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ABSTRACT 

Prestressed concrete I-girders have been used in bridges for over 50 years and 
are used for spans up to 200 ft. During the past two decades, engineering and 
material technologies have advanced significantly and many tools were developed 
to extend the span length and/or girder spacing of prestressed concrete I-girders. 
These tools include: 

• High Performance Concrete (with ௖݂ᇱ up to 15 ksi) 
• Lightweight Concrete (with ௖݂ᇱ up to 12 ksi) 
• Large Size Strands (0.6- and 0.7-inch Diameter) and High Strength 

Strands (Grade 300ksi)  
• Bridges made Continuous for Slab Weight and Superimposed loads 

This paper presents a parametric study that addresses some of these tools. The 
study investigates the impact of using these tools individually and simultaneously 
on the maximum span range and the corresponding cost of the superstructure. 
Results of study will help design engineers to decide which tool or tools should be 
considered based on the project criteria. 
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INTRODUCTION 

Extending span length of prestressed concrete bridge girders has always been a challenge for 
engineers and designers who enthusiastically desire to take concrete to next level to further 
sharpen the competition with steel. This was never been an easy challenge and continuously 
require researches and studies. 

There are several tools and techniques that can be used to increase the span length of precast, 
prestressed concrete bridge girders. Among them are: 

1. Normal weight High Performance Concrete (NWHPC),  

2. Lightweight High Performance Concrete (LWHPC),  

3. Ultra-High Performance Concrete (UHPC),  

4. Large Size and High Strength Strands,  

5. Spans made continuous for superimposed loads,  

6. Spans made continuous for slab weight and superimposed loads. 

This paper investigates the effect of using NWHPC, LWHPC, and Large Size and High Strength 
Strands, on increasing the span length. A parametric study has been performed using commercial 
Computer Aided Design software to reach that goal. 

HIGH PERFORMANCE CONCRETE (HPC) 

American Concrete Institute (ACI) defines HPC as concrete that meets special combinations of 
performance and uniformity requirements that cannot always be obtained using conventional 
ingredients, normal mixing procedures, and typical curing practices1. A commentary to the 
definition states that a high-performance concrete is one in which certain characteristics are 
developed for a particular application and environment. These requirements may include the 
following enhancements: 

1. Ease of placement and consolidation without affecting strength,  

2. long-term mechanical properties,  

3. early high strength,  

4. toughness,  

5. volume stability, and  

6. longer life in severe environments.  
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ACI 363 defines HPC as a concrete having a specified compressive strength of 40 MPa (6000 
psi), or greater, and it does not include concrete made with exotic materials or techniques2. This 
limit is followed in this research. Using high performance concrete in bridges has many 
advantages including longer spans and/or wider girder spacing, low maintenance cost, better 
protection to the reinforcement as it is less permeable, lower creep and shrinkage losses, 
shallower sections, and higher abrasion resistance to traffic. 

Several states have implemented HPC for bridge construction as part of the Strategic Highway 
Research Program (SHRP). Applications include all bridge components: superstructures (slab 
and girders) and substructures (piers and abutments).  The SHRP projects have proved that HPC 
bridges are constructible and HPC can be cost effectively used in bridges.  

LIGHTWEIGHT CONCRETE (LWC) 

The primary goal of using structural lightweight concrete is to reduce the weight of the 
superstructure, which allows reducing the size of the substructure and foundation elements. By 
using lightweight concrete for the slab and girders, the self-weight can be reduced by as much of 
15-20% and money can be saved3. In addition, it can help increasing girder spacing that may 
result in using fewer number of girders, eliminating or decreasing sizes of substructure elements, 
or extending the span range of concrete girders. Structural lightweight concrete mixtures can be 
designed to achieve comparable strength as normal weight concrete. The same is true for other 
mechanical and durability performance requirements.  

Structural lightweight concrete provides a more efficient strength-to-weight ratio in structural 
elements than normal weight concrete. The higher cost of the lightweight concrete is offset by 
size reduction of structural elements, and less reinforcing steel and concrete that may result in 
lower capital cost.  

Lightweight concrete is not a new material but using it in bridges is not very old. Researchers 
found that LWC has lots of benefits when it is used for bridges. In their investigation, Castrodale 
and Harmon examined using 115 pcf and 125 pcf LWC mixes in combinations for the girders 
and deck and concluded that the number of strands used for girders can be reduced when LWC is 
used for both the deck and the girder and spans can be increased when concrete’s compressive 
strength is increased4. 

