PCMAC Workshop Sacramento, California November, 2010

Caltrans' Next Generation Bridge

Disclaimer: The opinions presented here are those of the presenter and do not necessarily reflect Caltrans' official policy.

Caltrans NGB Effort

Development Team:

Tom Shantz Angel Perez-Cobo Mark Mahan Ron Bromenschenkel Gudmund Setberg Joey Aquino Talal Sadek John Lammers Mike Keever

Review Team:

Mike Keever Joe Downing Steve Wiman Paul Chung

NGB Systems

- Consider all bridge types
- Consider speed of construction
- Consider variety of materials
- Test to validate ideas; service/seismic
- Develop codes/specs
- Consider maintenance

Caltrans NGB Effort

Component Level Example

Abutment Shear Keys

First tested 2002

Category 'A' Decision Document 2008

April 29, 2008 Revision #9

Abutment Shear Key Design and Detailing Proposal Submittal for EEQC Decision

Package: Cultrans' Position on Abutment Shear Key Design and Detailing

Review history: GEQC has reviewed the package and approved through two cycles of comments and revisions.

Opposing views: Presented by Kevin Harper and Steve Wiman.

Impact of implementation:

- · Construction impact is minimal.
- Schedule impact is minimal.
- · Benefits include easier and less expensive post earthquake repair costs.
- Conflicts with other documents will be resolved once successful details are developed and published.

Limits of applicability of the document: The limits have been specified within the document.

Upon approval the use of this document is advisory (mandatory, or permissive).

The General Earthquake Committee comprised of DES seismic bridge engineers at Caltrans has reviewed this document and recommends its approval. All controversial issues will be addressed by the opposing views in the review process.

Sacrificial Shear Key Design

11/16/2010

7

Construction of New Keys

Completed Seismic Shear Keys

Isolated Key for 68.6m (226 ft) span

11/16/2010

10

Initial Focus:

Initial Focus: Precast elements

Initial Focus: Precast elements - columns

Initial Focus: Precast elements - columns

Next Generation Bridges -Current Caltrans Policy-

SEISMIC DESIGN CRITERIA • MAY 2006 • VERSION 1.4

8. SEISMIC DETAILING

8.1 Splices in Reinforcing Steel

8.1.1 No Splice Regions in Ductile Components

Splicing of flexural reinforcement is not permitted in critical locations of ductile elements. The "no splice" region shall be the greater of: The length of the plastic hinge region as defined in Section 7.6.3 or the portion of the column where the moment demand exceeds M_y . A "no splice" region shall be clearly identified on the plans for both hinge locations of fixed-fixed columns.

8.1.2 Reinforcement Spliced in Ductile Components & Components Expected to Accept Damage

Reinforcing steel splices in ductile components outside of the "no splice" region shall meet the "ultimate splice" performance requirements identified in Memo to Designers 20-9.

We can see by comparing CA to Japan, that varying seismic hazard maps and detailing practices exists between countries.

144 to 170 ft spans

11/16/2010

20

11/16/2010

21

11/16/2010

23

We can see by comparing CA to Japan, that varying seismic hazard maps and detailing practices exists between countries.

Furthermore, given the same 1000 year event uniform hazard map used within the US, various DOT's are addressing seismic capacity in detailing differently.

Precast elements are to emulate Castin-Place performance.

Precast element tests are required to validate expected performance.

11/16/2010

30

11/16/2010

34

NO. X8 POS

10/08

DESIGN

DETALS

NO. X8 POS

10/08

NO. X8 POS

10/08

11/16/2010

47

UNR Research Contract, July 2010 Principal Investigator: Dr. Saiid Saiidi Professor of Civil & Environmental Engineering

Connection Detail #1:

Connection Detail #1:

Proposed Test Protocol

	Test	Diameter	Reinf.	
Phase	Unit	[in]	%	Confinement
А	1	36	1.5	#8@8"
	2	36	1.5	#8@6"
	3	36	1.5	Bund. #8 @ 8"
	4	36	1.5	Bund. #8 @ 6"
В	1	48	1.5	#8@8"
	2	48	1.5	#8@6"
	3	48	1.5	Bund. #8 @ 8"
	4	48	1.5	Bund. #8 @ 6"
с	1	60	1.5	#8@8"
	2	60	1.5	#8@6"
	3	60	1.5	Bund. #8 @ 8"
	4	60	1.5	Bund. #8 @ 6"

Next Generation Bridges Alternative Configurations

Next Generation Bridges Alternative Configurations

11/16/2010

53

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

University of Washington CFT connection tests

11/16/2010

62

University of Washington CFT connection tests

University of Washington CFT connection tests

11/16/2010

64

Caltrans NGB Effort

PRECAST CONCRETE
CONSTRUCTION
ENGINEERING
LICENSE NO. 929340

September 2006 GRG Vol.4, No.4

11/16/2010

66