϕ M_n, kip-ft)

8. Store $E/(Kf_{py})$ in R8 in preparation for analyzing next section, using keystrokes:

112.18 STO 8 112.18 (E/Kf_{py})

Example 4

Calculate the flexural strength of an 8DT32B Double Tee, prestressed with 28, $\frac{1}{2}$ -in. ϕ , 270K strands with an effective depth of 28.5 in. The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 6000 psi.

1. Load "Flexural Strength of P.S.C. Beam (Part 1)," program.

2. Say switch at "NORM" for record of input data.

3. Store data using keystrokes:

$28.5 (d_p)$	STO	4 →	28.50 STO4
4.28 (A _{ps})	STO	<u>6</u> →	4.28 STO6
$0 (A_s)$	STO	$\overline{7} \rightarrow$	0.00 STO7
f P ₹ S		\rightarrow	P₹
96 (B)	STO	$\overline{0} \rightarrow$	96.00 STO0
$19.50 (2b_t)$	STO	$1 \rightarrow$	19.50 STO1
$12.00(2b_w)$	STO	$2 \rightarrow$	12.00 STO2
2.00(t)	STO	3 →	2.00 STO3
	STO	$\underline{4} \rightarrow$	STO4
32.00(h)	STO	<u>5</u> →	32.00 STO5
$6.00(f_c')$	STO	6 →	6.00 STO6
0.85	STO	7 →	0.85 STO7
f P≈S			P₽S

4. Calculate c, C, and T. (Initial estimate of c = 3 in., say.) Use keystrokes:

 $3.00 \{c(\text{initl.})\}$ A

3.00 GSBA

4.14 (c, in.) 1088.66 (C, kip) 1098.88 (T, kip)

5. Load "Flexural Strength of P.S.C. Beam, (Part 2)," program.
6. Store f_{py} in R8, using keystrokes:

240 STO 8

240.00 STO8

7. Calculate f_{ps} , M_n , and ϕM_n

Press A

GSBA

256.75 (f_{ps}, ksi) 29768.16 (M_n, kip-in.) 2480.68 (M_n, kip-ft) 26791.35 (ϕ M_n, kip-in.) 2232.61 (ϕ M_n, kip-ft)

Concluding Remarks

Calculator programs for determining the flexural strength of bonded prestressed concrete beams, and the equations on which they are based, have been presented. The programs are applicable to most beam cross sections in current use. They make use of the actual stress-strain curve of the prestressing steel and hence in many cases yield a less conservative value of flexural strength than is obtained when use is made of Eq. (18-3) of ACI 318-77. Although the programs apply specifically to the Hewlett Packard, HP-67/97 calculators, they could readily be adapted to other types of programmable calculators.

References

- 1. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-77)," American Concrete Institute, Detroit, Michigan, 1977, p. 70.
- Naaman, A. E., "Ultimate Analysis of Prestressed and Partially Prestressed Sections by Strain Compatibility," PCI JOURNAL, V. 22, No. 1, January-February 1977, pp. 32-51.
- 3. Menegotto, M., and Pinto, P. E., "Method of Analysis for Cyclically Loaded R.C. Plane Frames, Including Changes in Geometry and Non-Elastic Behavior of Elements Under Combined Normal Force and Bending," International Association for Bridge and Structural Engineering, Preliminary Report for Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, 1973, pp. 15-22.
- Wheeler, W., "Fast Programming on Small Calculators," Civil Engineering-ASCE, April 1977, pp. 58-60.
- Mattock, A. H., and Kriz, L. B., "Ultimate Strength of Structural Concrete Members with Nonrectangular Compression Zones," ACI Journal, Proceedings V. 57, No. 7, January 1961, pp. 737-766.
- Mattock, A. H., Kriz, L. B., and Hognestad, E., "Rectangular Concrete Stress Distribution in Ultimate Strength Design," ACI Journal, Proceedings V. 57, No. 8, February 1961, pp. 875-928.

APPENDIX A — USER INSTRUCTIONS AND PROGRAM LISTING FOR PRESTRESSING STEEL STRESS-STRAIN CURVE PROGRAM

Fable A1. User Instructions fo	r "Prestressing Ste	el, Stress-Strain Curve'	' Program.
--------------------------------	---------------------	--------------------------	------------

