Fundamentals and Application of PCI Ultra-High-

Performance Concrete

Presented at the GCPCI-PCEF Meeting February 4, 2021

Maher Tadros, PhD, PE

Participating Partners

Outline

- What is UHPC?
- PCI-UHPC
- Research objectives
- Materials and plant production
- Structural design recommendations with PCI-UHPC
- Future opportunities for PCI-UHPC

What is Ultra-High-Performance Concrete?

Fiber-reinforced, cementitious composite

Low w/cm (typically < 0.20)

Supplemental Materials

Cement

Fine Sand

Fiber

Water

Superplasticizer

What is PCI-Ultra-High-Performance Concrete?

Characterized by:

- Higher compressive strength than currently in AASHTO LRFD-BDS
- High pre- and post-cracking tensile strength
- Ensured strain hardening to allow for exceptional flexural and shear behavior
- Enhanced durability due to high density and discontinuous pore structure

PCI-UHPC Mix Design Based on Local Materials

- Type I/II Cement
- Silica Fume
- Supplementary powder (slag, ground limestone, etc.)
- Masonry Sand
- Steel Fibers
- High-range water reducer
- Admixture to extend flowability

Objectives of the PCI-UHPC Research Project

- Rapid implementation of cost-competitive UHPC bridge components and systems
- Train precasters to produce the material for a reasonable cost and with minimal disruption to their current production practices
- Develop materials and structural design guidelines
- Fully worked out design examples to help train designers
- Introduce the least amount of change to the current AASHTO LRFD Bridge Design Specifications, and to ACI 318

Definition of PCI-UHPC for Precast Pretensioned Members

- Compressive strength, ASTM C1856, C109, 3"x6" cylinders
 - At service = 17.4 ksi (120 MPa) Required!
 - At prestress release = 10 ksi (70 MPa) Recommended

Note: lower strength at release may be permitted for lightly prestressed members.

Flexural Tension Requirements, using ASTM C1609 Standard Testing; 4"x4"x14" prism. IMPORTANT!

Tensile Strength and Ductility

Durability of PCI-UHPC vs. Conventional Concrete

Property	Conventional Concrete	UHPC
Electrical Indicator of Chloride Penetration Resistance, Coulombs	~4,000	32
Chloride Diffusion Coefficient, m ² /s	~5 × 10 ⁻¹²	0.13 × 10 ⁻¹²

PCI Project Strategy

- AASHTO already recognizes up to 15 ksi concrete. Extending to 17.4 ksi should not be a big challenge.
- 17.4 ksi is adequate compressive strength for most practical applications. Increasing the compressive strength requirement adds more cost with no apparent benefit.
- The distinguishing property of UHPC is its **tensile** capacity. The PCI-UHPC material has high limits and requires at least 2% of high strength, high aspect ratio fibers.
- It is our goal to take the current knowledge, confirm it, simplify it, and put it in practical guidelines.
- To compete with conventional concrete on a first cost basis, we target (1) material cost to 30% of prebagged commercial cost and (2) concrete volume to 50% of conventional products.

Development of Mix Designs using Locally available Materials

Mix Design and Testing

Predict mix proportions based on particle packing.

Trial batch in lab to achieve 9-inch flow.

Trial batch in plant and verify performance.

Mix Design and Testing

Predict mix proportions based on particle packing.

Trial batch in lab to achieve 9-inch flow.

Trial batch in plant and verify performance.

Evaluate:

- Flow spread
- Compressive strength
- Flexural performance

• ...

Temperature and Flowability

- Goal is to have as much flow spread as possible without segregation: 8 to 11 inches at point of placement
- Temperature before placement should be as low as possible: 65 to 85° F, preferably close to 65!
- Temperature after placement and finishing should be as high as possible: 160° for PCI standard curing and 194° for UHPC thermal post curing.

Performance Achieved

Property	Target (PCI-UHPC)	Phase I (Box Beam)	Phase II (Decked I-Beam)
Compressive Strength 28-days (lab-cured), psi At service (match-cured), psi	 ≥ 17,400	18,970 19,780	21,410 22,290
Flexural Strength First-Peak, psi Peak, psi Peak, % of first peak Residual at L/150, % of first-peak	≥ 1,500 ≥ 2,000 ≥ 125% ≥ 75%	1,960 3,170 162% 137%	1,770 3,450 200% 146%

Structural Design

Structural Design Guidelines

- Flexure, Creep, Shrinkage, Prestress Losses
- Vertical Shear
- Interface Shear
- Strand Bond
- End Zone Reinforcement

