Flexural Strength of Prestressed Concrete Sections by Programmable Calculator

Alan H. Mattock
Professor of Civil Engineering
University of Washington
Seattle, Washington

Ithas always been recognized that the approximate Eq. (18-3) in ACI 318-77 ${ }^{1}$ for the stress in bonded prestressing steel at flexural ultimate, $f_{p s}$, was in general conservative. A more precise value for $f_{p s}$, and hence for the flexural strength, can be obtained by solving the equations of equilibrium of forces and of compatibility of strains across the section, making use of the actual stress-strain relationship for the prestressing steel. Until the advent of the computer and the programmable calculator, this was a time-consuming process and hence was little used.

In a 1977 paper, Naaman ${ }^{2}$ discussed the more precise approach. He showed how more accurate values of flexural strength could readily be obtained using a computer to solve the equations of equilibrium and compatibility, if the stress-strain curve for
the prestressing steel were expressed algebraically.
Since the time of Naaman's studies, there has been an explosion in the availability and the capabilities of small programmable electronic calculators. These machines now make it feasible and economic for any engineer to use the more precise method of calculation for flexural strength, with consequent economic advantages.

Prestressing Steel, Stress-Strain Curve

The stress-strain curve for prestressing steel typically consists of a linear part (corresponding to the region of elastic behavior), a sharply curved part in the vicinity of the nominal yield point stress, and an al-

The author presents calculator programs for the flexural strength of bonded prestressed or partially prestressed concrete sections of general form. The calculations make use of the actual stress-strain properties of the prestressing steel and in general result in less conservative values for flexural strength than are obtained through use of the approximate Eq. (18-3) of the ACI Building Code. Several detailed design examples show the application of the calculator programs.
most linear, slightly strain-hardening part reaching to failure.

Naaman represented the stressstrain curve by three separate equations, corresponding to the three parts of the curve identified above. He used two different linear equations for the first and third parts, and a fourth degree polynomial for strains between 0.006 and 0.014 . The eight coefficients of these equations were determined using the computer, so as to give the best fit.

This approach to algebraic representation of the steel stress-strain curve does not lend itself to use with a small calculator. Other possibilities were therefore investigated.

It has been found possible to represent the stress-strain curve of prestressing steel very closely using a single equation of the form:

$$
f_{s}^{*}=(1-Q) \frac{\epsilon^{*}}{\left(1+\epsilon^{* /}\right)^{1 / R}}+Q \epsilon^{*}
$$

where $f_{s}^{*}=f_{s} / f_{s o}$ and $\epsilon^{*}=\epsilon / \epsilon_{o}$.
In the above, f_{s} is the stress at a strain $\epsilon, f_{s o}$ and ϵ_{g} are a reference stress and its corresponding strain.

This form of equation was used by Menegotto and Pinto ${ }^{3}$ to represent the
stress-strain relationship for reinforcing bars subjected to cyclic loading beyond their yield point. The curve represented by Eq. (1) is shown in Fig. 1. The first part of the curve is linear with a slope of unity; the second part is curved, the radius of curvature becoming larger as the coefficient R decreases; and the third part is linear with a slope equal to the coefficient Q.

This form of curve has been adapted to represent the stress-strain curve of prestressing steel by making:

$$
f_{s o}=K f_{p y} \text { and } \epsilon_{o}=K f_{p y} / E
$$

Fig. 1. Curve corresponding to Eq. (1).

Fig. 2. Typical stress-strain curve for prestressing steel as represented by Eq. (2).
where
$K=$ a coefficient
$f_{p y}=$ specified yield strength of prestressing steel
$E=$ modulus of elasticity of prestressing steel

The equation then becomes:
$f_{s}=\epsilon E\left[Q+\frac{1-Q}{\left\{1+\left(\frac{\epsilon E}{K f_{p y}}\right)^{R}\right\}^{1 / R}}\right]$
where

$$
Q=\left(\frac{f_{p u}-K f_{p y}}{\epsilon_{p u} E-K f_{p y}}\right)
$$

The coefficient R is determined by solving Eq. (2) for the condition $f_{s}=f_{p y}$ when $\epsilon=0.010$. The values $f_{p u}$ and $\epsilon_{p u}$ are the specified tensile strength and the strain at tensile failure of the prestressing steel, respectively.

The curve corresponding to Eq. (2) is shown in Fig. 2. The initial slope is equal to the modulus of elasticity, the curve passes through the nominal yield point and the final slope corresponds to the measured strain-hardening behavior of the steel.

Eq. (2) can be made to correspond very closely to actual stress-strain
curves, as shown in Fig. 3, by use of appropriate values for the coefficients K, Q, and R. Using Eq. (2) it has been found possible to calculate the stress corresponding to a given strain to within 1 percent or less, for a number of actual stress-strain curves.

If the complete stress-strain curve for the steel is available, K is determined as follows:

Produce the two linear parts of the stress-strain curves until they meet. The stress corresponding to the point of intersection is $K f_{p y}$. Hence, obtain K. If the complete steel stress-strain curve is not available, a reasonable value to assume for K in the case of seven-wire strand is 1.04 .