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load side 1 and side 2			
2	Switch to "NORM" if data input record is required		-	
3	Store f_{py} in A K in B f_{pu} in C ε_{pu} in D E in E A_s in R ₄ (If value of K is unknown, use 1.04. A_s = area of strand, bar or wire.) Calculate coefficient 0	f _{py} (ksi) K fpu (ksi) [©] pu E (ksi) A _S (in. ²)	STO A STO B STO C STO D STO E STO 4	
4			А	Q
5	Calculate coefficient R		В	R
6 6A	Io calculate f_S and F_S for a given ϵ . Enter ϵ	ε	C R/S	€ f _s (ksi) F _s (kip)
7	For other values of ε repeat step 6A			
8	To calculate ϵ_{se} (strain due to the effective prestress fse, ksi)		Е	
8A	Enter f _{se}	f _{se} (ksi)	R/S	f _{se} (ksi) ^e se
	(Step 8A also stores (E + ϵ_{se}) in R] and f_{pu} in R0, and step 5 stores E/(K f_{py}) in R8, for use in prestressed beam flexural strength program.)			

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Calculate Q		RCLA	36 11	fpu
<u> </u>	RCLC	36 13			RCLB	36 12	K '
	RCLB	36 12			X	-35	
	RCLA	36 11		060	÷	-24	
	X	-35			<u>ST08</u>	35 08	E/(Kf _{DV}) in R8
	-	-45	(f _{pu} – Kf _{py})		0	00	P3
	RCLD	36 14	· • • •		RTN	24	
	RCLE	36 15			*LBL1	21 01	Calculate f(R)
	Х	- 35	εομΕ			-62	= 0.01Q - f _D y/E
010	RCLB	36 12	- P		0	00	0.01(0-1)
	RCLA	36 11			1	01	$\frac{1}{1+}$ (.01E) R(1/R
	х	- 35			RCLE	36_15	Kfpv (
	-	-45	$(\varepsilon_{\rm DIL} - Kf_{\rm DV})$		Х	-35	
	÷	-24	, p	0.70	RCLA	36 11	fpy
	PRTX	-14	0		\$	-24	
	ST02	35.02	<u>`</u>		RCLB	36 12	K
	RTN	24			÷	-24	0.01E/(Kf _{pv})
	*LBLB	21 12	Calculate R		RCL3	36 03	R
	0	00	1		γx	31] () ^к
020	5107	35.07	1		1	01	
020	STOR	35 08	1		+	-55	{1 + () ^R }
	3 3	03	Initial estimate of		RCL3	36 03	R
	ST03	35.03	R		1/X	52	
	2	02	Compute initial cor-	080	γx	31	$\{1 + ()^{R}\}^{1/R}$
	÷	-24	rection	[1	01	
	STOR	35 08			RCL2	36 02]Q
	GT01	22 01	Go to f(R)		-	-45](1 - Q)
	*1813	21 03		[XŻY	-41	
	V=02	16-13	If $f(R) = 0$ go to		÷	-24	
030	GT04	22 04	print out			-62	
030		26.07	If $f(R) \neq 0$ exchange	-	0	00	
	V->A	41	f(R) (previous) with		1	01	
	ST07	35.07	f(R) (new)		X	- 35].01(1-Q)/{ } ^{1/R}
	<u></u>	-45		090	RCL2	36 02]0
	1/2	52	Compute new correc-			-62] .
		36.07	tion		0	00	
		_35			1	01] .
	PC18	36.08			x	- 35]0.010
		- 35	1		+	-55	
040	STOR	35 08	4		RCLA	36 11	
1040	ST00	25 15 02	Subtract from R		RCLE	36 15	
	BCI 3	36 03			÷	-24	fpy/E
<u> </u>	<u> </u>	-24	1		-	- 45	f(R)
 	ARC	16 31	Lf correction is	100	GT03	22 03	
	HD2	-62	less than 0.1% of R		*LBLC	21 13	Calculate fs
	i	1 00	Tao to print out: if		DSP4	-63 04] .
	0	1 00	Inot go to land		R/S	51	Enter ε
 	1 <u> </u>	01	make another itera-		PRTX	-14	1
	X 5 V ?	16-34	Ition		ENT+	-21	_
050	GT04	22 04	1,000		ENT+	-21	1
1000	6101	22 01	1		RCL8	36 08	
	+IRIA	1 21 04	Recall final value		X	- 35	_(cE/Kfpy)
	RCI 3	36 03	of R and print.		RCL3	36 03	
	PRTX	-14		110	YX	3]	Ц() ^к
	SPC	16-11]	L	1	01	-1 $()$ R_{2}
	RCLE	35-15	1E	1	<u> </u>	-55	
			REG	STERS	3		
O fp	1 E +	Ese 2 Q	3 R 4 As	5	6	7 1/5	8 1/3 9
SO	SI	S2	S3 S4	<u> \$5</u>	156	157	158 159
A	'nv	IB K	C fpu	DE	>pu	IE L	11

Table A2. Part (a) of Program Listing for "Prestressing Steel, Stress-Strain Curve" Program.

