How Precast Builds - Versatility

The most versatile of building systems is precast concrete construction. Its ability to adapt to many different functions makes it a favorite of architects, engineers, and contractors alike. What can you build with precast concrete? Ask anyone in the design community and you will receive a varied mix of their favorite applications of precast concrete. From athletic stadiums, office buildings, schools, data centers, and student housing, to retail, prisons, courthouses, parking structures, and much more, precast concrete reinvents itself every time it is specified.

Mike Johnsrud, Executive Director
Pinnacle National Development Center

Pinnacle National Development Center represents a groundbreaking collaboration between a professional sports team, a national sports federation, and a first-class sports medicine provider. The new, 81,000 square foot training center for the professional soccer club Sporting Kansas City also provides a permanent facility for training U.S. Soccer coaches and referees and is home to the Children’s Mercy Sports Medicine Center, which provides a full range of sports medicine services, resources, and programming for student-athletes in all sports.

The project was intended to provide training for athletes from across the United States while conveying a distinctive sense of place that would invite each visitor to feel like a part of the local environment, says Dirk McClure, director of business development for Enterprise Precast Concrete. The sand-colored precast concrete facade with three-dimensional patterning helped to make that happen. “Through the use of modular, repetitive form liners, the custom design pattern makes a statement, and this one-of-a-kind design solely belongs to the new home of this team,” McClure says.

An acid-etched finish was also used in the entryway of the building for a modern design sensibility, and a sandblasted finish at the field level integrates the design with the landscape. A rain-screen system featuring a wood veneer was added as further complement to the precast concrete panels.

Along with delivering the desired visual effect, the use of precast concrete helped the project stay on schedule and budget. As winter approached, “precast concrete contributed to a fast-track delivery method with quick erection times,” McClure explains. Also, precast concrete “offered a cost-effective exterior design solution,” he says.

The versatility of precast concrete helped to meet the client’s ultimate goal of creating a unique building whose design feels local to the area but can also stand out on the national stage. “With a client as passionate and involved as the design team was, this facility successfully came to life as a world-class training facility and exceeded all expectations,” McClure says.

Owner: Sporting Club, Kansas City, KS
Tenants: Sporting Kansas City, U.S. Soccer, Children’s Mercy Sports Medicine Center
Precast Specialty Engineer: Enterprise Precast Concrete, Omaha, NE
Architect: Populous, Kansas City, MO
Engineer of Record: Walter P Moore, Kansas City, MO
General Contractor: Turner Construction, Kansas City, MO
Photo Credit: Enterprise Precast Concrete and Jacia Phillips Photography
Location: Kansas City, KS

Precast concrete was not the initial choice for this project, McClure notes. When they designed the building, the architects wanted use depth, color, and textural variation to express “the movement of the body and the ball,” he says. The design team explored multiple exterior-cladding options, such as fiber-reinforced concrete or fiber-cement panels. But after multiple design iterations and cost estimates for these options, team members determined that they needed another option to stay within budget. “Solid architectural precast concrete panels were the next logical step,” says McClure.

The primary design element is the pronounced diamond pattern cast into the precast concrete wall panels. The look was chosen after an extensive mock-up process, in which the precast concrete team filmed a panel for a full day to learn how sun and shadows affected the protrusions in the precast concrete panel design. “Everyone loved it,” McClure says.

An acid-etched finish was also used in the entryway of the building for a modern design sensibility, and a sandblasted finish at the field level integrates the design with the landscape. A rain-screen system featuring a wood veneer was added as further complement to the precast concrete panels.

Along with delivering the desired visual effect, the use of precast concrete helped the project stay on schedule and budget. As winter approached, “precast concrete contributed to a fast-track delivery method with quick erection times,” McClure explains. Also, precast concrete “offered a cost-effective exterior design solution,” he says.

The versatility of precast concrete helped to meet the client’s ultimate goal of creating a unique building whose design feels local to the area but can also stand out on the national stage. “With a client as passionate and involved as the design team was, this facility successfully came to life as a world-class training facility and exceeded all expectations,” McClure says.

