

Division of Engineering Services

Caltrans Office of Earthquake Engineering is working to develop Earthquake Resisting Systems (ERS) for precast girder bridges that will have little damage for smaller earthquakes and prevent collapse for unexpectedly large earthquakes.

						_			
PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>118
INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	DX	X+

Magnitude 8.8 Saturday, February 27, 2010 at 03:34:14 AM at epicenter Location 35.909°S, 72.733°W Depth 35 km (21.7 miles) Offshore Maule Earthquake Epicenter 105km (65 miles) NE of Concepcion, Chile 115 km (70 miles) SW of Talca, Chile 335 km (210 miles) SW of

SANTIAGO, Chile

uSource USGS

1: Vespucio Norte Expressway –Miraflores Bridge

AY Américolisa

Camino Miratiores

1: Vespucio Norte Expressway – Miraflores Bridge

2: Vespucio Norte Expressway Los Echevers Bridge

Division of Engineering Services

2: Vespucio Norte Expressway Los Echevers Bridge

2: Vespucio Norte Expressway Los Echevers Bridge

6: Vespucio Norte Expressway Independencia Bridge

Division of Engineering Services

6: Vespucio Norte Expressway Independencia Bridge

6: Vespucio Norte Expressway Independencia Bridge

Division of Engineering Services

6: Vespucio Norte Expressway Independencia Bridge

Division of Engineering Services

8: Route 5: Avenue Chada Bridge

8: Route 5: Avenue Chada Bridge

8: Route 5: Avenue Chada Bridge

13: Route 5: Rancagua Overcrossing

Division of Engineering Services

14: Puente Llacolen in Concepcion

Christchurch Earthquake – Comparison of Recorded and Design Ground Motions

57

New Zealand Bridge Seismic Criteria Design for three earthquakes 100 yr – no damage 500 year – can be repaired 1000 year – no collapse Use R-factor < 6Almost all precast girder (Park and Pauley) NZ Transit privatized – OPUS taken most functions Retrofits just tie everything together NZ seismic code has fallen behind

The Basic Facts

No highways and almost no modern bridges. Almost all precast girders. Deep liquefiable soil. No bridges instrumented. Seismic code hasn't been updated in years. Two earthquakes, six months apart. A small crack shows where damage begins. Think about displacement and load path to picture how damage occurred.

u1: Anzac Bridge over the Avon River

Division of Engineering Services

7: Brand New Blenheim Bridge in Christchurch CBD

13: Chaney's Overcrossing (1972) has a three-span precast box superstructure, pier walls, its north of town (1.0 sec SA = .2g) and it was slightly damaged by both earthquakes.

Performance of Precast Girder Bridges During Recent Earthquakes 13: Chaney's Overcrossing was one of the few highway (Route 1) bridges in Chrisgtchurch.

13: Chaney's OC carries Route 1 north of Christchurch.

Division of Engineering Services

13: Chaney's Overcrossing

13: Chaney's Overcrossing

13: Chaney's Overcrossing.

23: Fitzgerald Street Bridges (1964) over the Avon River are two, 2-span, simply supported precast girder bridges on pier walls and seat-type abutments on concrete piles.

23: Fitzgerald Street Bridges over the Avon River

23: Fitzgerald Street Bridges (1964) over the Avon River

Performance of Precast Girder Bridges During Recent Earthquakes

47: Port Hills Overbridge (1970) over Route 73

Performance of Precast Girder Bridges During Recent Earthquakes

and the second 47: Port Hills Overbridge (1970) over Route 73

47: Port Hills Overbridge (1970) over Route 73

Plan View

Performance of Precast Girder Bridges During Recent Earthquakes

10: 1980 Bridge Street (South Brighton) Bridge over the Avon River.

Caltrans Office of Earthquake Engineering has developed seismic criteria for precast girder bridges.

Shorter bridges are designed to have a rigid superstructure that engages the abutments during an earthquake.

Longer bridges are designed to have fixed connections to the bents to force plastic hinging of the columns.

Research is ongoing to consider isolation devices and other techniques for precast girder bridges to speed construction while maintaining seismic safety.