PCI JOURNAL/January-February 1979

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	RCL3	36.03	- COMMENT		INCI CHINI	KLI CODE	0000000
	1/X	52	1/R	170			
	ΥX	31		·			
	1/X	52	$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$	ĸ			-
	RCI 2	36.02	0				
	-	-45	Y .		1		
120	X	- 35	[(1-Q)/{1+() ^R } ¹	/R]
	RCL2	36 02	Q		ļ		
	, +	-55		,	<u> </u>		
	RCLE	- 30	e[Q+()/{ }'/']	180			
	X	-35	fe	100	1		
	DSP1	-63 01					
	PRTX	-14					
	RCL4	36 04	A _S				
130	DSP2	-63 02					
	PRTX	-14	Fs = Asfs				1
	SPC	16-11	5				
i	0	22 12		100			
	10100 *1815	22 13		190			
	0	00	saleanate -se				
	R/S	51	Enter f _{se}				
	DSP1	-63 01		ļ			
140	PRTX	-14					
140	DSP4 PCLE	-03 04	F				
	÷	-24					
	PRTX	-14	ese				
	SPC	16-11	-	200			
	RCLE	36 15	£				
	ST01	35.01	$(E + \varepsilon_{co})$ in R1				
	RCLC	36 13	(= ⁰ Se,				
	STOO	35 00	f _{pu} in RO				
150	GTOE	22 15	•				
				210			
├ 							
160							
				ļ			
				220			
			LABELS		FLAGS	S	ET STATUS
A Q	<u>B R</u>	C fs	å Fs D -	E Ese	0	FLG.CH OFF	TRIG DISP.
0		R) 2		e /		니 브 브	
5	6	7		9	3		BAD D D A

Table A3. Part (b) of Program Listing for "Prestressing Steel, Stress-Strain Curve" Program.

APPENDIX B — USER INSTRUCTIONS AND PROGRAM LISTING FOR FLEXURAL STRENGTH OF P.S.C. BEAM

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Load side 1 and side 2				
2	Switch to "NORM" if data input record is required				
3	Store:-				
ЗA	Effective depth of prestressing steel	d _p (in.)	ST0	4	
3B	Effective depth of unprestressed steel	d (in.)	ST0	5	
30	Area of prestressing steel	A _{ps} (in. ²)	ST0	6	
3D	Area of unprestressed steel (Exchange registers)	A _s (in. ²)	STO f	7 P≵S	
3E	Flange width B	B (in.)	ST0	0	
3F	Fillet width b	Ь (in.)	ST0	1	
3G	Web width b _w	b _W (in.)	ST0	2	
ЗH	Flange thickness t	t (in.)	STO	3	
3J	Flange thickness t _l	t ₁ (in.)	STO	4	
ЗК	Depth t ₂	t ₂ (in.)	STO	5	
3L	Concrete compressive strength f	f' (ksi)	STO	6	
ЗM	Coefficient 0.85	0.85	ST0	7	
	(Exchange registers)		f	P,,S	
4	If "Prestressing Steel, Stress-Strain Curve" program has not just been used to determine Q, R, $\epsilon_{\rm Se}$, etc.				
	Store:	f (kei)	STO	n	
4A	Steel ultimate strength Γ is keil and r = strain in		STO	1	
48	steel due to effective prestress	- ' ^c se	510	·	i.
4C	Coefficient Q for steel stress-strain equation	Q	STO	2	
4D	Coefficient R for steel stress-strain equation	R	STO	3	
4E	E/(Kf _{py}), (E and f _{py} in ksi, f _{py} is steel stress at 0.01 strain.	E/(Kf _{py})	STO	8	
	(These items of data are stored automatically by the "Prestressing Steel, Stress-Strain Curve" program.)				
5	Calculate neutral axis depth c, etc. Enter initial estimate of c, (in.). (Calculation time typically 1 to $1_2^{1/2}$ minutes.)	c (init.) (in.)	A		c (in.) C (kip) T (kip)

Table B1 User Instructions for "Fle>	ural Strength of P.S.C. Beam	(Part 1)."
--------------------------------------	------------------------------	------------

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 after running Part 1 of this program.			
2	Store f _{py} in R8	f _{py} (ksi)	STO 8	
3	Calculate		A	f _{ps} (ksi)
	Prints 0.00 after printing stresses if section is over-reinforced, i.e., if f _{ps} <f<sub>py.</f<sub>			f _s (ksi) M _n (k.in) M _n (k.ft) ΦM _n (k.in.)
4	If program is to be used to analyze another section using the same steel, E/(Kf _{py}) must be stored in R8 before using Part 1 of program again. Steps 4A through 4E may now be omitted when using Part 1 of program.	E/(Kf _{py})	STO 8	∲M _n (k.ft)

Table B2. User Instructions for "Flexural Strength of P.S.C. Beam (Part 2)."