Owner: Sporting Club, Kansas City, KS
Tenants: Sporting Kansas City, U.S. Soccer, Children’s Mercy Sports Medicine Center
Precast Specialty Engineer: Enterprise Precast Concrete, Omaha, NE
Architect: Populous, Kansas City, MO
Engineer of Record: Walter P Moore, Kansas City, MO
General Contractor: Turner Construction, Kansas City, MO
Photo Credit: Enterprise Precast Concrete and Jacia Phillips Photography
Location: Kansas City, KS

Precast concrete was not the initial choice for this project, McClure notes. When they designed the building, the architects wanted use depth, color, and textural variation to express “the movement of the body and the ball,” he says. The design team explored multiple exterior-cladding options, such as fiber-reinforced concrete or fiber-cement panels. But after multiple design iterations and cost estimates for these options, team members determined that they needed another option to stay within budget. “Solid architectural precast concrete panels were the next logical step,” says McClure.

The primary design element is the pronounced diamond pattern cast into the precast concrete wall panels. The look was chosen after an extensive mock-up process, in which the precast concrete team filmed a panel for a full day to learn how sun and shadows affected the protrusions in the precast concrete panel design. “Everyone loved it,” McClure says.

An acid-etched finish was also used in the entryway of the building for a modern design sensibility, and a sandblasted finish at the field level integrates the design with the landscape. A rain-screen system featuring a wood veneer was added as further complement to the precast concrete panels.

Along with delivering the desired visual effect, the use of precast concrete helped the project stay on schedule and budget. As winter approached, “precast concrete contributed to a fast-track delivery method with quick erection times,” McClure explains. Also, precast concrete “offered a cost-effective exterior design solution,” he says.

The versatility of precast concrete helped to meet the client’s ultimate goal of creating a unique building whose design feels local to the area but can also stand out on the national stage. “With a client as passionate and involved as the design team was, this facility successfully came to life as a world-class training facility and exceeded all expectations,” McClure says.

Owner: Sporting Club, Kansas City, KS
Tenants: Sporting Kansas City, U.S. Soccer, Children’s Mercy Sports Medicine Center
Precast Specialty Engineer: Enterprise Precast Concrete, Omaha, NE
Architect: Populous, Kansas City, MO
Engineer of Record: Walter P Moore, Kansas City, MO
General Contractor: Turner Construction, Kansas City, MO
Photo Credit: Enterprise Precast Concrete and Jacia Phillips Photography
Location: Kansas City, KS
St. John’s Chapel and Mausoleum

Religious Structure Award Winner

St. John’s Chapel in Columbia, SD, is a one-story, 2200 square foot structure that features a clean, white “clapboard” facade with stained glass windows and a steeple topped by a simple, lighted white cross. Visually, it resembles other community churches that have historically anchored small towns across the Midwest. However, unlike the stick-frame structures favored in the past, this chapel has a precast concrete facade that combines a classic look and feel with modern durability.

The client, whose father had once been mayor of the town, wanted a sustainable design that would resemble a traditional 19th-century prairie church, but the chapel also had to be built to withstand South Dakota’s hot summers and snowy winters. The “need for durability and sustainability was the biggest challenges for the project,” says Eric Kurtz of Gage Brothers, the precaster for the project.

The project team considered several design options and ultimately chose to use precast concrete to meet the aesthetic, durability, and low-maintenance requirements. “The architect recognized the inert properties that precast concrete was going to provide,” Kurtz says. “The formability allowed for the architectural exterior finish; form liners achieved the shape and texture for the ‘clapboard’ siding; and concrete ingredients provided the integral color that would achieve a no-maintenance exterior.”

The exterior walls were made with precast concrete panels simulating wood clapboard lap siding, with metal stud framing on the interior. The precaster used a form to create highly defined, white “clapboard” siding. “The choice of white concrete makes maintenance of the exterior a nonissue,” Kurtz says.

The production crew used the thickest plastic available within the form to replicate the clapboard look and ensure that the shape was maintained throughout production. The precaster also designed panels to work with the natural size of the liner to eliminate the need for splicing liners. “These were important aspects of the project as the precast concrete was used for both the structure and architectural exterior finish of the chapel,” explains Kurtz.

The off-site production and speed of erection also contributed to the success of this project, Kurtz says. “The contractor took advantage of getting the structure up and enclosed quickly to allow completion of the interior work in an enclosed and tempered condition.” The result is a beautiful, modern-day chapel that is “built for eternity.”

