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Shear Component
of Prestress by
Equivalent Loads

The design of prestressed concrete
beams for shear using the ACI

Building Code' requires the calcula-
tion of the vertical or shear component
of the effective prestress, V.

In most cases, the tendon profile is
flat enough so that V P sin a) may
be approximated by P tan a = P dy/dx
(Fig. 1), where P equals the effective
prestress force and a equals the angle
made by the centroid of the prestress-
ing steel and the horizontal.

In the past, the common design pro-
cedure has been to calculate dy/dx,
the slope of the tendon, at points along
the beam. While this procedure has
proved satisfactory, it is tedious and
ignores the effects of induced reactions
in continuous beams. An alternative
approach, presented here, uses the con-
cept of "equivalent loading" to obtain

the shear component of the prestress.
The equivalent loading concept has

been used successfully for over two
decades for flexural design and is an
integral part of the load balancing
technique .3

While this technique is used by
many structural engineers, the applica-
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Fig. 1. Vertical component of
prestress, Vp, for an inclined
tendon.
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A design procedure is presented that uses
the concept of equivalent loading to obtain
the shear component of prestress.
The prestressing tendons are replaced by a
set of equivalent loads.
The resulting shear diagram includes the
effects of both the vertical component of the
prestress and the induced reactions (if any).
Several examples are presented to illustrate
the method.
The proposed procedure allows the designer
to use familiar analysis techniques, reduce
the tedium involved in shear design, and
obtain a clear picture of the forces in the
concrete.

bility of this approach to shear design
is not widely recognized.

Using the procedures presented in
this paper, the designer can quickly
calculate the shear component of the
prestress anywhere in the beam simply
by drawing the shear diagram for the
equivalent loads. The procedure ap-
plies to continuous beams as well as
simple spans and automatically in-
cludes the effects of induced moments
and reactions due to non-concordant
tendons.*

Shear by Equivalent Loads

Using the equivalent load concept, the
designer looks at the prestressing steel
as a cable applying loads to the con-
crete. The prestress is represented as
a system of equivalent vertical loads

along the beam length (Figs. 2a and
2b), and as concentrated moments at
the supports (Fig. 2c).

The equivalent forces on the beam
cause a shear in the concrete. The
shear diagram for the equivalent loads
represents the shear component of the
prestress, V.

In this paper a distinction will be
made between the vertical component
of prestress, P tan a, and the shear
component of prestress which also in-
cludes the effect of induced reactions
in continuous beams. The distinction is
important only for continuous beams
with non-concordant tendons.

*A concordant tendon is so located as to pro-
duce a line of compressive force in the con-
crete at each section that coincides with the
center of gravity of the steel (cgs). A non-
concordant tendon produces a line of compres-
sive force that does not coincide with the cgs.
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Fig. 2. Equivalent loads due to prestressing.

Losses due to friction will not be in-
cluded in the discussion that follows,
but losses should be included in calcu-
lations when they are substantial.

Equivalence to P dy/d'x
for Simple Spans

A short example will help to dem-
onstrate the equivalence of the pro-
posed method with the more common
procedure of taking Vp approximately
equal to P tan a = P dy/dx.

Example 1
The simply supported beam of length

L, shown in Fig. 3a, has a parabolic
tendon with sag, h, and end eccen-

tricities, ea and eb at the left and right
supports, respectively.

For an effective prestress, F, the
tendon exerts a uniform upward load
of wp = 8Ph/L2 and concentrated end
moments of Ma = Pe,, and Mb = Peb
on the beam as shown in Fig. 3b.

The shear due to the equivalent
loads (Fig. 3c) is:

Vp=- 2wpL+wx-}- Mv L MQ (1)

For the purpose of comparison, Eq.
(1) is rewritten in terms of the prestress
force and the tendon geometry:

8Ph L 8Ph	 Peb — Pe„VP-- L= • 2 + L2 x+	 L
(2a)
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c) Shear Diagrams for Equivalent Loads

Fig. 3. Diagrams for simply supported beam (Example 1).

from which

4h 8hx eb — e^
V^ ° P (— L -{- L.^ -{- L 1 (2b)

Eq. (2b) may be compared to the
value of Vp = P dy/dx.

The tendon profile in Fig. 3a is de-
scribed by the equation:

= LL (x 2̀ — xL) -} - L e ,) x e«, (3)

Differentiating and rearranging terms:

V^ —Pdy—P .4h+8hx+eb—e,,\
Ldx	 ( L L- 

(4)

which is identical to the value ob-
tained in Eq. (2b) using the proposed
procedure.

The relative advantages of the pro-
posed procedure become distinct when
the usable results for the equivalent
loading, Eq. (1) and Fig. 3c, are com-
pared with Eq. (4). Fig. 3c is all that
most designers need. Fig. 3c and Eq.
(1) give a clearer picture of the forces
in the concrete than is provided by
Eq. (4).