-			COMMENTS	STED	KEY ENTPY	KEY CODE	COMMENTS
STEP	KEY ENTRY	KEY CODE	COMMENTS	SILP	DCI 3	26.03	R
001	*LBLb	21 16 12	Laiculate Al	<u> </u>	VX	30 03	()R
	RCLO	36 00	р +		I	ŏi	1` '
	RCL3	36 03		060	+	-55	$\{1 + ()^R\}$
	х	-35	A1 .	000	PCI 3	36.03	1
	RTN	24	6-11-to A	<u> </u>	1/1	52	11/8
	*LBLc	21 16 13	Laiculate A2	<u> </u>		31	1_{1+1} R_{1}
	GSBb	23 16 12	A1		1/1	52	11/1 14/R
	RCLO	36 00	В		1	01	171 7
	RCL 1	36 01	D		PCI 2	36.02	10
010	+	-55				-45	-14
	2	02				-35	$\frac{1}{1}$
	÷	-24	(B + D)/2			36 02	
	RCL4	36 04		070	I NULL	-55	14
	RCL 3	36 03	L L	1010	+ <u>T</u>	-35	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	-	-45	(B+b)			36.01	
	X	- 35	$(t_1 - t_1 - 2)$			-35	$\int_{f_{a}}^{h} (calc_{a})$
	+	- 55	H2	}	T PCLO	36 00	
	RTN	24	0-11-+- 4			16-35	$f_{\rm f}^{\rm ipu}$
	*LBLd	21 16 14	Laiculate A ₃			24	lfe=fnu
020	GSBc	23 16 13	A ₂			-41	lif not fr=fr(calc.
	RCL1	36 01	, D	—	RTN	24	1, 100, 15 .5(00101
	RCL2	36 02	↓ ^D w		*I BI F	21 15	Calc. 0.003(d-c)/c
	+	-55	4	080	RCIT	36 46	- C
	2	02		1000	- NOLI	-45	d(d-c)
	÷	-24	$(b + b_W)/2$		RCLT	36.46	
	RCL5	36 05	t_2			-24	$\frac{1}{(d - c)/c}$
	RCL4	36 04	t_1		<u>ï</u>	-62	-1
	-	-45	$-\frac{1}{2}$ (b + bw)		- <u></u>	00	1
	X	- 35	$(t_2 - t_1) = \frac{1}{2}$			00	-
030	+	-55				03	-1
	RTN	24				- 35	$\int 0.003(d-c)/c$
	*LBLe	21 16 15	Calc. () () ())			24	-10:000(- 0)/ -
	RCL8	36 08	$a \times in Eq. 4 \& 5$	1000		21 11	Calc cetc.
	RCI C	36 13	$\Box C = t_1 \text{ or } t$	1090		35.46	Initi cin I
		-45	_		PCLA	36 04	
	ST09	35 09	-l		GSRE	23 15	$\frac{1}{1000}$
	RCLD	36 14	$D = t_1 \text{ or } t_2$			36 01	-10.000 (ap c// c
	RCLC		C		FRC	16 44	
		-45	-1,,		+ +	-55	Teps
040	÷	-24	-(a-C)/(D-C)		GSBI	23 01]f'_s
	RCLB	36 12	$B = b \text{ or } b_W$		RCL 6	36.06	Aps
	RCLA	36 11	_A=Borb		X	-35	TT=Apsfps
		-45	-1	100	STOG	35 09	
	X	-35	-1	100	RC1 7	36 07	As
	2	02			X=0?	16-43	IF As=0
	÷	-24	$-\left(\frac{2}{2}\right)\left(D-C\right)$		GT02	22 02	go to 2
	RCLA	36 11			BCI 5	36 05	lif not, RCL d
	+	-55			GSBE	23 15	0.003(d-c)/c
	RCL9	36 09	-1 (2.2) (2.1)		GSB1	23 01	fs
050	X	-35			RCI 7	36 07	As
	RTN	24			- NOL/	- 35	T ₂ =Asfs
	*LBL1	<u> 21 gl</u>	-1 taiculate T_S , ε in		*LBL2	21 02	
	ENTA		X at start	110	STOE	35 15	
	ENIT		-(E/Kfpy)		ST+9	35-55 09	$T = T_1 + T_2$
}	- KUL8	30 00			P컱S	16-51	Exch. Reg.
	<u>X</u>		RE RE	GISTER	R S		L. L/VC
h		Eag 12 0	13 R 14 dn	5	d 6 Ap	s 7 As	8 E/Ktpy 9 1
	pu lot	-se c v	S3 t S4 ti	S5	t2 S6 f	S7 0.	<u>35 IS8 a IS9 T/S</u>
SO	R 21 D			D	T/S	E T/	S 1 C
1 0	175	10 1/3					

Table B3. Part (a) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 1)."