Flexure, Service Limit State

- Linear elastic uncracked section analysis, as currently in AASHTO LRFD Bridge Design Specifications (AASHTO)
- Concrete modulus, assumed = 6,500 ksi
- Initial Prestress Loss: same as in AASHTO, conservatively ignoring autogenous shrinkage
- Long Term Effective Prestress= 202.5-40.5 = 162 ksi
- Allowable compressive stress limits as currently in AASHTO
- Tensile stress at release to 0.75 ksi
- Tensile stress at service to 1.00 ksi

Inverse Analysis

Inverse Analysis Results

Flexural Strength Design Process

(a) Develop moment-curvature curve; Determine peak moment, M_{n1} (b) Use ultimate strain of 0.003, and rectangular stress block to get M_{n2} (c) The peak capacity is the larger of M_{n1} and M_{n2}

Recommended Short Cut for Prestressed Members

 For prestressed concrete, strand is the dominant tension element

 No change to strain compatibility analysis in AASHTO

Use available commercial software

Recommended Design in Transverse Direction

- Examples: top flange of decked I-beam and box beam are
- Not prestressed
- Ribbed slab are structurally optimum
- For T-sections:
 - No rebars for negative moment
 - Likely, will need rebars in the stems for positive moment
- Resistance factor: (a) fibers only, use 0.75; (b) fibers with bars,

use

$$\varphi = 0.75 + 0.30 \left(\frac{M_{nb}}{M_n}\right) \le 1.0$$

Product Testing in Flexure, PCI-UHPC Decked I-Beam

Decked I-Beam for FACCA, Inc, Ontario, Canada

 50' long decked bridge girder

 Tests in flexure (3-pt), shear (both ends), and local deck and diaphragm tests

Flexure Testing

- Loaded to about 10% over factored moment
- No visible cracking
- However, strain data suggests cracking at about 1800 kip-ft

Vertical Shear

Shear Strength Design Recommendation

- * Use AASHTO's general MCFT, with modifications
- * $V_n = V_c + V_s + V_f$ (new) + V_p
 - * $V_c = 0.0316\beta \sqrt{f_c'} b_v d_v$
 - * $\varepsilon_{s} = \frac{(M_{u}/d_{v}) + (V_{u} V_{p}) P_{e}}{(E_{s}A_{s} + E_{p}A_{ps})}$
 - * Use negative strain $\varepsilon_s = \frac{(M_u/d_v) + (V_u V_p) P_e}{(E_s A_s + E_n A_{ns} + E_c A_{ct})}$
 - * $\beta = 4.8/(1+750\varepsilon_s)$
 - $\theta = 29 + 3,500\varepsilon_s$

 f_{rr} is the key parameter!

- * $V_f = f_{rr} \cot \theta b_v d_v$
- * f_{rr} = residual rupture stress, recommended = 0.75 ksi

Experimental Shear Program

Shear Component Testing Considered:

Prestress level; Stirrups; Web Thickness; Fiber Length; Shear Span/Depth Ratio; Member Size and Shape; Tension Tie Demand; Effect of Thermal Curing

Full Product Shear Testing: Ribbed building floor slabs Bridge box slabs Building and Bridge Decked I-Beams

Test Specimens

Product Testing in Shear, PCI-UHPC Decked I-Beam

Bridge Decked I-Beam

This beam was meant to show that a beam with an integrated deck panel provides a fast and efficient design

DIB Shear Tests-

End With No Stirrups

DIB Shear Test, End With #5@10"

- Failed in flexure (strand rupture) @ 437 kips
 - About the same shear as the other end
 - Flexure cracks initiated at each stirrup location

Experimental VS. Theoretical Shear Strength, $f_{rr} = 0.75 \text{ ksi}$

- Baseline Variations
- Reduced/No Prestress
- PCTT
- Short Span
- Decked I-Beam
- Box Beam
- Ribbed Slab

...Including Tests by Others

Tension Tie is Important. Two specimens with low anchorage gave relatively low shear capacity

$$A_s f_y + A_{ps} f_{ps} \ge \left(\frac{V_u}{\phi_v} - 0.5V_s - V_p\right) \cot\theta$$
 (AASHTO)

Most Importantly! Demand is much lower than capacity

Specimen	Experimental Capacity /Theoretical Capacity	Experimental Capacity/Deman d	600 —	 Demand Theoretical Capacity
A3aSoP2-1	1.84	2.49	500	Experimental Capacity
A3aSoP2-2	1.57	2.13	400	
A3aSoP2-3	1.56	2.11	400	
A3bSoP2	2.57	3.48	(ki	
A3aSoP1	1.91	2.72	ਸ਼ੂ 300 —	
A3aSoPo	1.97	3.21	he	
A3aSoP2-4	1.79	2.42	200 –	
A3aSoP2-S	1.64	2.22		
АзаSoP2- L3.5	1.61	2.18	100 -	
A3aSoP2- L1.5	2.51	3.40	0	
A3aS1P2	1.58	2.68	or'	, The this store of the the the store store the the the the the the the the
A3aS2P2	1.41	2.78	SOT C	50 50 30 30 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50
A2aSoP2	1.80	2.02	A30 A30	Be to the to the Bre Bre Bre Bre Bre Bre Bre Bre Bre Br
A4aSoP2	1.54	2.79		
DB4aSoP2-1	1.16	2.31		Test Specimen
BS6aSoP2-1	1.50	4.27		
BS6aSoP2-2	1.07	3.05		

