

Prestressing Steel -New and Existing Products Overview

Jon Cornelius, Executive Vice President, Sumiden Wire Products Corporation September 27, 2019

> SUMITOMO ELECTRIC GROUP

Types of Prestressing Steel Wire Products

	Product	Material	ASTM Specification(s)	Recent Activity
	PC Strand 7-Wire	Steel	ASTM A416	Higher strengths, Larger Diameter
		Steel - Galvanized		New ASTM standard in process
		Steel - Epoxy Coated	ASTM A882	ASTM A882 in process of revision and reinstatement
		Stainless Steel		New product with a new ASTM standard in process
() + 6) + 6 + 1	PC Strand 19-Wire	Steel		
	PC Wire	Steel Plain and Indented	ASTM A421 ASTM A881	

12(6

7-Wire Prestressing Steel Strands (USA) - Uncoated

ASTM A416 – 2018 Sizes & Grades

Diameter (in)	Tensile Strength (ksi)
1/4″	250
0.313	250
3/8″	250, 270
7/16″	250, 270
1/2″	250, 270
1/2" Special (0.52")	270
6/10″	250, 270
0.62″	270
7/10″	270

Additional details

- Sizes under 3/8" and 0.62" & 7/10" are available in the US, but typically made-to-order (not inventoried)
- Tensile Strengths <u>up to 300 ksi</u> are available in the US using Buy-America compliant wire rod.
- Tensile Strengths above 300 ksi <u>are not</u> currently available in the US using Buy-America compliant wire rod.

B Higher Strength 7-Wire Prestressing Steel Strands (Global)

IS	0 6934-4	4 (Currer	nt)		IS	50 6934-	4 (DRAF	Т)
					Diameter (mm)	Diameter (in)	Tensile Strength (N/mm ²)	Tensile Strength (ksi)
	Tensile Tensile			Ν			1,860	270
Diameter	Diameter	Strength	Strength		12.7	1/2″	2,160	313
(mm)	(in)	(N/mm²)	(ksi)				2,230	323
12.7	1/2″	1,860	270	$\lfloor - /$			2,360	342
15.2	6/10″	1,860	270				1,860	270
						6/10″	2,160	313
							2,230	323
							2,360	342

- Higher strength strands (>300 ksi) are available from a limited number of suppliers globally.
- >300 ksi strands <u>are not</u> currently available using Buy-America compliant wire rod.

ISO 6934-4 (Current)					IS	50 6934-	4 (DRAF	Г)
Diameter (mm)	Diameter (in)	Tensile Strength (N/mm ²)	Tensile Strength (ksi)		Diameter (mm)	Diameter (in)	Tensile Strength (N/mm²)	Tensile Strength (ksi)
17.8	7/10″	1,860	270	\vdash \	17.8	7/10″	1,860	270
19.3	,	1,860	270		19.3	0.76″	1,860	270
	0.76″	•	-	H/	20.3	8/10″	1,810	263
20.3	8/10″	1,810	263		21.8	0.86″	1,810	263
21.8	0.86″	1,810	263		28.6	1.13″	1,780	258

- 19-wire prestressing steel strands **are not** currently produced in the US.
- Most applications for 19-wire strands are post-tensioning
 - Examples: Transverse bridge tendons, underground mine roof bolts, etc.

Corrosion Resistant PC Strand Types

One Example of a Common Corrosion Problem

Steel Strand Deterioration (Spalling)

I-95 over the Turtle River in Brunswick, GA

Solutions for Corrosion Resistance

Uncoated Strand

Corrosion Resistance Solutions!