In Appendix A are given the user instructions and the listing of a program for the Hewlett Packard HP67/97 programmable calculators, which will:

1. Determine the values of Q and R for the stress-strain curve for a particular steel, given $f_{p y}, f_{p u}, E$, $\epsilon_{p u}$, and K.
2. Calculate the stress and the force in a tendon of cross section A_{s}, for any given strain ϵ. (Agreement between the calculated and experimental stress-strain relationships can therefore be checked readily.)
3. Calculate the strain $\boldsymbol{\epsilon}_{s e}$ corresponding to the effective prestress $f_{s e}$ in a particular prestressed beam, and store as needed for a subsequent flexural strength calculation.

The solution of Eq. (2) to obtain R is carried out using an adaptation of Newton's method. ${ }^{4}$ This involves an iterative procedure and typically takes about 45 seconds. For this program to work, $K f_{p y}$ must be less than $f_{p u}$ and greater than about $0.75 f_{p u}$. This covers the characteristics of prestressing steels meeting the relevant ASTM specifications.

Fig. 3. Comparison of calculated values of f_{s} and ϵ with experimental stress-strain curves.

Calculation of Flexural Strength

The calculation of flexural strength is based on Section 10.2-Design Assumptions, of ACI 318-77; except that the stress in the reinforcement is assumed to be related to the strain in accordance with Eq. (2) above. Both the prestressed and the non-prestressed reinforcement is assumed to have the same stress-strain curve. Such a situation arises when sevenwire strand is used as both prestressed and non-prestressed reinforcement.

The stress and strain conditions in a bonded prestressed concrete beam are shown in Fig. 4. A single-tee section with a tapering flange and fillets at the web-flange junction is shown, but the
equations developed and the calculator program based on them are applicable to a variety of beam sections, as shown later.

Use is made of the equivalent rectangular stress distribution defined in Section 10.2.7 of ACI 318-77 when calculating the resultant compression force in the concrete at ultimate, and its center of action.* The width of the section at the bottom edge of the equivalent rectangular stress distribution is designated as b^{\prime}, i.e., at distance " a " from the maximum compression fiber.

The resultant concrete compression force C for various possible locations of the neutral axis is given by:

[^0]

Fig. 4. Stress and strain conditions in a prestressed single-tee.
(a) $a \leqslant t ; \quad C=0.85 f_{c}^{\prime} B a$
(b) $t<a<t_{1} ; \quad C=0.85 f_{c}^{\prime}\left[A_{1}+(a-t)\left\{B-\left(\frac{B-b}{2}\right)\left(\frac{a-t}{t_{1}-t}\right)\right\}\right]$
(c) $\left.t_{1}<a<t_{2} ; \quad C=0.85 f_{c}^{\prime} \left\lvert\, A_{2}+\left(a-t_{1}\right)\left\{b-\left(\frac{b-b_{w}}{2}\right)\left(\frac{a-t_{1}}{t_{2}-t_{1}}\right)\right\}\right.\right]$
(d) $t_{2}<a ; \quad C=0.85 f_{c}^{\prime}\left[A_{3}+\left(a-t_{2}\right) b_{w}\right]$

$$
\begin{gathered}
\text { where } A_{1}=B t \text { and } A_{2}=A_{1}+\left(\frac{B+b}{2}\right)\left(t_{1}-t\right) \\
\text { and } A_{3}=A_{2}+\left(\frac{b+b_{w}}{2}\right)\left(t_{2}-t_{1}\right)
\end{gathered}
$$

Since the reinforcement is bonded to the concrete, the change in strain in the reinforcement can be assumed equal to the change in strain in the adjacent concrete. The strain in the prestressed reinforcement at flexural ultimate $\epsilon_{p s}$, is therefore given by:

$$
\begin{align*}
& \epsilon_{p s}=\boldsymbol{\epsilon}_{s e}+\boldsymbol{\epsilon}_{c p}+\epsilon_{1} \\
& \boldsymbol{\epsilon}_{p s}=\boldsymbol{\epsilon}_{s e}+\boldsymbol{\epsilon}_{c p}+\mathbf{0 . 0 0 3}\left(d_{p}-c\right) / c \tag{7}
\end{align*}
$$

where
$\epsilon_{s e}=$ strain in reinforcement $A_{p s}$ due to effective prestress $f_{\text {se }}$
and
$\epsilon_{c p}=$ compressive strain in concrete adjacent to $A_{p s}$, due to prestress

The strain $\epsilon_{c p}$ is very small compared to $\epsilon_{s e}$ and ϵ_{1}, and for simplicity may be neglected. Hence we may write:

$$
\begin{equation*}
\boldsymbol{\epsilon}_{p s}=\boldsymbol{\epsilon}_{s e}+0.003\left(d_{p}-c\right) / c \tag{8}
\end{equation*}
$$

The strain in the unprestressed reinforcement at flexural ultimate ϵ_{s}, is given by:

$$
\begin{equation*}
\epsilon_{s}=0.003(d-c) / c \tag{9}
\end{equation*}
$$

The stresses $f_{p s}$ and f_{s} in the prestressed and unprestressed reinforcement at flexural ultimate, can be obtained by substituting the strains $\epsilon_{p s}$ and ϵ_{s} in Eq. (2). The total tensile
force in the section at flexural ultimate is then given by:

$$
\begin{equation*}
T=A_{p f} f_{p s}+\dot{A}_{s} f_{s} \tag{10}
\end{equation*}
$$

Equilibrium of forces in the section requires that:

$$
\begin{equation*}
T=C \tag{11}
\end{equation*}
$$

Solution of this equation yields the depth of the neutral axis at failure, c. Unfortunately, because of the variation in the width of the section and the complex stress-strain equation for the reinforcement, it is not possible to obtain a closed form solution for this equation. However, "c" can be evaluated by an iterative process, with the help of a programmable calculator.

