Harbor Blvd. OC (A Spliced Precast Bath-Tub Girder Structure)

Bartt Gunter, PE – Caltrans, Structure Design Tony Tipton, PE – Caltrans, Structure Construction

11/3/2010

Existing Bridge: Typical Section

2 independent, side by side PC/PS bathtub girder bridges connected by

transverse joint

Existing Bridge: Elevation View

2-139' Spans

Existing clearance 16'-6"

Continuous for live load only

Inverted-T Cap

Existing bridge has Bathtub girders sitting on inverted-T cap

Advantages of PC/PS-PT **Continuous Superstructure** Fixed-pinned columns No moment into the footing means smaller footings, less piles. Continuity for all loads equates to smaller d/s and therefore, less DL. No Falsework Required

Constraints on PC Continuous

bridge

PC Girders were broken down into 2 – sub-girders for transportation reasons.

♦ 55'-11" and 75'-5" sub-girder Lengths

Locate temporary supports

Locations for temporary supports were chosen by gore area locations in HWY

Bartt Gunter, PE Tony Tipton, PE

50.

Method of calculation

- Design was accomplished using a spreadsheet
- This spreadsheet incorporated time dependent staging.

11/3/2010

Construction Sequence

Caltrans"

11/3/2010

Construction Sequence

Caltrans

Tony Tipton, PE

- Elimination of Greased Metal sheet in Bearing Pad Detail
 - Greased metal sheets would have made PC girder erection more difficult
 - Movement was expected due to PT.
 - Taller bearing pads were designed to compensate.

- PC girders on a vertical curve
 - Bridge has vertical curve
 - Girders are cast flat
 - Straight line segments are cast together to mimic vertical curve.

Lessons Learned PC girders on a vertical curve The deck must be a variable thickness so that the roadway vertical curve can be transitioned into the flat girders 80 #16, 5=330 E00 Existing Bridge < C Girder losur isting transvers 1800 (#13 @ 450 (Cont) -#16 tot 2 Per Girden € Sinder 00 16 tot #16 tot (cont) •16 tot 2 Per Internediate Space For Petalls Not Show See Prepast Girder PART TYPICAL SECTION (B0-5) (B8-5) THE CONTRACTOR SHALL VERIFY ALL CONTROLLING FIELD DIMENSIONS BEFORE ORDERING OR FABRICATING Bartt Gunter, PE Tony Tipton, PE 11/3/2010

- Camber Diagram
 - PC structures typically have a table for
 - camber.
 - CIP structures have a camber diagram.

- Camber Diagram
 - This bridge used neither.
 - Instead, calculations were made and submitted to construction to determine the correct camber.
 - Control is necessary over the final placement of the girders.
 - This is something the PC-Community (Primes, PC Subs, and CT) needs to discuss
 - as a best practice.

- Slope of Roadway and PS Profile
 - Roadway slope was somewhat greater than that shown on the plans, had wing walls been constructed to plan, they would have been high.
 - Prestress profile did not allow room for duct to fit below the deck in the bent cap.
 Keep in mind that spliced areas need a bit extra room (+/- 1 inch each.)

- Bent Cap Reinforcement Congestion
 - It is optimal for the seismic design to have girders and columns align.
 - There is a more reinforcement in PC/PS-PT girders across the girder/bent cap interface

- Bent Cap Reinforcement Congestion
 - To avoid congestion, try not align girders
 - and columns.

Bent Cap Reinforcement Congestion

Bent Cap Reinforcement Congestion

We CAN Do It!

11/3/2010

Quality Control

Quality Control

- Minimum Construction Areas Load Imposed On The Grade:
 - Given areas for splice temporary supports had soil loads in excess of 2.5 TSF.
 - On one side we were able to increase the area.
 - On the other, we were required to obtain Geotechnical release for the load.

Questions?