Owner: Private client
Precast Specialty Engineer: Gage Brothers, Sioux Falls, SD
Architect: Mekus Tanager, Greenville, SC
Engineer of Record: Albertson Engineering, Rapid City, SD
General Contractor: KyBurz Carlson Construction, Aberdeen, SD
Photo Credit: Gage Brothers
Location: Columbia, SD

www.gagebrothers.com
The FLOOD project in Omaha, NE, is a novel example of how precast concrete can be used to transform a community space. The developers took an empty, early-20th-century building and transformed it with an architectural and art installation using precast concrete to educate the community about design, art, architecture, and manufacturing.

Unlike permanent museum buildings, which can require massive budgets to build and maintain, this project used the existing urban infrastructure to create a temporary exhibition space. Then, the designers brought in innovative ultra-thin precast concrete panels to serve as the canvas for urban industrial art.

Six ultra-thin, 12-ft-wide precast concrete panels were custom designed to meet the needs of this project. Each panel is just 1 1/2 inch thick and weighs approximately 2,000 pounds—which is roughly one-third lighter than traditional architectural precast concrete panels. However, the precaster was able to deliver comparable levels of strength, durability, and crack resistance through the use of a 5000-psi concrete mix and prestressed, corrosion-resistant stainless steel wire cables spaced 4 inches apart throughout the panel interiors.

A steel erector on a boom was used to load the main-level panels through a storefront window and into the upper level via a fire escape exit door. Once the panels were in the building, the design team established a ½-inch-thick steel plate frame around the border of each panel and applied black waterproofing by hand as the art to the canvas. After applying the waterproofing, the team dragged a 10-foot-wide steel plate along the top of the frame on each panel in one move, creating a unique finished texture for each panel.

When the waterproofing had cured, the erection team used simple rigging equipment to hoist the panels into position and supported them from 3/8-in.-diameter cable loops attached to steel beams between the existing cast-in-place concrete columns. The result is a remarkable and sublime installation that appears to float in air within the original, raw cast-in place concrete structure of this historic building.

Owner: Standard Development, Omaha, NE
Engineer of Record: Enterprise Precast Concrete, Omaha, NE
Architect and General Contractor: Mike Nesbit Studio, Los Angeles, CA
PCI-Certified Erector: Patriot Steel Erection, Omaha, NE
Photo Credits: Mike Nesbit Studio
Location: Omaha, NE

www.enterpriseprecast.com
Molin Concrete Products was contracted to design, produce and install the architectural precast wall panels for multiple buildings at the new campus for the Minnesota Vikings Headquarters and Training Facility in Eagan, MN. The Vikings campus, on about 35 acres just south of Interstate 494 and east of Dodd Road, has four outdoor practice fields (two are heated, one is synthetic), a 6,500-seat outdoor practice stadium (expandable to 10,000) and a fieldhouse with a 98-foot roof for punting. The Vikings’ brand-new headquarters (the Twin Cities Orthopedics Performance Center) is more than double the square footage of their old headquarters, Winter Park, in Eden Prairie.

Molin’s scope of work on the new facility included insulated and uninsulated architectural precast panels and precast stairs for the Players Training Facility, the Headquarters Building, the Twin Cities Orthopedics Medical Office Building, The Vikings Practice Stadium and the Twin Cities Orthopedics Sports Medicine Building.

Along with an expedited construction schedule, this project required installation of the precast wall panels to be completed after several areas of projecting structural steel have been installed. Molin worked with the project team to resolve what some companies may consider an unreasonable construction sequence to successfully complete the installation of the “tucked under” precast panels. After the architectural precast wall panels were installed, Molin’s field team completed the joint sealant and final field washing processes for completion of another successful wall panel project.

Architect: Crawford Associates, Kansas City, MO
General Contractor: Kraus Anderson Construction
Location: Eagan, MN

www.molin.com

Creighton University Ruth Scott Training Center

The $5 million Ruth Scott Training Center is the latest addition to Creighton University’s east campus athletic corridor. The 16,000 square foot building will serve as the new training home for Creighton University’s volleyball and women’s basketball teams. The facility provides space for two full-sized basketball and volleyball courts, six basketball hoops, two automated volleyball nets that lower from the ceiling, state-of-the-art audio and visual equipment to film and review practices, a hydration station and additional storage space. The new training center will help remedy logistical troubles scheduling games and practices between the volleyball and basketball teams.