In Appendix B are given the user instructions and the listing of a program for the HP-67/97 programmable calculators, Part 1 of which will calculate the neutral axis depth at flexural ultimate, using the following iterative process:
(a) Assume an initial value for " c."
(b) Calculate the strains in the
reinforcement using Eqs. (8) and (9).
(c) Calculate the stresses in the reinforcement using Eq. (2) and hence the total tensile force in the reinforcement, $\left(A_{p s} f_{p s}+\right.$ $A_{s} f_{s}$.
(d) Calculate the resultant concrete compression force C, using Eqs. (3), (4), (5), or (6), as appropriate.
(e) Compare the calculated resultant compressive force C - with the resultant tensile force $\left(A_{p s} f_{p s}+A_{s} f_{s}\right)$. If they are not within 1 percent of being equal, adjust the assumed value of " c " and recycle as often as necessary until this degree of agreement is reached. When the compressive and tensile forces are sufficiently close, the corresponding value of " c " may be assumed to be the neutral axis depth at flexural ultimate.

When the neutral axis depth has been obtained, the flexural strength may be calculated using whichever of the following equations is appropriate.
(a) $a<t ; \quad M_{n}=C\left(d_{p}-\frac{a}{2}\right)+A_{s} f_{s}\left(d-d_{p}\right)$
(b) $t<a<t_{1}$;

$$
\begin{array}{r}
M_{n}=0.85 f_{c}^{\prime}\left[A_{4}+\left(\frac{B+b^{\prime}}{2}\right)(a-t)\left\{d_{p}-t-\left(\frac{a-t}{3}\right)\left(\frac{B+2 b^{\prime}}{B+b^{\prime}}\right)\right\}\right] \\
+A_{8} f_{s}\left(d-d_{p}\right) \tag{13}
\end{array}
$$

where $b^{\prime}=\left\{B-\frac{(B-b)(a-t)}{\left(t_{1}-t\right)}\right\}$
(c) $t_{1}<a<t_{2}$;

$$
\begin{array}{r}
M_{n}=0.85 f_{c}^{\prime}\left[A_{5}+\left(\frac{b+b^{\prime}}{2}\right)\left(a-t_{1}\right)\left\{d_{p}-t-\left(\frac{a-t_{1}}{3}\right)\left(\frac{b+2 b^{\prime}}{b+b^{\prime}}\right)\right\}\right] \\
+A_{5} f_{s}\left(d-d_{p}\right) \tag{14}
\end{array}
$$

(e)

(f)

(g)

Program	Dimension to be Entered								
Use Step	Single-Tee	(a) Rect.	(b) T-beam	(c)Dbl-Tee		$I^{(1)}$	(e)Inv.-Tee	(f) Box ${ }^{(1)}$	(g) Box $\mathrm{B}^{(2)}$
3 E	B	B	B	B		B	B	B	B
3 F	b	*	b_{w}	$2 b_{+}$		b_{w}	b	$2 b$	(B-0.3D)
3G	$\mathrm{b}_{\text {w }}$	*	$\mathrm{b}_{\text {w }}$	$2 \mathrm{~b}_{w}$		b_{w}	b	$2 b_{w}$	$(B-D)$
3 H	+	h	t	$\stackrel{\text { + }}{ }+$		$\begin{aligned} & \mathrm{D}_{\mathrm{w}} \end{aligned}$	h_{1}	$\stackrel{\text { 2b }}{\text { w }}$	$\left(h_{1}-0.5 D\right)$
3J	t_{1}	*	t	\dagger		t_{1}	h_{1}	\dagger	$\left(h_{1}-0.5 D\right)$ $\left(h_{1}-0.5 D\right)$
3K	${ }^{+}$	*	h	h		h_{1}	h	t_{1}	$\left(h_{1}-0.20\right)$
* No entry		$a>h_{1}$		(2) Very nea	arly	a	2ht		

Fig. 5. Use of program for various sections.

$$
\begin{equation*}
\text { where } b^{\prime}=\left\{b-\frac{\left(b-b_{w}\right)\left(a-t_{1}\right)}{\left(t_{2}-t_{1}\right)}\right\} \tag{14~A}
\end{equation*}
$$