LARGE SIZE AND HIGH STRENGTH STRANDS 

To obtain high prestress level, more prestressing steel is required that makes it necessary to use 
large diameter strands. Today, the 0.5-inch diameter, 270 ksi strand is the most common type of 
strands used in highway bridges in the United States. In the last six years, some State DOTs have 
started using the 0.6-inch with deep girders to enhance their flexural capacity5,6,7. Recently, there 
have been some investigations to use the 0.7-inch diameter strands8. 

Typically, strands used in highway bridges are made from high strength steel with 270 ksi tensile 
strength. Recently, high strength strand with tensile strength in excess of 300 ksi has become 
commercially available. Figure 1 shows the stress-strain relationship for different grades of 
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strands. Figure 1 shows that the 300-ksi strand has the same level of ductility and modulus of 
elasticity as the 270-ksi strand. Although large size and high strength strands have higher cost 
than the typical 0.5-inch, 270 ksi strand, saving can be achieved from extending the span length 
and girder spacing.   

 

Figure 1 Partial stress-strain curves for uncoated low-relaxation prestressing strands of different grades5 

Using 0.6 and 0.7 inch prestressing strands at a center-to-center spacing of 2 in allows for the 
optimal implementation of High Strength Concrete (HSC) in precast, prestressed concrete bridge 
superstructures6.  According to Reference (6), 0.6-inch strand allows the introduction of 40% 
more prestressing force than the 0.5-inch strand because full pre-compression of the bottom fiber 
of the beam allows the largest possible service load moment to be resisted without exceeding the 
allowable tension stress in the concrete. “In addition, a forty-percent increase in reinforcement 
area can result in a comparable increase in ultimate capacity. Thus, girders reinforced with 0.6-
in. (15.2 mm) strand offer significantly improved performance when considering either service 
or strength limit states6.” 

The economic benefits of using 0.6 and 0.7-inch strands are not limited to NWHPC, but extend 
to LWHPC. “Thirty percent fewer strands may be used (compared to 0.5 in strands) to achieve 
the same prestress force, reducing the labor costs associated with installing strands6.” The use of 
0.6-inch and 0.7-inch strands is addressed in this research and the results are analyzed and 
presented in charts. As an example of using 0.6-inch strands, an increase of span range of 42 
percent resulted from using this size of strands in Louetta bridges that allowed full use of 
concrete strengths greater than 10,000 psi in the beam design7. It is important to mention that U-
beams are used in Louetta bridges. 

Safety must come as number one priority of any job. It is important to mention that draping high 
strength strands can be dangerous. Strands may snap during stressing process due to significantly 
higher stress. In addition, most of the current prestressing tools are designed for draping of 0.5-
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inch, 270-ksi strands, draping higher strength strands may force to have the anchorages suite this 
size of strands. For these reasons, partial debonding of 0.6-inch and 0.7-inch strands may be a 
better way to decrease tensile forces at the top fiber at transfer length at release than draping 
them. Recently, the issue of using the 0.7-inch strands with HPC has been investigated at the 
University of Nebraska8. The investigation has concluded that using 0.7-inch strands with 15 ksi 
HPC will lead to savings that can reach 14 percent compared to a bridge with 8 ksi concrete and 
0.6-inch strands8.  

PARAMETRIC STUDY 

GENERAL OUTLINE 

The upper limits of compressive strength considered in this study for NWHPC and LWHPC are 
15,000 and 12,000 psi, respectively. Although these limits are slightly higher than the common 
practice limits currently used in the United States, review of the literature and contacts made 
with concrete suppliers have revealed the possibility of achieving these limits in the near future.   

The objective of this study is to prepare a parametric study for NWHPC and LWHPC including 
Large Size Strands and High Strength Strands and compare them in many aspects including cost. 
The parametric study is performed to determine maximum span range of prestressed concrete 
bridge girders using HPC in decks and beam sections. The results of the analysis have been 
compiled in tables and charts for further analysis and research.  

The parametric study is performed on an interior girder of the simply supported bridge given in 
Example 9.4 of PCI Bridge Design Manual.10 The Bridge has an overall width of 51 ft. Two 
girder spacing of 9 ft. and 11.25 ft. are examined in the parametric study. In both cases, an 8-inch 
thick slab is used including a ½ in. wearing surface (Figure 2). Three strand sizes of 0.5, 0.6 and 
0.7-inch are considered in the study. 