Also, importantly, the proposed pro-
cedure allows the designer to use fa-
miliar analysis techniques to obtain V.
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Calculations to obtain the slope of the
tendons, which are tedious in com-
parison, are no longer required.

As attractive as the approach ap-
pears for simple spans, it offers added
advantages for continuous beams.

Continuous Beams

Two approaches may be taken to
obtain the shear in concrete due to
prestressing in continuous beams.

Approach 1—The first approach ob-
tains the shear by considering the en-
tire continuous beam under equivalent
loading. It may be used for beams with
concordant or non-concordant tendons
and automatically includes the shear
resulting from induced reactions.

Approach 2—The second approach
follows the procedure outlined in Ex-
ample 1 and considers the individual
spans as simple spans subjected to
equivalent loading. This approach, like
the first, may be used for beams with
concordant or non-concordant tendons;
but for non-concordant tendons, it
yields results that do not include the
effects of induced reactions.

Therefore, for non-concordant ten-
dons it applies only when plastic
hinges form and full moment redis-
tribution takes place at ultimate load.

Concordant tendons
The two approaches are equivalent

for beams with concordant tendons,
because in such beams no support re-
actions are produced by the prestress.
Both approaches produce identical re-
sults with those obtained with the
more conventional approach, V, = P
dy/dx.

Example 2 illustrates the two ap-
proaches for a continuous beam with
concordant tendons.

Example 2
A symmetric two span beam with

concordant parabolic tendons is shown

in Fig. 4a. For the left span, the cable
is described by:

y = h ('— L -I- Lz )	 (5)

The equivalent upward uniform load
is:

wp L~h	 (6)

1. The first approach considers the
entire beam subject to an upward load,
wp. The shear diagram for the left span
is easily obtained (Fig. 4b) and gives:

VV = — $ wpL -I- wpx	 (7)

2. The second approach considers
equivalent loads on the individual
spans. For the left span, the loads con-
sist of an upward uniform load, wp,
and a counterclockwise support mo-
ment at Point B, Mb = Ph.

The second approach provides re-
sults shown in Fig. 4c and Eq. (8).

V11	 wpL + wpx • 1 Ph 	 (8)

From Eq. (6):

Ph = wg 	 (9)

Eq. (8) then becomes:

Vp =-8wPL-I-wpx	 (10)

which is identical to that obtained in
Eq. (7) using the first approach.

3. The results in Eqs. (7) and (10)
are also equivalent to P dy/dx:

Vz,=P dx =Ph(_- +8) (11a)

wLL/ – 3 8x8 L +L2

_ – $ wPL -}- wpx	 (11b)
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a) Two Span Beam with Concordant Parabolic Tendons
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SwPL
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-38 P L 	 VP = _2L+WpX+ PL = -38PL +wex

c) Second Approach, Left Span

Fig. 4. Diagrams for continuous beam with concordant tendon (Example 2).
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Tendons
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A n.

a) Linear Transformation of Tendon at B
+PAeb

L
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b) Change in P dx-Ppeb
L	 P6eb
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c) Induced Secondary Moment, M5
+PAeb

L

VP
-P6eb
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d) Shear Caused by Induced Reactions

Fig. 5. Effects of linear transformation of concordant tendon on shear com-
ponent of prestress.

Non-concordant tendons

Non-concordant tendons are of spe-
cial interest because the prestressing
force induces support reactions, shears
and moments in the beam. The line
of compressive force does not coincide
with the center of gravity of steel as
it does for concordant tendons.

The induced reactions constitute a
real load on the beam, and induced
shears and moments must be included
in design calculations. The induced re-
actions are based on an elastic analysis.

If full moment redistribution oc-
curs at ultimate load (unusual for most
construction), elastic analysis is no
longer applicable. The procedures out-
lined above for concordant tendons are
easily adapted to include induced re-

actions or to exclude them in the case
of full moment redistribution.

For elastic behavior, the shear
caused by induced reactions is auto-
matically accounted for by using equiv-
alent loads. This is demonstrated by
the continuous prestressed concrete
beam shown in Fig. 5a.

In the figure, the concordant tendon
in Spans AB and BC is linearly trans-
formed by reducing the support eccen-
tricity at B by an amount Aeb. The re-
sult is a non-concordant tendon. The
change in the value of the vertical
component of the prestress, P dy/dx,
due to the change in tendon profile
equals — PAeb/L and + Pleb/L on
Spans AB and BC, respectively (Fig.
5b).

rill



The linear transformation has no ef-
fect on the location of the line of com-
pressive force, but it does cause a
secondary moment (Fig. 5c) and a sec-
ondary shear (Fig. 5d) due to the in-
duced support reactions. The induced
shear equals + PAeb/L and — PAeb/L
on Spans AB and BC, respectively.
The induced shear exactly cancels the
change in the vertical component of
the prestress.