(d) $t_{2}<a$;

$$
\begin{equation*}
M_{n}=0.85 f^{\prime}\left[A_{6}+\left(a-t_{2}\right)\left(b_{w}\right)\left\{d_{p}-\left(\frac{t_{2}+a}{2}\right)\right\}\right]+A_{s} f_{s}\left(d-d_{p}\right) \tag{15}
\end{equation*}
$$

where $A_{4}=(B t)\left(d_{p}-t / 2\right)$

$$
\begin{align*}
& A_{5}=A_{4}+\left(\frac{B+b}{2}\right)\left(t_{1}-t\right)\left\{d_{p}-t-\left(\frac{t_{1}-t}{3}\right)\left(\frac{B+2 b}{B+b}\right)\right\} \tag{17}\\
& A_{6}=A_{5}+\left(\frac{b+b_{w}}{2}\right)\left(t_{2}-t_{1}\right)\left\{d_{p}-t_{1}-\left(\frac{t_{2}-t_{1}}{3}\right)\left(\frac{b+2 b_{w}}{b+b_{w}}\right)\right\}
\end{align*}
$$

Part 2 of the calculator program given in Appendix B calculates the nominal flexural strength M_{n} and the design flexural strength ϕM_{n}, using whichever of the above equations is appropriate. The program also prints out the reinforcement stresses at flexural ultimate and indicates whether the prestressed reinforcement has yielded. This corresponds to checking whether $\omega_{p},\left(\omega+\omega_{p}\right)$ or
$\left(\omega_{w}+\omega_{p w}\right)$ is less than 0.30 , as required by ACI 318-77.

Although the program was written initially for the single-tee section shown in Fig. 4, it can also be used for a variety of other sections, such as those shown in Fig. 5. All that is necessary is to make the substitutions shown in Fig. 5 when entering the section dimensions in User Instruction Steps 3E through 3K (Table B1).

Examples of Use of the Programs

In the following examples, the calculator "print out" is shown in italics.

Example 1

Calculate the coefficients of the stress-strain curve equation, and $\epsilon_{s e}$ corresponding to $f_{\text {se }}=160 \mathrm{ksi}$, given:

$$
\begin{array}{ll}
f_{p u}=270 \mathrm{ksi} & \\
f_{p y}=240 \mathrm{ksi} \\
K=1.04 & E=28,000 \mathrm{ksi} \\
\epsilon_{p u}=0.05 & A_{s}=0.153 \mathrm{in} .^{2}(1 / 2-\mathrm{in} . \phi \text { strand })
\end{array}
$$

1. Load "Prestressing Steel, Stress-Strain Curve" program.
2. Switch at "MAN,"-No input data record.
3. Store data using keystrokes:

4. Press $A \rightarrow 0.0177$ (coefficient Q)
5. Press $B \rightarrow 7.9694$ (coefficient R)
6. Check stress at $\epsilon=0.01$ (i.e., $f_{p y}$), using keystrokes

$$
\mathrm{C} 0.01[\mathrm{R} / \mathrm{S}] 0.0100(\epsilon)
$$

$$
\begin{aligned}
& 240.0\left(f_{s}, \mathrm{ksi}\right) \text { O.K. } \\
& 36.72\left(F_{s}, \mathrm{kip}\right)
\end{aligned}
$$

7. For any other stzain " ϵ," use keystrokes:

| $\boldsymbol{\mathrm { R } / \mathrm { S }} \quad \rightarrow$ | ϵ |
| :--- | :--- | :---: |
| | |
| | $f_{s}(\mathrm{ksi})$ |
| F_{s} (kip) | |

8. Calculate $\epsilon_{s e}$ for $f_{s e}=160 \mathrm{ksi}$, using keystrokes:

$$
\begin{aligned}
\mathrm{E} \quad 160 \boxed{\mathrm{R} / \mathrm{S}} \rightarrow & 160.0\left(f_{s e}, \mathrm{ksi}\right) \\
& 0.0057\left(\epsilon_{s e}\right)
\end{aligned}
$$

Example 2

Calculate the flexural strength of an 8ST 36 Single-Tee, prestressed with $18,1 / 2$-in. $\phi, 270 \mathrm{~K}$ strands with an effective depth of 31 in . In addition, six unprestressed $1 / 2$-in. $\phi, 270 \mathrm{~K}$ strands are provided, with an effective depth of 33.5 in . The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 5000 psi.

Assume that the "Prestressing Steel, Stress-Strain Curve" program has just been run, so that the data relating to the steel are in the correct locations.

1. Load "Flexural Strength of P.S.C. Beam, (Part 1)," program.
2. Switch at "MAN,"-No input data record.
3. Store data using keystrokes:

$31.00\left(d_{p}\right)$	STO	4,	$33.50(d)$	STO	[5,
$2.754\left(A_{p s}\right)$	STO	6,	$0.918\left(A_{s}\right)$	STO	7,

(f) $\mathrm{P} \rightleftarrows \mathrm{S}$

96.00 (B)	STO	0	14.00 (b)	STO	1],
$8.00\left(b_{w}\right)$	STO	2 ,	1.50 (t)	STO	3
$4.50\left(t_{1}\right)$	STO	(4)	7.50 (t_{2})	STO	5
$5.00\left(f_{c}^{\prime}\right)$	STO	[6]	0.85	STO	7,

f $\underset{\mathrm{P} \rightleftarrows \mathrm{S}}{ }$

4. Calculate c, C, and T. (Initial estimate of $c=2$ in., say.) Use keystrokes:
$2.00\{c$ (initl.) $\} \rightarrow 3.08(c$, in. $)$

$$
\begin{aligned}
& 951.74 \text { (C, kip) } \\
& 958.74 \text { (T, kip) }
\end{aligned}
$$