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	4	04			RCL1	36 01	
	RCL6	36 06] fč	170	STOA	35 11	b in RA
	X>Y?	16-34]If fb>4 ksi		RCL2	36.02	
	GT04	22 04	go to 4		STOB	35 12	bw in RB
	RCL7	36 07	If not, $\beta_1 = .85$		RCL4	36 04	- "
	GT05	22 05			STOC	35 13	t ₁ in RC
	*LBL4	21 04	(fk in X)		RCL 5	36 05	
120	8	08			STOD	35 14	t ₂ in RD
	X≤Y?	16-35	If f2>8 ksi		GSBC	23 16 13	A2
	GTQ6	22 06	ao to 6		GSBe	23 16 15	$()_{I} () ()_{1}$
	4	04	If not, calc B.		+	-55	$\Gamma_{\ell}(1)(1)$
	RCL6	36 06		180	GT08	22 08	
	-	-45	$-(f_{2}^{1}-4)$		*LBLO	21 00	(a in X)
	2	02			GSBd	23 16 14	A.
	0	00	1		RCL8	36.08	a
	÷	-24	= 05(f' = 4)		RCI 5	36.05	t
	RCL7	36 07	0.85		-	-45	2
130	+	-55	B.		RCL 2	36.02	bur
	GT05	22 05	P1		X	-35	- "
	*LBL6	21 06			+	-55	$[A_{+} + (a_{-} + .)(b_{+})]$
		-62			*1 BL8	21 08	L''3 (" "2/(5W/)
	6	06		190	RCL 6	36.06	f¦
	5	05	β1 = .65		RCL 7	36.07	0.85
	*LBL5	21 05	-		X	- 35	0.00
	RCLI	36 46	с		×	-35	C = 85fl]
	х	-35	a=β ₁ c		P+S	16-51	Exch Reg
	ST08	35 08	*		STOD	35 14	C in PD
140	RCL3	36 03	t		RCIG	36 09	T
	XŻY	-41			- 1025		'
	X>Y?	16-34	If a>t		RCLD	36 14	c
	GT07	22 07	qo to 7		+	-24	(C - T)/C
	RCLO	36 00	Ĕ	200	CHS	22	(0 - 1)/0
	х	-35	Ba		STOA	35 11	-(C - T)/C in PA
	GT08	22 08			ABS	16 31	1(c - T)/c
	*LBL7	21 07	(ain X)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	62	1(0-1)/0]
	RCL4	36 04	tı		0	-02	1
	X≭Y	-4]	-		Ť l	01	
150	X>Y?	16-34	If a>t₁		X>Y?	16-34	$If \left[(C - T)/C \right]$ is
	GT09	22 09	go to 9		GTOD	22 14	≤ 01 go to D
	RCLO	36 00	•		RCLA	36 11	If not PCI
	STOA	35 11	B in RA			-62	-(C - T)/C
	RCL1	36 01		210	.7	07	-(0-1)/0
	STOB	35 12	b in RB		x	-35	$K_1 = -7(C - T)/C$
	RCL3	36 03			1	0]	
	STOC	35 13	t in RC		+	-55	$(1 + K_2)$
	RCL4	36 04			RCLI	36 46	Init val of c
	STOD	35 14	t _l in RD		x	-35	New est of c
160	GSBe	23 16 15	(){()}		GTOA	22 11	
	GSBb	23 16 12	A ₁		*LBLD	21 14	1
	+	- 55	$[A_1 + () \{ () \}]$		RCLI	36 46	2
	GT08	22 08			PRTX	-14	Print c
	*LBL9	21 09	(a in X)	220	RCLD	36 14 (
	KUL5		t ₂		PRTX	-14 F	rint C
	-X÷Y	-41	1£		RCL9	36 09 1	r
		22 00	$T = d > t_2$		PRTX	<u>-14</u>	Print T
l.		22 00	JARELS		KIN I	24 19	top
A Calc	IB	<u>-</u>	LADELS		FLAGS	SE FLC ON OFF	I STATUS
	· 15 7			¥	<u> </u>		DEC DISP.
<u>~</u>				<u>, v</u>	t	17 님 님	SCI D
Ĕ Ź				¥	4	2 0 0	GRAD ENG
<u>× </u>	V	V	10 V 19	¥	15	13001	KAU GIN= 2 I

Table B4. Part (b) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 1)."