Therefore, the total shear effect of
prestressing remains unchanged and is
not affected by the linear transforma-
tion. Since the equivalent loads on the
continuous beam are not influenced by
the linear transformation of the ten-
don, the shear diagram produced for
the equivalent loading will be the same
for concordant and non-concordant
tendons and will automatically include
any induced shear.

If full moment redistribution takes
place at ultimate load, the induced re-
actions disappear at failure. In such a
case the shear component of prestress
will not include induced shear. V. may
then be calculated either by using the
conventional approach or by consider-
ing each span individually (Approach
2), as described in Part 2 of the next
example.

Although full moment redistribu-
tion is rarely used in design, the use
of equivalent loads to obtain Vp is just
as applicable for plastic design as it
is for elastic design.

The amount of moment redistribu-
tion actually obtained will vary, de-
pending on the type of construction
used. Research by Mattock, Yamazaki,
and Kattula4 indicated that beams with
unbonded tendons, and an adequate
amount of bonded, non-prestressed re-
inforcement may exhibit somewhat
more inelastic moment redistribution
than similar beams with bonded ten-
dons.

In either case, when the amount of
moment redistribution is limited to that

allowed by the ACI Code,' the de-
signer should use Approach 1 for cal-
culating V.

At ultimate load, a properly propor-
tioned beam will fail in flexure, not
shear. Therefore, the value of prestress
used to calculate the equivalent loads
for shear design should, logically, re-
flect the tendon force at the ultimate
flexural load. In beams with unbonded
tendons, the prestress force will in-
crease as the ultimate bending mo-
ment is attained at the critical sections.

The increase in prestress is almost
uniform throughout the beam due to
tendon slip and may be estimated
using ACI Code Eq. (18-4):

fp8 = fse + 10,000 + 100
pP

where

fps = stress in prestressing steel at
design load

fs ^ = effective stress in prestressing
steel

f', = strength of concrete

pp = ratio of prestressed reinforce-
ment

This increased stress may be in-
cluded in the calculation of the equiv-
alent loads and V. In most beams,
however, the increase may be con-
servatively neglected. For bonded ten-
dons, the increase in prestress is quite
localized and should be neglected for
shear design.

Example 3 illustrates the use of
equivalent loads to obtain the shear
component of prestress for a beam with
non-concordant tendons. It demon-
strates the simplicity with which the
proposed procedures may be applied
to shear design.

Example 3
A symmetric two-span continuous

T-beam with bonded tendons is shown
in Fig. 6a. 5 The beam has non-con-
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c) Full Moment Redistribution, Left Span

Fig. 6. Diagrams for continuous beam with non-concordant tendon
(Example 3).
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cordant parabolic tendons with sag,
h = 3 ft, and prestress force, P = 600
kips.

The total upward load is:

8Ph8X600X3
wp =	 = L= 	 802

= 2.25 kips per ft

1. The shear component of the pre-
stress, Vi,, is obtained for elastic be-
havior (i.e., less than full moment re-
distribution) by calculating the shear
in the beam due to the load wp. The
solution (Fig. 6b) shows that V, varies
linearly from — 3w5L,/8 = — 67.5 kips
at the left support to + 5wPL/8 =
112.5 kips at the center support. As
calculated, Vp includes the effects of
the induced support reactions.

2. Should the beam be designed for
full moment redistribution at ultimate
load, V, may be calculated using
equivalent loads on the individual
spans. As shown in Fig. 6c, each span
is considered as a simply supported
span for purposes of the calculations.
Since the tendon is bonded, the in-
crease in P, near ultimate can be ne-
glected.

Looking at the left span, the equiv-
alent loads consist of a uniform load,
wp = 2.25 kips per ft, and a support
moment:

AI I, = Pe,, = 600 X 8/12 = 400 ft-kips

The shear diagrams produced by
these loads are also shown in Fig. 6c.
The final results show that Vp varies
linearly from — w,L/2 + M b/L =
— 85 kips to + w5L/2 + Mb/L =
95 kips. These values are identical with
those obtained from V, = P dy/dx and
do not include induced support reac-
tions.

The differences in Solutions 1 and 2
are due to the induced support reac-
tions. Since most beams are propor-
tioned for flexure based on elastic be-

havior, Solution 1 represents the type
of solution that will be commonly used
in practice. Solution 1 should, also, be
used if partial moment redistribution
is planned, as allowed by the ACI
Code?

If the beam in the example utilizes
unbonded, rather than bonded tendons,
the analysis procedures will be identi-
caI to those presented above, with the
exception that the effective prestress,
P, will increase as the ultimate load is
attained.