5. Load "Flexural Strength of P.S.C. Beam (Part 2)," program.
6. Store $f_{p y}$ in R8, using keystrokes:

240 STO 8
7. Calculate $f_{p s}, f_{s}, M_{n}$, and ϕM_{n}.

Press A

$$
\begin{aligned}
& \rightarrow \quad 261.50\left(f_{p s}, \text { ksi }\right) \\
& 259.87\left(f_{s}, \text { ksi }\right) \\
& 28976.58\left(M_{n}, \text { kip-in. }\right) \\
& 2414.72\left(M_{n}, \text { kip-ft }\right) \\
& 26078.92\left(\phi M_{n}, \text { kip-in. }\right) \\
& 2173.24\left(\phi M_{n}, \text { kip-ft }\right)
\end{aligned}
$$

8. Store $E /\left(K f_{p y}\right)$ in $\mathbf{R 8}$ in preparation for analyzing next section, using keystrokes:

$$
112.18\left[\begin{array}{llll}
\mathrm{STO} & 8 & 112.18 & \left(E / K f_{p y}\right)
\end{array}\right.
$$

Example 3

Calculate the flexural strength of a 24IT48 Inverted Tee, prestressed with $20,1 / 2$-in. $\phi, 270 \mathrm{~K}$ strands with an effective depth of 45 in . The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 5500 psi.

1. Load "Flexural Strength of P.S.C. Beam (Part 1)," program.
2. Say switch at "NORM" for record of input data.
3. Store data using keystrokes:

$45.0\left(d_{p}\right)$	STO	4	\rightarrow	45.00	STO4
3.06 ($A_{p s}$)	STO	6	\rightarrow	3.06	STO6
$0\left(A_{s}\right)$	STO	7	\rightarrow	0.00	STO7
(f) PES			\rightarrow		$P \rightleftarrows S$
12 (B)	STO	0	\rightarrow	12.00	STOO
24 (b)	STO	[1]	\rightarrow	24.00	STOI
	STO	2	\rightarrow		STO2
$32\left(h_{1}\right)$	STO	3	\rightarrow	32.00	STO3
	STO	(4)	\rightarrow		STO4
48 (h)	STO	[5]	\rightarrow	48.00	STO5
5.5 (f_{c}^{\prime})	STO	6	\rightarrow	5.50	STO6
0.85	STO	7	\rightarrow	0.85	STO7
(f) P ¢					$P \rightleftarrows S$

4. Calculate c, C, and T. (Initial estimate of $c=12$ in., say.) Use keystrokes:

$$
\begin{aligned}
& 12.00\{c \text { (initl.) } \mathrm{A} \rightarrow 12.00 \mathrm{GSBA} \\
& 17.10 \text { (} c, \text { in.) } \\
& 743.42 \text { (C, kip) } \\
& 745.59 \text { (} T, \text { kip) }
\end{aligned}
$$

5. Load "Flexural Strength of P.S.C. Beam, (Part 2)," program.
6. Store $f_{p y}$ in R8, using keystrokes:

240 STO 8 240.00 STO8
7. Calculate $f_{p s}, M_{n}$, and ϕM_{n}.

Press A

$$
\begin{aligned}
\rightarrow \quad & \text { GSBA } \\
243.66 & \left(f_{p s}, \text { ksi }\right) \\
28528.22 & \left(M_{n}, \text { kip-in. }\right) \\
2377.35 & \left(M_{n}, \text { kip-ft }\right) \\
25675.40 & \left(\phi M_{n}, \text { kip-in. }\right) \\
2139.62 & \left(\phi M_{n}, \text { kip-ft }\right)
\end{aligned}
$$

8. Store $E /\left(K f_{p y}\right)$ in R 8 in preparation for analyzing next section, using keystrokes:
112.18 STO 8 112.18 $\left(E / K f_{p y}\right)$

Example 4

Calculate the flexural strength of an 8DT32B Double Tee, prestressed with $28,1 / 2-\mathrm{in} . \phi, 270 \mathrm{~K}$ strands with an effective depth of 28.5 in . The effective prestress in the strands is 160 ksi and the properties of the strand are as in Example 1. The concrete strength is 6000 psi .