כ.כטו וסנו טבנ

Interface Shear

Interface Shear Behavior

Shear Friction Hypothesis (Birkeland H. and Birkeland P., 1966)

Fluted Joint Details as Specified by AFGC (2013)

Proposed Model

$$V_{ni} = cA_{cv} + \mu A_{vf} f_y$$

Methods of Connection

- Best solution to "roughen" the interface is to use a form liner
- Mechanical interlock is more significant than cohesion
- Need to use connecting bars for uplift reaction

Composite Bridge Beam

The objectives of this test are:

(1) To assess the adequacy of three different interface shear connections

(2) To demonstrate possible adjustments for camber and cross slope controls

Connection Details

Decked I-Beam Assembled at SCP Tampa Plant, Ready for Shipment to FDOT Lab

Decked I-Beam

Strand and Bar Development

Confirming work by FHWA

Peak Strand Stress vs ℓ/d_b (20 of 35 test results)

Optimized Products developed in the PCI-UHPC Program

Decked I-Beams

Comparison with Conventional Concrete, Span = 110 ft, Width = 50 ft, spacing = 8.5 ft.

	Conventional NU 1100
Total depth (in.)	<mark>53.31</mark>
Compressive Strength at service, ksi	8
Compressive strength at release, ksi	6
Volume of beam, CY	20.00
Volume of deck, CY	25.80
Beam plus deck, CY	45.80
# of 0.7" Strands	<mark>32</mark>
Shear Reinforcement	YES
Deck Reinforcement	Both Directions

Two Stage UHPC Cross Section

	Two-Stage	Percent
	UHPC,	reduction
	Modified	due to use
	NU100+ribbe	of UHPC
	d slab	
Total depth (in.)	<mark>51.31</mark>	
Compressive Strength	18	
at service, ksi		
Compressive strength	10	
at release, ksi		
Volume of beam, CY	12.00	40%
Volume of deck, CY	13.7	47%
Beam plus deck, CY	25.70	44%
# of 0.7" Strands	<mark>32</mark>	
Shear Reinforcement	NO	
Deck Reinforcement	Transverse	Significant
	Only	

One-Stage Decked I Beam- Best Solution

	UHPC	Percent
	Decked-I-	reduction
	Beam	due to use of
		UHPC
Total depth (in.)	<mark>51.31</mark>	
Compressive	18	
Strength at service,		
ksi		
Compressive	10	
strength at release,		
ksi		
Volume of beam, CY	23.85	-
Volume of deck, CY	1.35	-
Beam plus deck, CY	25.20	45%
# of 0.7" Strands	<mark>24</mark>	
Shear Reinforcement	NO	
Deck Reinforcement	Transverse	Significant
	Only	

U-Beams

Box Slabs

Optimization of Northeast Extreme Tee (NEXT)

Volume reduced from 43 to 23 cubic yards for a 90 ft long piece

Optimization of Square Piles

Deck Sub-Panels

1.5" thick UHPC deck sub-panel with a wire truss reinforcement

Typical Conventional Concrete Sheet Pile, 10-12" Thick

Sheet Pile in the Netherlands: UHPC (a) versus Conventional concrete (b)

(Grünewald 2004) (Walraven and Schumacher 2005, Walraven 2007) (Walraven 2007)

When can we start designing with PCI-UHPC?

The time is NOW!

Recipe for Success

- **1**. Start with something simple
- 2. Many spans; relatively short 60-80 ft spans
- **3.** Preferably aggressive environment site
- 4. Simple cross section; the Florida box slab is a top candidate
- 5. Aim for 50 percent reduction in conventional concrete volume
- 6. Aim for 80 percent reduction in rebars
- 7. Be conservative in your design

Summary and Conclusions

- UHPC produced with local precasters at 30% of previous cost
- Products must be structurally optimized to have about 50% volume. Little rebar. Easier to fabricate
- These two conditions result in cost competitive bridges. Durability, shipping, foundations, shoring, etc., are bonus
- PCI-UHPC It is good for all applications and all span ranges
- PCI research aims to give simple guidelines:
 - Based on current AAHTO provisions
 - Reflect the best knowledge we currently have from previous research and international codes