Material Properties Comparison

	A416 PC Strand	A882 Epoxy Coated PC Strand	Stainless Steel PC Strand
Material	1080 Carbon Steel	1080 Carbon Steel	2205 Duplex Alloy
Diameters	3/8" - 0.7"	3/8" - 0.7"	3/8" - 0.7"*
Tensile Strength(s)	250ksi, 270ksi, 300+ ksi	250ksi, 270ksi, 300+ ksi	240 ksi - 250ksi
Elongation @ UTS	≥3.5%	≥3.5%	≥1.4%
1,000 Hr Relaxation @ 70% GUTS	<2.5%	Normal: <6.5% Low-Relax: <2.5%	<2.5%
Yield @ 1% EUL	90% specified min. breaking load	90% specified min. breaking load	90% specified min. breaking load
Elastic Modulus	28.6 Mpsi	28.6 Mpsi	24.5 Mpsi
Buy-America Compliant	Yes	Yes	Yes
Cost Index (Index: A416 Strand = 1)	1	2.5 – 3	8 - 9

* As of 09/2019, only 1/2" and 0.6" has been produced using 2205 duplex alloy stainless steel.

2205 Alloy Stainless Steel PC Strand

Stainless Alloy Selection (Georgia Tech Research Team)

Alloy	Structure	C	omp	ositio	PREN	Relative	
Alloy	Structure	Cr	Ni	Мо	Other	FREN	Cost*
304	Austenitic	18.2	8.1	-	-	19.2	6.9
316	Austenitic	17	11	2.8	-	27.2	9.6
2101	Duplex	21.5	1.5	-	5Mn, 0.2N	29.1	5.0
2205	Dupl <mark>e</mark> x	22	5.5	3	0.17N	37.0	8.8
2304	Duplex	23	4.8	0.3	0.10N	27.0	6.4
17-7PH	Martensitic	17	7	-	1Al, 1Si	17.0	8.2

Alloys Considered by Georgia Tech Team

- These (left) stainless alloys were considered by the Georgia Tech team.
- 2205 was selected because it provided both the highest strength and best corrosion resistance among the alloys evaluated.

2205 Alloy Overview

- Duplex alloy (Near equal % of austenite and ferrite)
- 2205 is not a commonly known alloy
- Much more resistant to stress corrosion cracking than 304 & 316 stainless steels

Comparison A416 270K Strand vs. Stainless Steel Strand

	A416 PC Strand	Stainless Steel PC Strand
Material	1080 Carbon Steel	2205 Duplex Alloy
Diameters	3/8" - 0.7"	3/8" - 0.7"*
Tensile Strength(s)	250ksi, 270ksi, 300+ksi	240ksi – 250ksi
Elongation @ UTS	≥3.5%	≥1.4%
1,000 Hr Relaxation @ 70% GUTS	<2.5%	<2.5%
Yield @ 1% EUL	90% specified min. breaking load	90% specified min. breaking load
Elastic Modulus	28.6 Mpsi	24.5 Mpsi
Buy America Compliant	Yes	Yes
Cost Index (Index: A416 Strand = 1)	1	8 - 9

2205 Stainless PC Strand 3,000 Hour Salt Fog Test @ 70% GUTS

3,000 Hour Salt Fog Test

- Testing Conditions
 - Strand stressed 70% GUTS
 - 3,000 hour salt fog
- <u>Test Results</u>
 - No loss of tensile strength
 - No corrosion

Figure 1 Specimen Surface Conditions prior to the Salt Fog Test

ASTM A882 Epoxy Coated PC Strand

Types of Epoxy Surface Finish

- Flo-Gard[®]
 - No Grit
- Flo-Bond[®] (Coarse Grit)
 - Coarse grit (90 grit silica) particles imbedded on epoxy surface
 - Very high bond with concrete

Flo-Bond[®] (Fine Grit)

- Fine grit (aluminum oxide) particles imbedded on epoxy surface
- Similar bond as bare strand with concrete
- Available Strengths
 - 270K
 - 300K

Epoxy Coating Process

Key Properties of ASTM A882 Epoxy Coated PC Strand

Epoxy Coated Strand Anti-Corrosive Property

After 1,000 hour salt spray test, epoxy coated strand **outperforms** all other forms of protection

Bare Strand

Galvanized Strand

Epoxy Coated Strand

Epoxy Coated Strand Anti-Corrosive Property

3,000 Hour Salt Fog Test

- <u>Testing Conditions</u>
 - 3,000 hour salt fog
 - Strand stressed 70% GUTS
 - 2 Strand Types
 - $_{\circ}$ As produced
 - Intentional Damage
- Test Results (Both Samples)
 - No loss of tensile strength
 - No corrosion on wire except on the exposed wire surface.
 - No corrosion migration nor loss of epoxy adhesion