1. Load "Flexural Strength of P.S.C. Beam (Part 1)," program.
2. Say switch at "NORM" for record of input data.
3. Store data using keystrokes:

28.5 (d_{p})	STO	[4 \rightarrow	28.50	STO4
4.28 ($\mathrm{A}_{p s}$)	STO	$6 \rightarrow$	4.28	STO6
$0\left(A_{s}\right)$	STO	$7 \rightarrow$	0.00	STO7
(f) P ¢S		\rightarrow		$P \rightleftarrows S$
96 (B)	STO	$[0]$	96.00	STOO
$19.50\left(2 b_{t}\right)$	STO	[1] \rightarrow	19.50	STO1
$12.00\left(2 b_{w}\right)$	STO	2 \rightarrow	12.00	STO2
2.00 (t)	STO	(3) \rightarrow	2.00	STO3
	STO	[4]		STO4
32.00 (h)	STO	[5] \rightarrow	32.00	STO5
$6.00\left(f_{c}^{\prime}\right)$	STO	[6] \rightarrow	6.00	STO6
0.85	STO	$7 \rightarrow$	0.85	STO7
(f) $\mathrm{P} \rightleftarrows \mathrm{S}$				$P \underset{\sim}{\rightleftarrows}$

4. Calculate c, C, and T. (Initial estimate of $c=3$ in., say.) Use keystrokes:

$$
3.00\{c \text { (initl.) } \mathrm{A} \quad 3.00 \mathrm{GSBA}
$$

$$
\begin{array}{r}
4.14 \text { (c, in.) } \\
1088.66(C, \text { kip }) \\
1098.88(T, \text { kip })
\end{array}
$$

5. Load "Flexural Strength of P.S.C. Beam, (Part 2)," program:
6. Store $f_{p y}$ in R8, using keystrokes:

240 STO 8
240.00 STO8
7. Calculate $f_{p s}, M_{n}$, and ϕM_{n}

Press A
GSBA

$$
\begin{aligned}
256.75 & \left(f_{p s}, \text {, ksi }\right) \\
29768.16 & \left(M_{n}, \text { kip-in. }\right) \\
2480.68 & \left(M_{n}, \text { kip-ft }\right) \\
26791.35 & \left(\phi M_{n}, \text { kip-in. }\right) \\
2232.61 & \left(\phi M_{n}, \text { kip-ft }\right)
\end{aligned}
$$

Concluding Remarks

Calculator programs for determining the flexural strength of bonded prestressed concrete beams, and the equations on which they are based, have been presented. The programs are applicable to most beam cross sections in current use. They make use of the actual stress-strain curve of the prestressing steel and hence in many cases yield a less conservative value of flexural strength than is obtained when use is made of Eq. (18-3) of ACI 318-77. Although the programs apply specifically to the Hewlett Packard, HP-67/97 calculators, they could readily be adapted to other types of programmable calculators.

Metric (SI) Unit Equivalents

$1 \mathrm{in} .=25.4 \mathrm{~mm}$
$1 \mathrm{ft}=0.305 \mathrm{~m}$
$1 \mathrm{in}^{2}=645.16 \mathrm{~mm}^{2}$
$1 \mathrm{kip}=4.448 \mathrm{kN}$
$1 \mathrm{psi}=6.895 \mathrm{kPa}$
$1 \mathrm{ksi}=6.895 \mathrm{MPa}$
1 in. $-16=0.113 \mathrm{~N}=\mathrm{m}$
$1 \mathrm{f}: 1 \mathrm{~b}=1.356 \mathrm{~N} \cdot \mathrm{~m}$
1 kip-in. $=113 \mathrm{~N} \cdot \mathrm{~m}$
$1 \mathrm{kip}-\mathrm{ft}=1.356 \mathrm{kN} \cdot \mathrm{m}$
$1 \sqrt{f_{c}} \mathrm{psi}=0.083036 \sqrt{f_{c}} \mathrm{MPa}$

References

1. ACI Committee 318, "Building Code Requirements for Reinforced Concrete (ACI 318-77)," American Concrete Institute, Detroit, Michigan, 1977, p. 70.
2. Naaman, A. E., "Ultimate Analysis of Prestressed and Partially Prestressed Sections by Strain Compatibility," PCI JOURNAL, V. 22, No. 1, January-February 1977, pp. 32-51.
3. Menegotto, M., and Pinto, P. E., "Method of Analysis for Cyclically Loaded R.C. Plane Frames, Including Changes in Geometry and Non-Elastic Behavior of Elements Under Combined Normal Force and Bending," International Association for Bridge and Structural Engineering, Preliminary Report for Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, 1973, pp. 15-22.
4. Wheeler, W., "Fast Programming on Small Calculators," Civil EngineeringASCE, April 1977, pp. 58-60.
5. Mattock, A. H., and Kriz, L. B., "Ultimate Strength of Structural Concrete Members with Nonrectangular Compression Zones," ACI Journal, Proceedings V. 57, No. 7, January 1961, pp. 737-766.
6. Mattock, A. H., Kriz, L. B., and Hognestad, E., "Rectangular Concrete Stress Distribution in Ultimate Strength Design," ACI Journal, Proceedings V. 57, No. 8, February 1961, pp. 875-928.

NOTE

Appendices A through D, on the following pages, give user instructions and program listings for the programs described in the article, a summary of the features of the HP67/97 calculator, and a glossary of notation.

APPENDIX A - USER INSTRUCTIONS AND PROGRAM LISTING FOR PRESTRESSING STEEL STRESS-STRAIN CURVE PROGRAM

Table A1. User Instructions for "Prestressing Steel, Stress-Strain Curve" Program.