1'-6" 48'-0" 1'-6"

51'-0"

3'-0" 5 SPACES @ 9'-0" = 45'-0" 3'-0"

8" UNIFORM DECK THICKNESS

Figure 2 The bridge model used in the analysis (with 9-ft girder spacing) 
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DESIGN CRITERIA OF NWHPC 

Table 1 gives the criteria of the 24 cases of NWHPC that are considered in the parametric study. 
12 cases (A01 to A12) are investigated for girders with 9 ft center-to-center spacing and 12 cases 
(A13 to A24) are investigated for girders with 11.25 ft spacing. Three values of compressive 
strength are used for the deck; 4, 6 and 8 ksi. Four values are considered for the final concrete 
strength of the girder; 4, 6, 8 and 12 ksi, and the compressive strength at release is adjusted to 
80% of the final compressive strength for all cases. Two steel grades are considered for the 
strands, which are 270 and 300 ksi.  Three sizes are considered for the 270 ksi strands; 0.5, 0.6 
and 0.7 in. diameter, and one size is considered for the 300 ksi grade strand, 0.5 in. diameter. 

In order to conduct the cost analysis for these cases, cost of the NWC mixes and strands were acquired 
from producers in December 2008.  Table 2 shows the cost of the NWC mixes that was reported by a 
ready mix concrete producer in Maryland. These estimates were obtained including 6% tax and a 300-
cubic yards order. Table 3 gives the cost of the strands. It should be mentioned that the authors could not 
get an estimate of the 0.7-inch, 270 ksi strand because of its limited production in the United States. 
Therefore, the cost was estimated by linear interpolation of the 0.5 and 0.6, 270 ksi strands. 

Table 1 Cases considered for NWHPC 

Cases Beam 
Spacing (ft) 

'
cf of the 

Deck (ksi)
Strand Tensile 
Strength (ksi) Strand Size (in.) 

'' & cci ff of the 
girder (ksi) 

A01 

9 

4 270 0.5 

4.8 & 6 ksi 
7.2 & 9 ksi 
9.6 & 12 ksi 
12 & 15 ksi 

A02 6 270 0.5 
A03 8 270 0.5 
A04 4 270 0.6 
A05 6 270 0.6 
A06 8 270 0.6 
A07 4 300 0.5 
A08 6 300 0.5 
A09 8 300 0.5 
A10 4 270 0.7 
A11 6 270 0.7 
A12 8 270 0.7 
A13 

11.25 

4 270 0.5 
A14 6 270 0.5 
A15 8 270 0.5 
A16 4 270 0.6 
A17 6 270 0.6 
A18 8 270 0.6 
A19 4 300 0.5 
A20 6 300 0.5 
A21 8 300 0.5 
A22 4 270 0.7 
A23 6 270 0.7 
A24 8 270 0.7 
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Table 2 Cost estimate of NWC mixes ($/yd3) 
4 ksi  6 ksi  8 ksi  9 ksi 10 ksi  12 ksi  15 ksi 

116.55  127.15  137.75  143.05 148.35 158.95 169.55 
 
Table 3 Cost estimate of prestress strands ($/1000 ft) 

0.5-inch, 270 ksi  0.6-inch, 270 ksi  0.5-inch, 300 ksi 0.7-inch, 270 ksi 

390  560  429  730  

DESIGN CRITERIA OF LWHPC 

Table 4 gives the design criteria for LWHPC, where 24 cases are established and examined.  

Table 4 Cases considered for LWHPC 

Cases Strand Size 
& Strength 

Concrete
Density of the 

Deck (pcf) 

'
cf of the 

slab (ksi) 

Concrete 
Density of the 
Girder (pcf) 