The exterior façade of the building features architectural precast concrete insulated wall panels. The precast exterior was chosen based on cost savings and accelerated schedule capabilities that would allow fast track construction. The exterior of the building consists of thin brick and decorative acid etch buff accents. There are a number of distinct brick coursing patterns, projections, and radiused panels incorporated into the exterior while the interior was power troweled to be site painted.

Construction on the training center was completed in January 2019, with the facility dedicated on February 4, 2019. Because of precast concrete, Creighton University Athletics will have a beautiful yet functional facility which will make a major statement for years to come.

Architect and Structural Engineer: Leo A Daly, Omaha, NE
Contractor: MCL Construction, Omaha, NE
Owner: Creighton University
Location: Omaha, NE

www.coreslab.com
Health Partners Bloomington Parking Structure

2019 PCI DESIGN AWARDS

All Precast Parking Structure Honorable Mention Award Winner

When Health Partners healthcare facility signed a new lease for its corporate headquarters in Bloomington, MN, the extension allowed for significant upgrades, including a new, eight-level, all-precast-concrete parking structure. The new ramp includes 1,666 parking stalls to serve more than 2,500 healthcare employees who work on the campus, giving them an easier, safer, and more accessible parking solution. The new structure dramatically expands future growth opportunities for the mixed-use development, while shortening the distance employees have to walk from their cars. It also allows site owners to develop acres of impervious surface parking in the future. Precast concrete quickly emerged as the material of choice to meet the cost, schedule, durability, and expandability goals for the ramp.

From the early stages of design, the precast concrete fabricator, contractor, architect, structural engineer, and parking planners worked together to fashion a design that efficiently met the performance and design goals for the project. The efficiency of a simple box was embraced in conceptual design, and the team found an opportunity for variation and relief in the detailing of the panels. Sandblasted, acid-etched, and honed corbel finishes provide color and texture, while simple, framed relief in the casting beds adds reveals that cause light and shadow to shift throughout the day.

The arrangement of panels with different finishes within the facades lends a purposefulness to the design, helping the structure to mesh with the overall campus development and meld into the background despite its size. To inject further design appeal into the project without overshadowing neighboring structures, the design team added a “light wall” component to the exterior that provides a vertical expression of interlocking white corbels and contrasts with the shades of grey in the horizontal panels. These vertical elements also cover the sloping ramp floors, giving the exterior appearance a simple interplay of vertical and horizontal lines. The resulting design delivers a flexible, low-maintenance solution that can be expanded to accommodate future growth, while blending easily with the existing infrastructure.

Owner: McGough Development, St. Paul, MN
Architect: BWBR Architects, St. Paul, MN
Engineer of Record and Precast Concrete Specialty Engineer: Ericksen Roed & Associates, St. Paul, MN
General Contractor: McGough Construction, St. Paul, MN
Photo Credit: McGough Construction Co., Inc., Wells Concrete

Learn & Earn Box Lunches

PCI Midwest provides continuing education programs on a variety of topics. These programs are easily tailored to conference room or classroom lunch programs. Architects and engineers can learn about precast concrete hollow-core floors and walls, architectural precast concrete, precast parking structures, glass fiber reinforced concrete, high performance precast concrete and much, much more. Contact mike@pcimidwest.org to request a program for you or your company.
Associate Members