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*1 RI A	21 11	Calculate		2	02	
001	SDC	16-11			÷	-24	$(C - D)_f = 1$
	DCI 0	36 09	Т		RCLA	36 11	2
		36 15	Asf	060	RCLB	36 12	` ´
	- ijsel-	-45	Apsfns		+	-55	(A + B)
	RCI 6	36 06	Ans		X	- 35	()(){}
	+	-24	P.5		RTN	24	
	PRTX	-14	f _{ps}		*ĿBLc	21 16 13	Calculate A ₄
	STOA	35 11			RCL 3	36 03	lt .
010	RCLE	36 15	Asfs		2	02	
	RCL7	36 07	A _s		÷	-24	
	X=0?	16-43	If A _s =0		CHS	-22	-t/2
	GT04	22 04	go tō 4		RCLE	36 15	dp
	÷	-24	fs	0.70	+	-55	$(d_p - t/2)$
	PRTX	-14			RCLO	36 00	в
	*LBL4	21 04			×	-35	1.
	RCLA	36 11	†ps	J	KCL3	36 03	IT.
	RCL8	36 08	[†] py		×	-35	n ₄
	<u>X≤Y?</u>	16-35	lf fpy ≤ fps	 	RIN	24	Calculato A
020	GT03	22 03	go to 3		- TRPG	41 10 14	carculate A5
	0	00	lf not,	ļ	RCL0	30 00	B in PA
L	PRTX	-14	print 0.00	J	STUA	32 01	
L	+LBL3	21 03	ł	1000	KCLI	35 10	h in PR
	SPC SPC	16-11	ł	1080	STUR	30 12	
	GTOB	22 12		 	RCL4	30 04	t in PC
L	*LBLa	121 16 11	uaic. A _{sts} (d-d _p)	┣		36 03	
ļ	RCL5	36 05	a ·	 	KUL3	36 14	t in PD
Ļ	RCL4	36 04	ab	 	STUD	23 16 12	
		-45	4		L GOD	23 16 12	
030	RCL9	36 09	ASTS (PORC		
		-35	Astsla-ap)	 	RTN	24	1''5
}		24			*IRIA	21 16 15	Calculate A.
J	LELD	121 16 12		000	RCI 1	36.01	
}			A=B & B on F	1000	STOA	25 11	b in RA
<u> </u>		1 <u>-36-12-</u>			RCI 2	36 02	
 	+ <u>.</u> -	+	↓ b or b _W		STOR	35 12	b _w in RB
	<u>+×</u>	+ <u>35</u>	(A + 2P)		RCI 5	36 05] "
<u> </u>	RCIA	26 11	1 ^{\M + 2D}	-	STOC	35 13	t, in RC
040	RCIR	26 12	1	—	RCI 4	36 04] 4
1040	+		1		STOD	35 14	lt, in RD
<u> </u>	+		(A+2B)//A+D)		GSBb	23 16 12](')(){-}
	RCID	36 14	D = t + t + n + n		STOT	35 46	1
t	RCLC	36 13	$u = u_{1} u_{1} u_{1} u_{1} u_{1} u_{1} u_{1}$	100	GSBd	23 16 14	A ₅
<u> </u>	-	-45	- a, a, t Ur t2		RCLI	36 46	
<u> </u>	3	03]		+	-55	A ₆
<u> </u>	1 ÷	-24			RTN	24	4
<u> </u>	×	- 35	$\frac{ U - U }{ A + 2B }$		*LBLE	21 15	_Calculate b'
	RCLD	36 14	J(> J(A+B)		RCL8	36 08	la .
050	-	-45			RCLD	36 14	$-1^{U=t \text{ or } t_1}$
	RCLE	36 15	1	ļ	+	-45	A=B or b
	+	-55	_{{d _p - D - ()()}		+ RULA	1 30 11	TR=h or h
L	RCLC	36 13	4	110	F ROLB	-45	
<u> </u>	H RCLD	1 36 14	4	10	+	_ 35	(A - B)(a - D)
		-45	- (c-n)r }			36 13	$\mathbf{c} = t_1$ or t_2
<u> </u>	<u> </u>	-35	PEG	ISTERS	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
6		0 2 0	3 R 14 dn	15 d	l6 Ans	7 As	8 fpy 9 T/S
Her TP	$\frac{1}{2} + \frac{1}{2}$	SE CO h.	S3 t S4 ti	S5 t	2 156 fr	\$7 0.85	58 a S9 T/S
130	<u>- 131 D</u>				T/S	E T/S	1 T/S
LA	1/3	10 1/3					

Table B5. Part (a) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 2)."