Assuming that fRe = 150,000 psi, f'
= 5000 psi and p, = 0.01, and using
Eq. (18-4) of the ACI Code:'

p8 =1 C + 10,000 + loo
PP

=150,000 + 10,000 + 5000
100 X 0.01

=165,000 psi

The value of P at ultimate is, there-
fore P = (165/150)600 = 660 kips.

This results in a 10 percent increase
in the equivalent loads and in the shear
component of prestress, V5.

Reversed curvature
The beams presented in the preced-

ing sections have harped tendons at
the supports for illustrative purposes.
In practice, the sharp angle change is
replaced by a portion of the tendon in
which the direction is gradually
changed over the supports (Figs. 7
and 8).

The portion of tendon with the re-
versed curvature exerts a downward
distributed load on the beam. The ef-
fect of the reversed curvature must be
taken into account in shear design.

Equivalent loads are illustrated for
parabolic tendons with reversed curva-
ture in Figs. 7 and 8.6 , 7 For an interior
span, the uniform upward load is:

_ 8Pc
wp (1 — 2a)L-1 	(12)
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I— L; = Span	 I.

a) Tendon Profile Geometry

1.	 •	 L;

b) Equivalent Loads

Fig. 7. Typical interior span.

where
c = drape of tendon profile, high

point to low point
a = ratio of reverse curve length

span length hd

The uniform downward load for the
reversed segment is:

	

w _ 1-2a w 	
(13)

' 2a	 ^°

An exterior span is likely to have a
change in curvature near the midspan
which results in different upward loads
on either side of the low point in the
tendon profile. For the exterior span
shown in Fig. 8, the upward uniform
load due to the external parabolic seg-
ment is:

2Pdwee = b2L2f	 (14)

where
d = drape of tendon profile at end

segment of exterior span
b = ratio of end segment length to

span length in exterior span, L^.

The balance of the uniform upward
load is:

_	 2Pc

WP	 1 b)(1--b—a)L2,	 (15)

The downward load for the reversed
segment is given by Eq. (13).

These equivalent Ioads are used to
calculate the shear component of the
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b) Equivalent Loads

Fig. 8. Typical exterior span.

prestress, as is demonstrated in Ex- drape, c = 40 in., upward load is:
ample 4.	 2

Example 4
The symmetric two-span beam in

Example 3 is redesigned with a re-
verse curve in the tendon over the
center support as shown in Fig. 9a.
For the external segment, with tendon
drape, d = 32 in., and prestress force,
P = 600 kips, the upward uniform load
is:

2Pd _ 2 X 600 x 32/12
w°` _ b=L2^ 	 (0.50)2 x 802

= 2.0 kips per ft

For . the inner segment, with tendon

_	 Pc
wp (1 - b) (1 - b - a)L20

_ 2 x 600 x 40/12
(0.50) (0.40) x 802

= 3.125 kips per ft
The downward load for the re-

versed segment is:

_1-2a
W.	 2a wP

_1-2x0.10 
X2x0.10	 3.125

= 12.5 kips per ft
As before, Vp can be obtained by
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c) Full Moment Redistribution, Left Span

Fig. 9. Diagrams for continuous beam with reversed curvature (Example 4).
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constructing the shear diagram for the
beam subjected to the equivalent loads.

The calculation of Vp for beams with
reversed curvature can be greatly sim-
plified by using the moment coeffi-
cients provided in References 6 and 7.
The solution, shown for the left span
(Fig. 9b), includes the shear due to the
induced reactions.

The effect of the change in the ten-
don profile on V, may be seen by com-
paring Figs. 6b and 9b. The shear dia-
gram for full moment distribution (Fig.
9c) can be obtained by loading each
span individually, using Approach 2.

Conclusions

1. In a prestressed concrete beam,
Vp, the shear component of the pre-
stress due to both the vertical compo-
nent of prestress and the induced re-
actions (if any), may be obtained by
replacing the tendon . with a set of
equivalent loads on the beam and cal-
culating the shears so produced.

2. While the examples presented in
this paper are limited to parabolic ten-
dons and two-span continuous beams,
the methods illustrated may be applied
to any tendon profile.

3. The use of equivalent loads to
calculate the shear component of the
prestress, Vi,, has several advantages
over the conventional method:

a. The proposed procedures allow
the designer to use familiar anal-
ysis techniques to obtain V, and
thereby reduce the tedium in-
volved in shear design.

b. The use of equivalent loads gives
a clearer picture of the forces in
the concrete.

c. The proposed method (Approach
1) automatically includes the ef-

fects of induced reactions in con-
tinuous beams with non-concor-
dant tendons. The method is
also, easily adapted (Approach 2)
for full moment redistribution.
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Discussion of this paper is invited.
Please forward your comments to
PCI Headquarters by Sept. 1, 1977.
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