Table A2. Part (a) of Program Listing for "Prestressing Steel, Stress-Strain Curve" Program.

Table A3. Part (b) of Program Listing for "Prestressing Steel, Stress-Strain Curve" Program.

APPENDIX B — USER INSTRUCTIONS AND PROGRAM LISTING FOR FLEXURAL STRENGTH OF P.S.C. BEAM

Table B1. User Instructions for "Flexural Strength of P.S.C. Beam (Part 1)."

STEP	Instructions	INPUT DATA/UNITS	KEYS		output DATA/UNITS
1	Load side 1 and side 2				
2	Switch to "NORM" if data input record is required				
3	Store:-				
3A	Effective depth of prestressing steel	d_{p} (in.)	ST0	4	
3 B	Effective depth of unprestressed steel	d (in.)	ST0	5	
3 C	Area of prestressing stee 1	Aps (in. ${ }^{2}$)	ST0	6	
30	Area of unprestressed steel (Exchange registers)	$A_{s} \quad\left(i n .{ }^{2}\right)$	sto	$\stackrel{7}{7}$	
3 E	Flange width B	$B \quad$ (in.)	ST0	0	
3 F	Fillet width b	b (in.)	ST0	1	
3G	Web width b_{w}	b_{w} (in.)	ST0	2	
3H	Flange thickness t	t (in.)	sto	3	
3 J	Flange thickness t_{1}	t_{1} (in.)	STO	4	
3 K	Depth t_{2}	t_{2} (in.)	STO	5	
3L	Concrete compressive strength f^{\prime}	$\mathrm{f}_{\mathrm{c}}^{\prime}$ (ksi)	ST0	6	
3 M	Coefficient 0.85	0.85	STO	7	
	(Exchange registers)		f	$\stackrel{+}{\square}>+5$	
4	If "Prestressing Steel, Stress-Strain Curve" program has not just been used to determine $\mathrm{Q}, \mathrm{R}, \varepsilon_{s e}$, etc. Store:				
4 A	Steel ultimate strength	$f_{\text {pu }}$ (ksi)	STO	0	
4 B	$E+\varepsilon_{s e}$, (E in ksi, and $\varepsilon_{s e}=$ strain in steel due to effective prestress	$\mathrm{E}+\varepsilon_{\text {se }}$	Sto	1	
45	Coefficient Q for steel stress-strain equation	Q	ST0	2	
40	Coefficient R for steel stress-strain equation	R	STO	3	
4 E	$\mathrm{E} /\left(\mathrm{Kf} \mathrm{f}_{\mathrm{p}}\right)$, (E and f_{py} in $\mathrm{ksi}, \mathrm{f}_{\mathrm{py}}$ is stee l stress at 0.01 strain.	$\mathrm{E} /(\mathrm{Kfpy})$	STO	8	
	(These items of data are stored automatically by the "Prestressing Steel, Stress-Strain Curve" program.)				
5	Calculate neutral axis depth c, etc. Encer initial estimate of c, (in.). (Calculation time typically 1 to $1 \frac{1}{2}$ minutes.)	$c\left(\begin{array}{c} \text { (init.) } \\ (\mathrm{in} .) \end{array}\right.$	A		$\begin{array}{ll} c & (\text { in. }) \\ c & (k i p) \\ T & (k i p) \end{array}$

Table B2. User Instructions for "Flexural Strength of P.S.C. Beam (Part 2)."

Table B3. Part (a) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 1)."

Table B4. Part (b) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 1)."

Table B5. Part (a) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 2)."

Table B6. Part (b) of Program Listing for "Flexural Strength of P.S.C. Beam (Part 2)."

