ACHIEVING PROPER FIT UP.
ENSURE PROPER FIT UP OF PRECAST ELEMENTS IN THE FIELD.
ENSURE SUFFICIENT DETAIL IS ADDED TO THE DESIGN PLANS TO PLACE APPLICABLE GENERAL NOTES ON THE PLAN SET.
REINFORCING.
DETAIL DIMENSIONS OF ALL ELEMENTS INCLUDING INTERNAL ABUTMENT CONNECTIONS AND WINGWALL DETAILS.
BUT NOT LIMITED TO, COMPONENTS SUCH AS SLABS, SLEEPER SLABS, IT IS THE DESIGNER'S RESPONSIBILITY TO:
WEIGHT: THE MAXIMUM WEIGHT OF EACH ELEMENT SHOULD BE KEPT SHIPMENT REASONS.
PROJECTING REINFORCING SHOULD BE KEPT BELOW 12FT FOR SLEEPER SLABS. DETAIL SLABS ACCORDING TO STATE STANDARDS.
DETAILS ARE SHOWN FOR APPROACH SLABS WITH AND WITHOUT SUB-SURFACE APPROACH SLABS: SLABS THAT ARE PLACED TWO DIFFERENT APPROACH SLAB SYSTEMS ARE SHOWN: FOR THE DESIGN AND DETAILING OF PRECAST CONCRETE THESE GUIDELINE DRAWINGS REPRESENT TYPICAL DETAILS.
AFTER CONSULTATION WITH FABRICATORS. IF PRECAST ELEMENTS ARE TO THESE ARE BASED ON INDUSTRY PRACTICE AND SHOULD ONLY BE REDUCED THESE GUIDELINES SHOULD BE ADHERED TO WHEN PREPARING THE CONTRACT DRAWINGS.
CONTRACT DRAWINGS.
SHOW ESTIMATED SHIPPING WEIGHTS FOR ALL PRECAST ELEMENTS ON DESIGN PRECAST CONCRETE APPROACH SLAB ELEMENTS IN ACCORDANCE THESE GUIDELINES REPRESENT TYPICAL DETAILS.
PRECAST APPROACH SLAB NOTES
APPROACH SLAB NOTES
LIFE-CYCLE CONCRETE IS SHOWN.
CONCRETE THAT WILL ATTAIN THE DESIGN STRENGTH IN LESS THAN 7 DAYS CONCRETE THAT WILL GAIN THE DESIGN STRENGTH IN LESS THAN 7 DAYS CONCRETE: CONCRETE THAT WILL GAIN THE DESIGN STRENGTH IN LESS THAN 7TO 14 DAYS.
EARLY STRENGTH CONCRETE:
PROJECTS.
PERFORMANCE SPECIFICATIONS ARE RECOMMENDED IN LIEU OF RIGID
CONDITIONS THAT ARE SATISFACTORY OR WHICH ARE NOT RECOMMENDED.
CONSIDERED. LIQUID ADMIXTURES SHOULD BE USED IN LIEU OF
THAT MAY BE CONSIDERED. LIQUID ADMIXTURES SHOULD BE USED IN LIEU OF EXPANSIVE METALLIC PONDS.
IT IS RECOMMENDED THAT THE DESIGNER SPECIFY CONCRETE THAT WILL ATTAIN THE DESIGN STRENGTH IN LESS THAN 7 DAYS.
EARLY STRENGTH CONCRETE CAN LEAD TO CRACKING. EARLY STRENGTH CONCRETE:
CONCRETE THAT WILL ATTAIN THE DESIGN STRENGTH IN LESS THAN 7 DAYS.
CONSTRUCTION PROJECTS OBTAIN EFFECTIVE PRECAST CONCRETE THAT CAN GAIN STRENGTH AND CURE IN A RAPID MANNER. MATERIAL PERFORMANCES SPECIFICATIONS ARE RECOMMENDED IN LIEU OF ACCELERATED SPECIFICATIONS. THE FOLLOWING CONCRETE STRENGTH PARAMETERS ARE SUGGESTED FOR USE ON PRECASTED PROJECT.
FLEXURAL STRENGTH CONCRETE THAT WILL GAIN THE DESIGN STRENGTH IN LESS THAN 24 HOURS.
CONCRETE THAT WILL GAIN THE DESIGN STRENGTH IN LESS THAN 1 DAYS.
SHEARWOOD OF EARLY STRENGTH CONCRETE CAN LEAD TO CRACKING.
CONCRETE THAT WILL GAIN THE DESIGN STRENGTH IN LESS THAN 7 DAYS.
CONVENTIONAL APPROACH SLAB DETAILS.
CONTRACTED DESIGN STRENGTH IS THE SAME AS THE ORIGINATING CONCRETE:
FL,bool
FL,bool
FL,bool

INDEX OF SHEETS
1 APPROACH SLAB NOTES
2 GENERAL APPROACH SLAB DETAILS
3 SUB-SURFACE APPROACH SLAB DETAILS
4 PRECAST APPROACH SLAB TOLERANCES
5 CONCRETE NOTES
1. **Typical Section: Sub-Surface Approach Slab at Integral Abutment - Pinned Connection**

 - **Notes:** Concrete Girder shown. Steel Beam similar. Not all integral abutment reinforcing shown.

 - Joint details as per agency standards.
 - Erection elevation tolerance = 1".
 - 3" diameter sleeve cast into approach slab filled with grout after installation.

 - Concrete girder.
 - Precast approach slab.
 - Precast deck panel.
 - Backfill.

2. **Typical Section: Sub-Surface Approach Slab at Cantilever Abutment**

 - **Note:** Concrete girder shown. Steel beam similar.

 - Expansion joint system.
 - Erection elevation tolerance = 1/4".
 - 3" diameter sleeve cast into approach slab filled with grout after installation.

 - Concrete girder.
 - Precast approach slab.
 - Precast deck panel.
 - Backfill.

3. **Typical Section: Sub-Surface Approach Slab at Integral Abutment - Guiding Connection**

 - **Notes:** Concrete Girder shown. Steel Beam similar. Not all integral abutment reinforcing shown.

 - Joint details as per agency standards.
 - Erection elevation tolerance = 1".
 - 3" diameter sleeve cast into approach slab filled with grout after installation.

 - Concrete girder.
 - Precast approach slab.
 - Precast deck panel.
 - Backfill.

 - Concrete girder.
 - Precast approach slab.
 - Precast deck panel.
 - Backfill.

 - Set slab in a grout bed to provide proper seating.

 - Slot in abutment face to admit temperature movement between abutment and approach slab.

 - Closure pour cast-in-place.
1. APPROACH SLAB TOLERANCES

<table>
<thead>
<tr>
<th>Item</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>B</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>C</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>D</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>E</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>F</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>G</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>H</td>
<td>± 1/4" in 10 feet</td>
</tr>
<tr>
<td>I</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>J</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>K</td>
<td>± 1/4"</td>
</tr>
</tbody>
</table>

2. SLEEPER SLAB FABRICATION TOLERANCES

<table>
<thead>
<tr>
<th>Item</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>B</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>C</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>D</td>
<td>± 1/4" per 12" inch width</td>
</tr>
<tr>
<td>E</td>
<td>± 1/4" per 12" inch width</td>
</tr>
<tr>
<td>F</td>
<td>± 1/4" maximum</td>
</tr>
<tr>
<td>G</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>H</td>
<td>± 1/4" in 10 feet</td>
</tr>
<tr>
<td>I</td>
<td>± 1/4"</td>
</tr>
<tr>
<td>J</td>
<td>± 1/4"</td>
</tr>
</tbody>
</table>