Epoxy Coated Strand - Bite-Through Wedge

Bite-Through Wedge vs. Standard Wedge

Bite-Through Epoxy Coated PC Strand Wedge

Standard PC Strand Wedge

Epoxy Coating Comparison: PC Strand & Rebar

Epoxy Coating Comparison: PC Strand & Rebar

	ASTM A882 Epoxy Coated PC Strand		ASTM A775 Epoxy Coated Rebar		
Epoyy Thicknoss	15 mils – 45 mils (380 µm – 1,140 µm)		#3 - #5 rebar	7mils – 12 mils (175 µm – 300µm)	
Epoxy Thickness			#6 - #18 rebar	7mils – 16 mils (175 µm – 400µm)	
Surface Preparation	Chemical Cleaned		Blast Cleaned		
Pinhole Inspection	1 st Check	67V Aqueous	Wat Spange @ 67 V		
Finnole inspection	2 nd Check	3000V Dry Spark	Wet Sponge @ 67 V		
Allowed Pinhole Frequency	No pinholes allowed		Maximum 1 pinhole per linear foot		

Epoxy coated PC strand has a thicker coating, better surface preparation and fewer pinholes allowed than epoxy coated rebar.

Epoxy Coating Comparison: PC Strand & Rebar

Epoxy Coating Comparison: PC Strand & Rebar

Epoxy coated strand is shipped and handled in the field using protective wooden spools.

Epoxy coated rebar is shipped and handled in the field with many points of contact during handling, storage and installation

Partial List of ASTM A882 Epoxy Coated PC Strand Global Projects Since 1983 by Year

Partial List of ASTM A882 Epoxy Coated PC Strand Global Projects Since 1983 (by Type)

Application	# of Projects
Extradosed/Stay Cable	100
Ground Anchor	20
External Tendon	370
Internal Tendon	90
Pre-Tensioned Piling, Girders, Etc.*	12
Transverse Tendon	23
Other	133
Total	748

*NOTE: The Pre-Tensioned list is significantly understated. Epoxy coated strand is typically sold to pre-tensioned concrete producers without disclosure of the project. Sumiden is only typically aware of the larger projects. Examples of Pre-tension applications are piling, bridge deck panels, sound wall supports, etc.

Epoxy Coated PC Strand – Pretensioned Application

Epoxy Coated PC Strand – Post-Tensioned External Tendons

Epoxy Coated Strand - Stay Cable Bridges

Fiber Optic Stress and Strain Measurement for PC Strand

Epoxy Coated PC Strand with Fiber Optic Monitoring

1) This cable provides strain data for itself when it is stressed, together with superior durability of cable.

2) Strain data are able to be converted to tensile stress of cable according to its young's modulus.

3) Strain at any section along the strand length can be detected.

Measurement Principle

BOTDR (Brillouin Optical Time Domain Reflectometer) = Strain measurement using Brillouin scattering

'Time' and 'Wavelength' is extracted from scattered light.

Demonstration Project - Tsukidate bridge (Highway Bridge)

Monitoring Result from the Stressing Operation

Demonstration Project – Ground Anchor

Tensile test was conducted using ground anchor system with optical fiber built-in ECF strand.

- 1 Install ground anchor cable and set anchorage parts
- 2 Install Jack and Pump
- 3 Take out optical fiber after removing Epoxy coating
- 4 Connect optical fiber with measurement machine (BOTDR)

Monitoring Result from the Stressing Operation

- The load over the free length is constant.
- The load over the bond length is reduced to 0 at the bottom of the anchor.
- One (1) month later, the load is maintained.

The distribution of the load on a ground anchor tendon can be measured using optical fiber built-in ECF strand.

Possible Applications for Fiber Optic PC Strand

www.sumidenwire.com

SUMITOMO ELECTRIC GROUP