ALP Supply
www.alpsupply.com
Jim Valent, Regional Sales Manager
jvalent@alpsupply.com
Architectural Polymers, Inc.,
1220 Little Gap Road
Palmetton, PA 18071
610-824-3322
www.apformliner.com
Marshall Walters
marshall@apformliner.com
Ash Grove Cement
1101 Cody Street
Overland Park, KS 66210
Dave Suchorski 913-205-8146
dave.suchorski@ashgrove.com
Mark Kreiser 913-451-8900
mark.kreiser@ashgrove.com
BASF
2955 Eagandale Blvd
Eagan, MN 55121
www.basf.com
Contact: Denise Guzzetta 605-310-5223
denise.guzzetta@basf.com
Beton-Stahl, Inc.
2003 O’Neil Rd
Hudson, WI 54016
715-808-0213
www.beton-stahl.com
Corey Leith
info@beton-stahl.com
Carl Harris Co, Inc
1245 S Santa Fe
Wichita, KS 67211
Phone: 316-267-8700
Contact: Carl Harris
Cheesebrough Brokerage Inc.
448 Lilac Street
Lino Lakes, MN 55014
Rep: Patrick Cheesebrough
651-717-6060
Commercial Metals Company
1 Steel Mill Drive
Seguin, TX 78155
www.cmc.com
830-372-8284
Jon Kinnschtle - 719-240-0514
Continental Cement
www.continentalcement.com
Contact: Brett Heinlein: 563-344-4488
Contact: Dave Meyer: 612-889-5236
Dayton Superior
1125 Byers Road
Miamisburg, OH 45342
937-866-0711
www.daytonsuperior.com
Bob Roeller
bob.roeller@daytonsuperior.com
DRL Drafting and Design
770 Technology Way, Suite 1C
Chippewa Falls, WI 54728
715-726-9656
www.DRLDD.com
Contact: Don Loew 715-726-9656 ext 101
don@drldd.com
Dynamic Color Solutions
2024 S. Lenox Street
Milwaukee, WI 53207
www.dynamiccolorsolutions.com
414-769-2585
e.ConstructUSA, LLC
11823 Arbor Street, Suite 200
Omaha, NE 68144
www.econstruct.us
402-884-9998
Elematic
19745 Sommer Drive
Brookfield, WI 53045
www.elematic.com
262-798-9777
Endicott Thin Brick & Tile LLC
PO Box 645
Fairbury, NE 68352
www.endicott.com
Rep: Dean Schmidt 402-729-3315
Rep: Jim Riccio 402-587-1764
Fister Quarries Group
1150 Lyon Road
Batavia, IL 60510
www.fisterquarries.com
800-542-7393
GCPP Applied Technologies
Chuck Stauber 612-246-7175
charles.l.stauber@gcpat.com
www.gcpat.com
GRT Admixtures
2978 Center Court, Eagan, MN 55121
www.grtinc.com
651-454-4151
Hamilton Form Company
7009 Midway
Fort Worth, TX 76118
www.hamiltonform.com
817-590-2111
sales@hamiltonform.com
Hayden-Murphy Equipment Co, Inc.
9301 E Bloomingom Fwy
Minneapolis, MN 55420
www.hayden-murphy.com
Len Kirk
952-884-2301
Heyer Engineering, Inc.
1020 36th Street South, Suite A
Fargo, ND 58103
701-280-0949
www.heyerengineering.com
Contact: Eric Greff, PE
ICONX LLC
5525 Kaw Dr
Kansas City, KS 66102
www.iconxusa.com
Phone: 913-208-4274
Contact: Joel Foderberg
Insteel Wire Products
1373 Baggs Dr
Mt. Airy, NC 27030
www.insteel.com
800-334-9504
Rep: Randy Plitt
rplitt@insteel.com
Iowa Steel & Wire Company
1500 W Van Buren, PO Box 156,
Centerville, IA 52544
www.okbrandwire.com
800-325-5118
JVI Inc.
169 N Hampshire
Elmhurst, IL 60126
www.jvi-inc.com
LaFargeHolcim
2815 Dodd Road Suite 102
Eagan, MN 55121
800-562-3989

Lehigh Cement
12300 Dupont Avenue South
Burnsville, MN 55337
www.lehighcement.com
Rep: Dave Grausam

Masonry & Precast Specialty Services
726 N Frontier Rd
Papillion, NE 68046
www.masonryprecast.com
402-306-6004
Craig Christensen

Meadow Burke
6467 S Falkenburg Rd
Riverview, FL 33578
www.meadowburke.com
Nick Fain 513-507-7223

METROBRICK
1201 Millerton Street SE
Canton, OH 44707
www.metrobrick.com
Rep: Dianne Young 888-325-3945

Midwest Precast Services
4675 40th Avenue South, #140
Fargo, ND 58104
www.mwprecastservices.com
701-893-0188
Paul Nelson
Paul.nelson@mwprecastservices.com