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	RCLD	36 14			STOD	35 14	t ₁ in RD
	-	-45	(C – D) *	170	GSBE	23 15	1 b [†]
	÷	-24	(A - B)(a - D)/(C - D)	RCL8	36 08	1
	CHS	- 22	(-()(-)/(-)		STOC	35 13	la in RC
	RCLA	36 11	A		GSBb	23 16 12	
	+	-55	b'		STO9	35.00	
	STOR	35 12	b' in PB		GSBC	22 16 12	1.
120	RTN	24	D HIND	· · · · · · · · · · · · · · · · · · ·	PCLO	23 10 13	- ^{A4}
	*1010	21 12	Coloulate M		RUL9	30 09	
		26 16	carculate mn		+	- 55	$\left\{ \left[A_{4} + \left(\right) \left(\right) \left\{ \right\} \right\} \right\}$
	<u>KLLE</u>	0	ASTS		*LBL8	21.08	1
	5109	35 09			RCL/	36_07	10.85
	RCL4	36 04	dp	180	X	- 35	
	STOE	35 15			RCL6	36 06	fċ
	<u>₽</u> ₽\$	16-51	Exch. Reg.		Х	-3 5	0.85f
	RCL8	36 08	a		GT09	22 09	
	RCL3	36 03	t		*LBL1	21 01	(a in X)
	X≭Y	-41			RCL 5	36 05	
130	X>Y?	16-34	If ast		γ , γγ	-41	°2
	GT00	22 00			V \ V2	16-34	TE ast
	2	02	90 CO 0		CT02		$11 d > l_2$
	<u> </u>	24				26 01	go to z
	- rus		-a/2	100	- KCLI	30 01	
			-4/2	190	STOA	35 11	bin RA
{	RULE		(1 . (2)		KULZ	36 02	
	+ 	-55	(up - a/2)		STOR	35 12	b _w in RB
	RCLD	3614			RCL5	36 05	
	X	- 35	C(d _p - a/2)		STOC	35 13	to in RC
	<u>*LBL9</u>	21 09			RCL4	36 04	
140	<u> </u>	16-51	Exch. Reg.		STOD	35 14	t, in RD
	GSBa	23 16 11	Asfs(d-dp)		GSBE	23 15	b'
	+	-55	Mn		RCL8	36 08	
	STOI	35 46			STOC	35 13	a in DC
	GSB5	23.05	To print out	200	CSBP	22 16 12	
	PCL I	36.46	M.		ST00	23 10 12	
			'n		000	35 09	_
	<u>a</u> .				GSBO	23 16 14	A ₅
			. 14		KUL9	36 09	
	*1 DLE		ቀካካ		+	-55	[A ₅ +()(){}]
160		2 05			GT08	22 08	-
100	PRIX	-14	Print M, (K.in.)		<u>*LBL2</u>	21 02	
		01			RCLE	36 15	đ
	2	02			RCL5	36 05	t ₂
	÷	-24			RCL8	36 08	a
	PRTX	-14	Print M, (K.ft)	210	+	-55	
	SPC	16-11			2	02	
	RTN	24			÷	-24	
T	*LBL0	21 00	(a in X)		-	-45	$\{d = (t_0 + a)/2\}$
	RCL4	36 04	t.		RC12	36 02	h.,
	XZY	-41	-1			25	S.W.
160	X >Y?	16-34	If ast			26 00	-
	GTOI	22 01	a + a		PCL5	- 20 08	a +
	RCLO	36 00	90 CO I		- NOLD -		L2
	STOA	35 11	P in PA			-45	(
	PCLI	26 01	DITINA	200-		- 35	$(a - t_2)(b_W)\{$
	STOP -		h da DD	220	2109	35 09	
	DCL 4	- 35 12	D IN RB		GSBe	23 16 15	A ₆
	STOC	20 04	t in DC		RCL9	36 09	
·						-55	$L_{H_6} + ()() \{ \}$
·	KLL3			LL	6108	22 08	
A Colo	······		LABELS	····	FLAGS	1 <u>SE</u>	T STATUS
A LAIC	· 18 /	IC	<u>v </u>		10	I'LG. ON OFF	TRIG DISP
<u>a</u>	b _/	c	v d v e	./	11	그은 뭐 뭐 !	DEG D LA M
0 /	/ V	2	/ 3 / 4	/	2	12 님 님	GRAD D ENG
5	16	17	8 / 9	1	13	366	RAD D n= 2

Table B6. Part (b) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 2)."

