

CHolcim

CO₂ Emissions: Other Source than Fossil Fuels
Limestone = Calcium Carbonate (CaCO₃)
Cement manufacturers need CaO
Therefore: through heat exchange -> CaCO₃ + Heat -> CaO + CO₂

Reactivity of the system is enhanced Improvement of: early strength water demand (lower)

Composite cement Intergrinding or blending at cement plant Where A and B are SCM types and X and Y cement plant Optimized particle size distribution of constituents Optimized chemical. composition of the system (clinker composition, use of chemical improvers, CKD, swosum optimization, etc) S=slag or P=pozzolan If X=Y requirements of Type IT(P>S) apply (Type IP) Example: Type IT(S25) (P15) contains 25% slag and 15% pozzolan CHolcim CHolcim

MIC addition on site Gives flexibility

CHolcim

- Due to LEED requirements producer needed a product that contained SCMs and would not impede the release times of the prestressed panels.
- IS(20) that was on this project was an interground material.

CHolcim

CHolcim

IS(20) was used on the prestressed panels of this 1.1 million cubic foot warehouse west of Charleston, SC CHolcim

- During the duration of this project, producer also constructed AASHTO girders, hollow core decks, and barrier rail for both SCDOT and NCDOT.
- Other users in the Carolinas use the IS(20) in applications such as: high strength military vaults where the required strength is 10,000 psi Above and below ground precast storage tanks As well as a multitude of drainage items

What Specifications cover Portland-Limestone cements?

In 2011, ASTM developed a provision for having a portland cement that contained 5% to 15% limestone which would adhere to ASTM C595 [Standard Specification for Blended Hydraulic Cements] . AASHTO recognition of PLC was also aligned with ASTM in the August 2012 print in AASHTO M240.

CHolcim

History of Use Currently the most commonly used cement in Europe Decades of use Up to 20 percent limestone allowed in EN197-1 CEM II/A and 35 percent in CEM II/B Allowed in Canada since 2008 Up to 15 percent limestone ASTM C595 and AASHTO M 240 adopted Portland Limestone Cement classification 2012

CHolcim

			ograr					
Lab Data Summary								
Lab Data Summary								
				Cement C	Company ".	A"		
	1	2	3	4	5	6	7	8
Mix Date	08/13/12	08/13/12	08/13/12	08/13/12	08/13/12	08/13/12	08/13/12	08/13/12
	C150 M85	C595IL M240	C150 M85 Fash	C595IL M240 Fash	C150 M85 Cash	C595IL M240 Cash	C150 M85 GGBFS	C595IL M240 GGBFS
Cement	611	611	458	458	458	458	367	367
GGBFS							244	244
Boral Bowen F Ash			153	153				
Miller C Ash					153	153		
Total Cementitious	611	611	611	611	611	611	611	611
Aggregate								
Hanson Tyrone Coarse	1851	1851	1851	1851	1851	1851	1851	1851
Brown Brothers Sand	1098	1098	1176	1176	1112	1112	1118	1118
Design Air (%)	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%
Design Water (lbs)	306	306	290	290	290	290	290	290
Design (W/Cm)	0.501	0.501	0.475	0.475	0.475	0.475	0.475	0.475
Admixture								
	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Holcim								

	12-08-1268	12-08-1267	12-08-1268 3.1653	12-08-1269	12-08-1270	12-08-1271 3.1151		12-08-1273	12-08-1274	12-08-127	
Density (SG) Blaine		3.1780 349	3.1653	3.1527 413	3.1685	3.1151 671	3.1474 481	3.1534	3.0975 511	3.1540	
(air Jet) 45mm Retain %	4.044	3.912	1.500	8.602	2,808	1.548	1.092	1.924	8.052	2.218	
(air Jat) 45mm Passing %	95.956	96,088	1.500	91 398	97.192	1.546	98.908	98.076	01.002	97.782	
802		18.91	10.02			16.91		18.59			
K20 P205		0.572			0.629	0.418	0.495		0.588	0.617	
P205		0.064	0.220	0.211	0.085	0.070	0.064	0.198	0.204	0.085	
SrC		0.072	0.079	0.322	0.236	0.035	0.072	0.075	0.198	0.053	
Mr203				0.048		0.084			0.045	0.065	
0/203											
C4AF Treat Alkal											
Total Alkal		0.560					0.483			0.490	
Limestone In Cement	4.6	3.7	1.1	3.4	2.7	16.0	11.6	12.6	10.2	6.2	

нн	1157 Cement ~ 564-lb M	ix
Test Date	Charge Passed (Coulombs)	Relative Chloride Permeability
08-27-09	2423	Moderate
08-27-09	2516	Moderate
	AST HH <u>Test Date</u> 08-27-09	Test Date (Coulombs) 08-27-09 2423

		ORIDE PERMEABILITY M C 1202 (AASHTO T 23	
HH 11:		% SEFA Wateree Class	
Sample No. (Client ID)	Test Date	Charge Passed (Coulombs)	Relative Chloride Permeability
HH 1157 Cement w 20% SEFA Wateree Class F FA Sample A	08-27-09	1274	Low
HH 1157 Cement w 20% SEFA Wateree Class F FA Sample B	08-27-09	1245	Low

	Test Results	s [†] of ASTM C 66	6 - Procedure A				
F	reezing and Thav	ving of Concret	e Specimens* in	Water			
Sample	Freeze-Thaw	Length	Mass	Relative Dynamic			
Identification	Cycles	Change, %	Change, %	Modulus, %			
	0	0.000	0.00	100			
	36	0.009	0.07	98			
	67	0.012	0.08	97			
	93	0.016	0.07	97			
HHTII Cement	124	0.005	0.04	97			
HH III Cement	139	0.017	0.01	96			
	170	0.010	- 0.12	96			
	206	0.016	- 0.18	97			
500-lb Mix	245	0.012	- 0.18	98			
	276	0.015	- 0.22	98			
	303	0.017	- 0.27	98			

	Test Results	of ASTALC 66	6 - Procedure A	
F	reezing and Thav			
	-			
Sample Identification	Freeze-Thaw Cycles	Length Change, %	Mass Change, %	Relative Dynamic Modulus, %
ruentilication	0 Cycles	0.000	0.00	100
	36	0.002	0.07	99
	67	0.005	0.14	98
	93	0.016	0.09	98
HH 1157	124	0.005	0.09	98
Cement	139	0.019	0.02	97
	170	0.015	- 0.15	97
	206	0.014	- 0.19	98
500-lb Mix	245	0.014	- 0.25	99
	276	0.015	- 0.34	98
	303	0.011	- 0.41	97