Nawkaw Mid-America
12901 St. Charles Rock Road
Bridgeton, MO 63044
www.nawkaw.com
Andrew Ness: 636-373-2843
aness@midwestblock.com

Nox-Crete Products Group
1444 S 20th St, Omaha, NE 68108
www.nox-crete.com
Jeff Bishop - 402-401-0506
jbishop@nox-crete.com

Pathfinder Systems
695 Ottawa Beach Road
Holland, MI 49424
616-395-8447
www.pathfindersystem.com
Dana Hook: 779-771-3586
dana@pathfindersystem.com

Polylok, Inc.
3 Fairfield Boulevard
Wallingford, CT 06492
www.polylok.com
877-765-9565
Jim Redding
jim@polylok.com

Sandman Structural Engineers
1587 30th Avenue South
Moorhead, MN 56560
218-227-0022
www.sandmanse.com
Contact: Kurt Sandman, PE

Shuttlelift
49 E Yew Street
Sturgeon Bay, WI 54235
www.shuttlelift.com
920-743-8650

Sika Corporation
1515 Titanium Drive
Ottawa, IL 61350
www.usa.sika.com
Andy Pearson 920-655-7600
pearson.andy@us.sika.com

Simem America Inc.
12100 Crown Point, Suite 100
San Antonio, TX 78233
www.simemamerica.com
Jay Newton 210-568-9987

SKAKO Concrete, Inc.
7985 Dunbrook Rd, Suite F
San Diego, CA 92126
www.skako.com
John Leszczynski 852-271-7341

Spillman Company
www.spillmanform.com
Ted Coons
tcoons@spillmanform.com

Splice Sleeve North America, Inc.
38777 W Six Mile Rd #205
Livonia, MI 48152
www.splicesleeve.com
877-880-3230
Rep: Toshi Yamashita

Standley Batch Systems, Inc.
PO Box 800,
Cape Girardeau, MO 63702-0800
www.standleybatch.com
Ralph Kiel - ralphk@standleybatch.com

Stehler Structural Engineering
6 Scotch Pine Road
St. Paul, MN 55127
www.stehler.net
651-278-1571
Don Stehler
don@stehler.net

Sumiden Wire Products Corp.
710 Marshall Staurt Drive,
Dickson, TN 37055
www.sumidenwire.com
Matt Speedy 614-537-5988

Sylvan Products, LLC
7400 SW Cherry Drive
Portland, OR 97223
503-639-9000
www.sylvan-products.com
Contact: Bryan White 503-608-3930
bwhite@sylvan-products.com

Thermomass
1000 Technology Drive,
Boone, IA 50036
www.thermomass.com
800-232-1748
Rep: Brad Nesser

Thin-Wall
210 N 13th Street
Seward, NE 68434
800-869-0359

UltraSpan Technologies
165 Fennell Street
Winnipeg, MB R3T OM6
204-992-3200
www.ultraspan.ca
Adam Formuziewich: 204-292-3666
adam@ultraspan.ca

US Formliner
370 Commerce Blvd, Athens, GA 30606
www.usformliner.com
Ray Clark 706-549-6787

Voeller Solutions
369 W Western Ave
PO Box 325
Port Washington, WI 53074
www.voellersolutions.com
Joe Fisher 262-284-3114
joe.fisher@voellers.com

West Central Steel, Inc.
105 19th Street NW
Willmar, MN 56279
www.wcsteel.com
320-235-4070
Contact: Jeff Allinder 320-214-5228
jallinder@wcsteel.com

If you are a PCI Associate Member and need to update your listing or if your company is interested in becoming a PCI Associate Member, please contact Mike Johnsrud at mike@pcimidwest.org.
Producer Members

Key:
- **Architectural**
- **Structural**
- **Bridge – Transportation**

Architectural Precast
- **Beams/Columns**
- **Wall Panels**
- **Poles**
- **Hollow-core Slabs**
- **Single Tees**
- **Double Tees**
- **Stadium Seats**
- **Modular Cells**
- **Soundwalls**
- **Piles**
- **Boxed Beams/Slabs/Beams/Girders**