'' & cci ff of 
the girder 

(ksi) 
B01 

0.5 inch 
270 ksi 

150 

4 ksi 

150 

4.8 & 6 ksi 
6.4 & 8 ksi 
8 & 10 ksi 

9.6 & 12 ksi 

B02 130 
B03 115 
B04 

130 
150 

B05 130 
B06 115 
B07 

115 
150 

B08 130 
B09 115 
B10 

0.6 inch 
270 ksi 

150 
150 

B11 130 
B12 115 
B13 

130 
150 

B14 130 
B15 115 
B16 

115 
150 

B17 130 
B18 115 
B19 

0.7 inch 
270 ksi 

150 150 
B20 130 130 
B21 115 
B22 

115 
150 

B23 130 
B24 115 

Only 4 ksi slab is used with all the cases of LWHPC. This decision was made based of the results 
of NWHPC, which has shown that slabs with concrete strength greater than 4 ksi have very little 
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effect on increasing the span length. The LWHPC cases cover all types of strands that are used 
for NWHPC.  While LWC can be manufactured with different values of concrete density (90 to 
130 pcf), only two values are chosen in this research, which are 115 and 130 pcf. This decision 
was made after searching the literature. It should be mentioned that the cases with 0.7-inch 
strands are established with criteria to match only the successful cases of 0.5 and 0.6-inch 
strands. In other words, 0.5-inch and 0.6-inch strands were analyzed and the cases that resulted 
in significant span range increase are chosen for 0.7-inch strands. In addition, only beam spacing 
of 9 ft is used in this section. Also, 300 ksi strands that were studied for NWHPC and proofed 
inefficiency in increasing the span length are not considered here.  Table 5 gives the cost 
estimate of the LWHPC mixes. The cost of different compressive strength LWC mixes was 
acquired in February 2009. It was found that the115 and 130 pcf LWC mixes are $39 and $18.00 
more than the NWC mix for the same '

cf , respectively. 

Table 5 Cost estimate for LWC ($/yd3) 
Concrete 

Density (pcf) 4 ksi  6 ksi  8 ksi  9 ksi 10 ksi  12 ksi  

115 155.55  166.15  176.75  182.05  187.35  197.95  
130 134.55 145.15 155.75 161.05 166.35 176.95 

RESULT ANALYSIS OF NWHPC  

Results from 24 cases of NWC are compiled and presented in Figures 3 to 5.  
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Figure 3  Maximum achievable span versus girder’s compressive strength  
    ( ௖݂

ᇱ of the slab = 4 ksi) 
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The charts are prepared such that to optimize benefit for engineers and designers who want to 
use BT-72 in their bridges. Checking Figures 3 to 5, the following conclusions can be reached: 

1. Regardless the compressive strength of the slab and the girder spacing, all relationships 
follow almost the same trend. 

2. Increasing the compressive strength of the slab from 4 to 6 ksi or from 6 to 8 ksi does not 
have a significant impact on increasing the span range. This phenomenon is clearly illustrated 
in Table 6 that was extrapolated from Figures 3 to 5, where the case of ௖݂

ᇱ = 6 ksi of the 
girder with 0.5-in., 270 ksi strands is taken as the base line of comparison. 

3. Increasing the compressive strength of the girder ௖݂ᇱ from 6 to 9 ksi has higher impact on 
increasing the span length more than the cases of increasing ௖݂ᇱ from 9 to 12 ksi and from 12 
to 15 ksi. This phenomenon can be seen from Figures 3 to 5 where the relationship between 
௖݂
ᇱ  and the span length has a mild slope for ௖݂ᇱ = 6 to 9 ksi and a steep slope for '

cf = 9 to 15 
ksi. The only exception to this phenomenon is the case where the 0.7 in. diameter, 270 ksi 
strands are used, where almost the same rate of increase in the span is detected when ௖݂ᇱ is 
increased from 6 to 12 ksi. 

Table 6  Percent Span Increase Compared to Baseline 

9 ft 11.25 ft 9 ft 11.25 ft 9 ft 11.25 ft 9 ft 11.25 ft
4 0* 0** 0 0 0 0 0 ‐4
6 0 0 0 0 0 0 0 ‐4
8 0 2 0 0 0 2 0 ‐4
4 18 22 23 28 23 26 30 28
6 20 22 25 28 25 28 30 28
8 20 24 28 30 27 28 30 28
4 22 26 35 46 28 33 50 54
6 23 26 38 48 30 33 50 54
8 23 28 40 48 30 33 50 54
4 23 28 45 50 32 35 58 69
6 25 30 47 52 32 35 63 70
8 25 30 47 52 32 37 65 70

of Slab 
(ksi)

Percent Span Increase Compared to the Baseline
0.5‐inch, 270 ksi 0.6‐inch, 270 ksi 0.5‐inch, 300 ksi 0.7‐inch, 270 ksi

6

9

12

15

 of Girder 
(ksi)

'
cf

'
cf

* Baseline case for the 9 ft girder spacing 
** Baseline case for the 12 ft girder spacing 

4. Figures 3 to 5 can be used to determine the ideal compressive strength of the girder. Ideal 
compressive strength is the point on the curve that gives the most economic value of ௖݂ᇱ  that 
can be used for the girders. If a higher value of ௖݂ᇱ is used for the girders, then the benefit 
from using HPC is decreased dramatically as the higher value of ௖݂ᇱ cannot offer much span 
increase. For example, if the BT-72 girders are spaced at 11.25 in. and 0.5-in., 270 ksi 
strands are used, the ideal compressive strength for the girder will be around 10 ksi. When 
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0.6-in., 270 ksi strands are used with 11.25 ft girder spacing, the ideal compressive strength 
rises to approximately 13 ksi. 