APPENDIX C—SUMMARY OF FEATURES OF THE HP67/97 CALCULATORS

The Hewlett Packard 67/97 calculators employ Reverse Polish Notation. They have 16 primary (direct) storage registers \emptyset through 9, A through E and I, as well as 10 secondary registers which are exchanged with the primary registers \emptyset through 9 by use of the P \leq S key.

Conditional tests such as $X \ge Y$? or X < Y? execute the next step in memory if the conditional expression is true, or skip one step before resuming execution if the conditional is false.

Other special functions which are available on other calculators or may easily be implemented are the following:

- R/S Run/Stop. Stops program execution for data entry. When key is pressed, begins execution from current step in program.
- LBLA Defines beginning of a routine (here labeled A). When label key (i.e., A in this example) is pressed, execution of program commences at this step.
- GTOA Causes calculator to stop execution and search downwards through program to first designated

label, and resume execution there, (i.e., directs branching of program).

- GSBA As GTOA, but at end of subroutine control is returned to next step after GSBA.
- RTN If at end of subroutine, returns control to next step after GSB instruction; otherwise stops execution and returns control to keyboard.
- ST-3 Subtracts the current value from memory register 3 and the result is stored in memory 3. Likewise, ST + 9 would add current value to memory register 9.
- DSP4 Fixes the display so that 4 digits are displayed to right of decimal point.
- FRC Obtains fractional part of a number.
- CHS Changes sign of current value.
- PRTX Prints the current value.
- SPC Advances the print paper one space.

The above summary is provided to assist in the translation of the programs given in this paper to a form suitable for other calculators.

53

APPENDIX D—NOTATION

Q

t

 t_1

F

- a = depth of equivalent rectangular stress block as defined in Section 10.2.7 of ACI 318-77,¹ in.
- A_{ps} = area of prestressed tension reinforcement, in.²
- A_s = area of non-prestressed tension reinforcement, in.²
- b = width of section at top of fillet (see Fig. 4), in.
- b' = width of section at distance "a" from extreme compression fiber, in.
- b_w = width of web or stem of section, in.
- B = width of flange at extreme compression fiber, in.
- c = distance from extreme compression fiber to neutral axis, in.
- C =resultant concrete compression force, kips

 d = distance from extreme compression fiber to centroid of unprestressed tension reinforcement, in.

- d_p = distance from extreme compression fiber to centroid of prestressed tension reinforcement, in.
- E = modulus of elasticity of reinforcement, ksi
- f'_c = compressive strength of concrete (measured on 6 x 12-in. cylinders), ksi
- f_{ps} = stress in prestressed reinforcement at nominal strength, ksi
- f_{pu} = specified tensile strength of prestressing steel, ksi
- f_{py} = specified yield strength of prestressing steel, ksi
- f_s = stress in unprestressed reinforcement at nominal strength, ksi or, stress in reinforcement at strain ϵ
- $f_s^* = f_s / f_{so}$
- f_{se} = effective prestress in prestressed reinforcement, ksi
- f_{so} = a reference stress (see Fig. 1)

- F_s = force in a single strand at strain ϵ , kips
- K = a coefficient
- M_n = nominal flexural strength of section, in.-lb or ft-lb

$$= \langle f_{pu} - K f_{py} \rangle / (\epsilon_{pu} E - K f_{py})$$

- R = a coefficient
 - = thickness of uniform width part of flange (see Fig. 4)
 - = depth to top of fillets (see Fig. 4)
- $t_2 = \text{depth to bottom of fillets (see Fig. 4)}$
- T = resultant tensile force in reinforcement, kips
- $\beta_1 = a/c$, factor defined in Section 10.2.7 of ACI 318-77
 - = strain

$$* = \epsilon / \epsilon_o$$

- ϵ_o = a reference strain (see Fig. 1)
- ϵ_1 = change in strain in prestressed reinforcement due to loading to nominal flexural strength
- ϵ_{cp} = strain in concrete at level of prestressed reinforcement due to prestress
- ϵ_{ps} = strain in prestressed reinforcement at nominal flexural strength
- ϵ_s = strain in unprestressed reinforcement at nominal flexural strength
- ϵ_{se} = strain in prestressed reinforcement due to effective prestress f_{se}
- ϵ_{su} = strain in prestressing steel at stress f_{pu}
 - = strength reduction factor as per Chapter 9 of ACI 318-77

$$\omega = (A_s/Bd)f_y/f_c'$$

ф

$$\omega_p = \langle A_{sp} / Bd \rangle f_{ps} / f_c'$$

 $\omega_{w},$ ω_{pw} = reinforcement indices for flanged sections computed as for ω and ω_{p} , except replace B by b_{w} , and reinforcement area is that required to develop compressive strength of the web only.