Table

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contact</th>
<th>Phone</th>
<th>Website</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Precast Co.</td>
<td>Mike Decker</td>
<td>563-744-3909</td>
<td>www.advancedprecastcompany.com</td>
<td>Farley, IA</td>
</tr>
<tr>
<td>Concrete Industries, Inc.</td>
<td>Randy Schultz</td>
<td>402-434-1800</td>
<td>www.concreteindustries.com</td>
<td>Lincoln, NE</td>
</tr>
<tr>
<td>Corelab Structures (Kansas) Inc.</td>
<td>Mark Simpson</td>
<td>913-287-5725</td>
<td>www.corelab.com</td>
<td>Kansas City, KS</td>
</tr>
<tr>
<td>Corelab Structures (Omaha) Inc.</td>
<td>Todd Culp</td>
<td>402-291-0733</td>
<td>www.corelab.com</td>
<td>Bellevue, NE</td>
</tr>
<tr>
<td>County Materials Corp.</td>
<td>Steve Hoesing</td>
<td>800-289-2569</td>
<td>www.countymaterials.com</td>
<td>Roberts, WI</td>
</tr>
<tr>
<td>Crest Precast Concrete, Inc.</td>
<td>Gary Mador</td>
<td>507-895-2342</td>
<td>www.crestprecastconcrete.com</td>
<td>La Crescent, MN</td>
</tr>
<tr>
<td>Crossland Prefab</td>
<td>Rob Newsom</td>
<td>620-429-1414</td>
<td>www.crossland.com</td>
<td>Columbus, KS</td>
</tr>
<tr>
<td>Enterprise Precast Concrete, Inc.</td>
<td>Shawn Wentworth</td>
<td>402.895.3848</td>
<td>www.enterpriseprecast.com</td>
<td>Omaha, NE</td>
</tr>
<tr>
<td>Fabcon</td>
<td>Joel Mich</td>
<td>952-890-4444</td>
<td>www.fabcon-usa.com</td>
<td>Savage, MN</td>
</tr>
<tr>
<td>Forterra Building Products</td>
<td>Joel Mich</td>
<td>763-545-7473</td>
<td>www.forterrabp.com</td>
<td>Maple Grove, MN</td>
</tr>
<tr>
<td>Gage Brothers Concrete Products, Inc.</td>
<td>Tom Kelley</td>
<td>605-336-1188</td>
<td>www.gagebrothers.com</td>
<td>Sioux Falls, SD</td>
</tr>
<tr>
<td>Mid America Precast, Inc.</td>
<td>Rod Tanner</td>
<td>573-642-6409</td>
<td>www.midamericaPrecast.com</td>
<td>Fulton, MO</td>
</tr>
<tr>
<td>Molin Concrete Products Co.</td>
<td>John Saccoman</td>
<td>651-786-7722</td>
<td>www.molin.com</td>
<td>Lino Lakes, MN</td>
</tr>
<tr>
<td>PDM Precast, Inc.</td>
<td>Adam Peterman</td>
<td>515-243-5118</td>
<td>www.pdmprecast.com</td>
<td>Des Moines, IA</td>
</tr>
<tr>
<td>Prestressed Casting Co.</td>
<td>David Robertson</td>
<td>417-869-7350</td>
<td>www.prestressedcasting.com</td>
<td>Springfield, MO</td>
</tr>
<tr>
<td>Prestressed Concrete</td>
<td>Chris Goeverl</td>
<td>316-283-2277</td>
<td>www.prestressedconcreteinc.com</td>
<td>Newton, KS</td>
</tr>
<tr>
<td>Stress-Cast Inc</td>
<td>Jim Markle</td>
<td>785-667-3905</td>
<td></td>
<td>Assaria, KS</td>
</tr>
<tr>
<td>Taracon Precast</td>
<td>Paul Nelson</td>
<td>507-380-9423</td>
<td>www.taraconprecast.com</td>
<td>Hawkey, MN</td>
</tr>
<tr>
<td>Wells Concrete</td>
<td>Mike Mortenson</td>
<td>800-732-4261</td>
<td>www.wellsconcrete.com</td>
<td>Wells, MN, Albany, MN, and Maple Grove, MN</td>
</tr>
</tbody>
</table>

Note: Key indicates the type of product offered by each company.