5. Regardless the girder spacing or the compressive strength of the slab, if ௖݂ᇱ of the girder = 6 
ksi, using larger size of strands or strands with higher tensile strength has almost no effect on 
the span length. This phenomenon can be seen from Figures 3 to 5 where all the 
relationships start almost at the same point.  

6. Using larger strand size (i.e. 0.6 or 0.7 in. diameter) has higher impact on the span length 
than using higher grade of strands. 

COST ANALYSIS OF NWHPC 

The cost analysis presented in this section considers only the material cost of the girders and slab 
using the cost of concrete and strands given in the introduction section of this paper. Cost of the 
barriers, wearing surface and reinforcement provided in the slab are not included in the analysis. 
Also, the labor cost is not included. 

Figure 6 shows the cost per linear foot of an interior girder with the associated portion of the 
deck. This figure presents selected results from the two-girder spacing, 9 and 11.25 ft. For 
clarity, Table 7 gives the design criteria for the cases covered in Figure 6. All the cases shown 
in Figure 6 are for 4 ksi slab. The 4-ksi slab is chosen for the cost analysis because the span 
length analysis has shown that 6 and 8 ksi slab do not provide significant increase of the span. 

As shown in Figure 6, the cost per linear foot increases when ௖݂
ᇱ  of the girder increases. 

However, the relationship is not linear. There is a significant cost increase for the 11.25 ft. 
spacing for the cases where 0.6-in. and 0.7-in. strands are used (Cases A16 and A22), and ௖݂ᇱ of 
the girder is raised from 12 ksi beam to 15 ksi. Meanwhile, the cost does not change for the case 
with 300 ksi strands (Case A19) for the same change in ௖݂ᇱ.  

Incorporating Figures 3 and 6 draws a very useful and practical path to choose the right 
compressive strength for the girder and the right strand type that optimize both span length and 
cost per linear foot. For example, if 300 ksi strands are chosen with 15 ksi concrete girders, this 
case offers 32% span length increase and costs approximately $93 per linear foot. Comparing 
this case with the case where 0.6-in. strands and 12 ksi concrete girders are used that offers 35% 
span length increase and costs approximately $87 per linear foot, a direct saving of $6 per linear 
foot and extra length of 2% can be achieved. More comparisons can be drawn if the cost analysis 
is developed for all the cases presented in the span length analysis.   
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Table 7 Design criteria of cases presented in Figure 6 

A01 A04 A07 A10 A13 A16 A19 A22
9 ft. Beam 
Spacing

0.5‐inch 
270 ksi

0.6‐inch 
270 ksi

0.5‐inch 
300 ksi

0.7‐inch 
270 ksi

NA NA NA NA

11.25 ft. Beam 
Spacing NA

NA NA NA
0.5‐inch 
270 ksi

0.6‐inch 
270 ksi

0.5‐inch 
300 ksi

0.7‐inch 
270 ksi

Beam Spacing
The Cases with 4 ksi Slab

 

Figure 7 shows cost per square foot of the bridge’s superstructure excluding the barrier and 
wearing surface costs. The trend is the same as in Figure 6 except that the bars in Figure 7 are 
much shorter for 11.25 ft. beam spacing due to shorter beam spans. 

RESULT ANALYSIS OF LWHPC 

Twenty four cases of LWHPC are analyzed and the result data are compiled in charts and tables. 
Figure 8 represents the maximum achievable span length of the LWHPC girders according to 
௖݂
ᇱ of the girder.  

 

Figure 8 Maximum achievable span length of LWHPC according to various values of  ݂ܿ
Ԣ  
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Figure 8 is comparable to Figure 3 of NWHPC and ideal compressive strength values can be 
determined for each case. It can be noticed that the ideal 
compressive strength values for 0.5-inch strand cases are 
between 8 ksi and 9 ksi, while 0.6-inch strands can take more 
advantage of HPC to increase the span range and can go up to 
10 ksi. 0.7-inch strands take advantage of even higher values of 
௖݂
ᇱ because they are capable of increasing span range beyond 

the value that obtained from 10 ksi. Therefore, the ideal 
compressive strength for 0.7-inch strands is 12 ksi. 