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	
	RCLD	3614	$\begin{aligned} & (C-D) \\ & (A-B)(a-D) /(C-D) \\ & -(\quad)(\bar{A}) /(\end{aligned}$		STOD	3514	$\mathrm{t}_{\mathrm{b}^{\frac{1}{2}}} \text { in }$	
	\cdots	-45		170	GSBE	2315		
	\div	-24			RCL3	3608		
	CHS	-22			STOC	3513	a in RC	
	RCLA	3611			GSBb	231612	() (\}
	+	-55	b^{\prime}		ST09	3509		
	STOB	3512	b^{\prime} in RB		GSBC	231613	A_{4}	
120	RTN	24			RCL9	3609		
	*LBLB	2112	Calculate Mn_{n}		$+$	-55	$\left[A_{4}+(\right.$)\{ \}]
	RCLE	3615	$A_{5} f_{S}$		*L8L8	2108		
	STO9	3509			RCL7	36.07	0.85	
	RCL 4	3604	d_{p}	180	x	-35		
	STOE	$35 \quad 15$			RCL6	3606		
	P+S	16-51	Exch. Reg.		\times	-35	$0.85 f_{C}^{\prime}$	
	RCL8	3608			GT09	2209		
	RCL 3	3603	t		*LBL1	21.01	(a in X)	
	$\underline{X}+\mathrm{Y}$	-41			RCL5	3605		
130	$X>Y$?	16-34	If $a>t$		$X \rightarrow Y$	-41		
	GTOO	2200	go to 0		$X>Y$?	16-34		
	$?$	02			GT02	2202	go to 2	
	\div	-24			RCL 1	3601		
	CHS	-22	-a/2	190	STAA	3511	b in RA	
	RCLE	36.15			RCL2	3602	b in Ra	
	+	-55	($d_{p}-\mathrm{a} / 2$)		STOB	3512	b_{w} in RE	
	RCLD	36.14			RCL5	3605		
	x	-35	$C\left(d_{p}-a^{-} / 2\right)$		STOC	3513	t : in RC	
	*LBL9	2109			RCL4	36.04	$t_{:}$	
140	$\mathrm{P}+\mathrm{S}$	16-51	Exch. Reg.		STOD	3514	t_{1} in RD	
	GSBa	231611	$A_{s} f_{s}(d-d p)$		GSBE	23.15	b^{i}	
	+	-55	M_{n}		RCL8	3608		
	STOI	3546			STOC	35.13	a in RC	
	GSB5	2305	To print out	200	GSBb	231612	() (\}
	RCla	3646	M_{n}		ST09	3509		
		062			GSBd	231614	A_{5}	
	9	09			RCL9	36.09		
	*LBL5	21.35	\$ ${ }^{\prime \prime}$		+	-55	$\left[A_{5}+\right.$ () $\}$]
150	PRTX	-14	Print M, (K.in.)		*LBL2	22 2108		
	1	01			RCLE	36.15	d	
	2	02			RCL 5	$36 \quad 05$	t_{2}	
	$\stackrel{+}{\square}$	-24			RCL 8	3608	,	
	PRTX	-14	Print M, (K.ft)	210	$+$	-55		
	SPC	16-11			2	02		
	RTN	24			:	-24		
	RCL4	3604	(t_{1} in X)		-	-45	\{d- t_{2}	a)/2\}
	$x \geqslant y$	-36 41	t 1		$\frac{\mathrm{RCL}}{\mathrm{x}}$	$\begin{array}{r}36.02 \\ \hline-35\end{array}$	b_{W}	
160	$X>Y$?	16-34	If $a>t_{1}$		RCLB	-36-08	a	
	GT01	2201	go to 1		RCL5	36.05	t_{2}	
	RCLO	3690			-	-45.		
	RCI]	3511	8 in RA		x	-35	$\left(a-t_{2}\right)\left({ }^{\text {a }}\right.$	W) \{ \}
	STOB	$\frac{35}{} 12$	b in RB	220	GSBe	$\frac{3509}{231615}$		
	RCL4	36.04	b in Rb		RCL	$\begin{array}{r} 2316.15 \\ 3609 \\ \hline \end{array}$		
	STOC	$\frac{3513}{3603}$	t_{1} in RC		${ }_{+}^{+}$	-55-1	$\left[A_{6}+()\right.$	() l j]
	RCL 3	3603			GTO8	2208		
A Catc	. 18		LABELS		FLAGS		T STATU	
a	- b ${ }^{\text {b }}$		\checkmark l ${ }^{\text {L }}$ - - E		0	FLG. ON OFF	TRIG	DISP
$0 \quad \checkmark$	17	2	1 3	r	2	1 ¢ 口	GRAD	SCI Q
5	6	7	- 1819	\checkmark	3	$1{ }_{3}{ }^{2}$	RAD \square	ENG ${ }_{n}$

APPENDIX C-SUMMARY OF FEATURES OF THE HP67/97 CALCULATORS

The Hewlett Packard 67/97 calculators employ Reverse Polish Notation. They have 16 primary (direct) storage registers \varnothing through 9 , A through E and I, as well as 10 secondary registers which are exchanged with the primary registers \varnothing through 9 by use of the $\mathrm{P} \lessgtr \mathrm{S}$ key.
Conditional tests such as $X \geqslant Y$? or $\mathrm{X}<\mathrm{Y}$? execute the next step in memory if the conditional expression is true, or skip one step before resuming execution if the conditional is false.

Other special functions which are available on other calculators or may easily be implemented are the following:

R/S Run/Stop. Stops program execution for data entry. When key is pressed, begins execution from current step in program.
LBLA Defines beginning of a routine (here labeled A). When label key (i.e., A in this example) is pressed, execution of program commences at this step.
GTOA Causes calculator to stop execution and search downwards through program to first designated
label, and resume execution there, (i.e., directs branching of program).
GSBA As GTOA, but at end of subroutine control is returned to next step after GSBA.
RTN If at end of subroutine, returns control to next step after GSB instruction; otherwise stops execution and returns control to keyboard.
ST-3 Subtracts the current value from memory register 3 and the result is stored in memory 3. Likewise, ST +9 would add current value to memory register 9 .
DSP4 Fixes the display so that 4 digits are displayed to right of decimal point.
FRC Obtains fractional part of a number.
CHS Changes sign of current value.
PRTX Prints the current value.
SPC Advances the print paper one space.
The above summary is provided to assist in the translation of the programs given in this paper to a form suitable for other calculators.

APPENDIX D-NOTATION

[^0]: *The applicability of the equivalent rectangular stress distribution to non-rectangular sections has been verffied experimentally, 5 ,6