As in NWHPC, the difference of span length between the cases 
is negligible when low values of ௖݂

ᇱ  are used. Almost all the 
cases have the maximum span range of 120 ft. despite the type 
of strand used. This is the same value that obtained from the 
NWHPC when 6 ksi concrete is used. This means that there is no 
need to use LWC when using low values of ௖݂ᇱ for the girders.  

When 8 ksi is used for the girders, the span values are still be 
close to each other and LWC is not a wise choice if this value of 
௖݂
ᇱ is chosen; or at least, there is no good reason to switch to 

bigger strands than 0.5-inch when 8 ksi LWHPC concrete is 
used for the girders.  Likewise, when 10 ksi concrete is used, a 
case with 0.6-inch strands can be chosen to offer the same length 
that 0.7-inch strand can offer and money be saved. For example, 
Case B15 where the concrete density of the girder is 115 pcf and 
the deck is 130 pcf can offer a span length of 170 ft. that is the 
same length as the one offered by Case B21, which has NWHPC 
girders and 115 pcf slab with 0.7-inch strands. 

Table 8 shows the percentage of span range increase based on 6 
ksi NWHPC with 0.5-inch, 270 ksi strands. Notice that a 63% 
increase is possible for a beam with 0.7-inch strands when 130 
pcf concrete is used for the girder and 115 pcf is used for the 
deck. This comparison is more useful when it is combined with 
the cost analysis that is discussed later in this section. 

Figures 9, 10, and 11 show maximum achievable span length 
when LWHPC is used and compared to the case of 6 ksi 
NWHPC beam with 0.5-inch, 270 ksi strands. Figure 9 shows 
maximum span length per ௖݂

ᇱ of the LWHPC beams with 0.5-
inch, 270 ksi strands compared to the similar case of NWHPC. It 
is clear that 0.5-inch, 270 ksi strand is not a rational choice with 
LWHPC because there is no big difference in span length when it compared to NWHPC. As the 
size of strand increases to 0.6-inch, using LWHPC makes more sense because it offers 
significant span length increase compared to the case of NWHPC with same strand type as 

Cases

Compressive Strength 
of Beams  

6 
ksi 

8 
ksi 

10 
ksi 

12 
ksi 

B01  0  8  18  22 

B02  3  17  23  25 

B03  3  18  23  25 

B04  2  17  22  25 

B05  5  20  25  27 
B06  5  22  25  28 
B07  2  17  23  27 
B08  7  22  27  28 
B09  8  23  27  30 
B10  0  17  27  35 
B11  2  22  38  43 
B12  3  23  38  43 
B13  2  22  38  43 
B14  3  27  42  47 
B15  5  28  42  47 
B16  3  25  42  48 
B17  5  28  45  48 
B18  8  30  45  50 
B19  0  20  35  50 
B20  ‐  ‐  42  50 
B21  ‐  ‐  42  60 
B22  ‐  ‐  42  60 
B23  ‐  ‐  48  63 
B24  ‐  ‐  50  62 

Table 8 Percent span length
increase of LWHPC cases based
on 6 ksi NWHPC with 0.5-inch,
270 ksi strands 
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• It is more beneficial to use 0.6-inch strands than using 0.5-inch, 300 ksi strands because it 
can offer significantly longer span lengths and is not much more expensive. 

• It is more beneficial to use bigger strand size than 0.5-inch when the compressive 
strength used for the beam is higher than 9 ksi. 

• It is more economic to use 0.7-inch strands with normalweight concrete than with 
lightweight concrete, meanwhile, 0.7-inch strand with normalweight high performance 
concrete can offer span range increase close to a value where lightweight concrete can 
offer. 

• Lightweight high performance concrete is better choice than normalweight high 
performance concrete when 0.6-inch strand is used. 

• When lightweight high performance concrete is used, the concrete density of 130 pcf for 
the deck and 115 pcf for the beams is the ideal configuration that results in the maximum 
increase of the span length possible.  

• Cases where lightweight high performance concrete of 130 pcf concrete for both the deck 
and the girder, 115 pcf deck on normalweight high performance concrete beams, and 
lightweight high performance concrete of 115 pcf deck on 130 pcf beams are good 
choices that offer span range extension and they are economic compared to the other 
configurations. 
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