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Outline

▪ What is UHPC?

▪ PCI-UHPC 

▪ Research objectives

▪ Materials and plant production

▪ Structural design recommendations with PCI-UHPC

▪ Future opportunities for PCI-UHPC
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What is Ultra-High-Performance Concrete?

▪ Fiber-reinforced, cementitious composite

▪ Low w/cm (typically < 0.20)

Water

Fiber

Supplemental 
Materials

Cement
Fine Sand

Superplasticizer
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What is PCI-Ultra-High-Performance Concrete?

▪ Characterized by:

▪ Higher compressive strength than currently in AASHTO LRFD-
BDS

▪ High pre- and post-cracking tensile strength

▪ Ensured strain hardening to allow for exceptional flexural 

and shear behavior

▪ Enhanced durability due to high density and discontinuous 
pore structure
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▪ Type I/II Cement

▪ Silica Fume

▪ Supplementary powder (slag, 
ground limestone, etc.)

▪ Masonry Sand

▪ Steel Fibers

▪ High-range water reducer

▪ Admixture to extend flowability
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PCI-UHPC Mix Design Based on Local Materials



▪ Rapid implementation of cost-competitive UHPC  bridge components 
and systems  

▪ Train precasters to produce the material for a reasonable cost and 
with minimal disruption to their current production practices 

▪ Develop materials and structural design guidelines 

▪ Fully worked out design examples to help train designers

▪ Introduce the least amount of change to the current AASHTO LRFD 
Bridge Design Specifications, and to ACI 318 
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Objectives of the PCI-UHPC Research Project



Definition of PCI-UHPC for Precast Pretensioned Members
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• Compressive strength, ASTM C1856, C109,  3”x6” cylinders

• At service =  17.4 ksi (120 MPa)      Required!

• At prestress release = 10 ksi (70 MPa)   Recommended

Note: lower strength at release may be permitted for lightly prestressed 
members. 
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Flexural Tension Requirements, using ASTM C1609 
Standard Testing; 4”x4”x14” prism. IMPORTANT! 
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Tensile Strength and Ductility
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Durability of PCI-UHPC vs. Conventional Concrete

Property Conventional Concrete UHPC

Electrical Indicator of Chloride Penetration 
Resistance, Coulombs

~4,000 32

Chloride Diffusion Coefficient, m2/s ~5 × 10-12 0.13 × 10-12
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▪ AASHTO already recognizes up to 15 ksi concrete. Extending to 17.4 ksi should not be a big 

challenge.

▪ 17.4 ksi is adequate compressive strength for most practical applications. Increasing the 

compressive strength requirement adds more cost with no apparent benefit.  

▪ The distinguishing property of UHPC is its tensile capacity. The PCI-UHPC material has high 

limits and requires at least 2% of high strength, high aspect ratio fibers.  

▪ It is our goal to take the current knowledge, confirm it, simplify it, and put it in practical 

guidelines. 

▪ To compete with conventional concrete on a first cost basis, we target (1) material cost to 30% 

of prebagged commercial cost and (2) concrete volume to 50% of conventional products.   
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PCI Project Strategy



Development of Mix Designs 
using Locally available 

Materials 
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Mix Design and Testing

Predict mix 
proportions based 

on particle packing.

Trial batch in lab to 
achieve 9-inch flow.

Trial batch in plant 
and verify 

performance.
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Mix Design and Testing

Predict mix 
proportions based 

on particle packing.

Trial batch in lab to 
achieve 9-inch flow.

Trial batch in plant 
and verify 

performance.

Evaluate:
• Flow spread
• Compressive strength
• Flexural performance
• …



▪ Goal is to have as much flow spread as possible without 
segregation: 8 to 11 inches at point of placement

▪ Temperature before placement should be as low as possible: 65 
to 85o F, preferably close to 65!

▪ Temperature after placement and finishing should be as high as 
possible: 160° for PCI standard curing and 194° for UHPC thermal 
post curing.
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Temperature and Flowability



Property Target 
(PCI-UHPC)

Phase I 
(Box Beam)

Phase II 
(Decked I-Beam)

Compressive Strength
28-days (lab-cured), psi
At service (match-cured), psi

--
≥ 17,400

Flexural Strength
First-Peak, psi
Peak, psi 
Peak, % of first peak
Residual at L/150, % of first-peak

≥ 1,500
≥ 2,000
≥ 125%
≥ 75%
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Performance Achieved

18,970
19,780

21,410
22,290

1,960
3,170
162%
137%

1,770
3,450
200%
146%



Structural Design
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▪ Flexure, Creep, Shrinkage, Prestress Losses
▪ Vertical Shear
▪ Interface Shear
▪ Strand Bond
▪ End Zone Reinforcement
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Structural Design Guidelines 



▪ Linear elastic uncracked section analysis, as currently in  
AASHTO LRFD Bridge Design Specifications (AASHTO)

▪ Concrete modulus, assumed = 6,500 ksi

▪ Initial Prestress Loss: same as in AASHTO, conservatively 
ignoring autogenous shrinkage

▪ Long Term Effective Prestress= 202.5-40.5 = 162 ksi

▪ Allowable compressive stress limits as currently in AASHTO

▪ Tensile stress at release to 0.75 ksi

▪ Tensile stress at service to 1.00 ksi
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Flexure, Service Limit State
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Inverse Analysis 
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Inverse Analysis Results 



(a) Develop moment-curvature curve; Determine peak moment, Mn1

(b) Use ultimate strain of 0.003, and rectangular stress block to get Mn2

(c) The peak capacity is the larger of Mn1 and Mn2
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Flexural Strength Design Process



▪ For prestressed concrete, strand is the 
dominant tension element

▪ No change to strain compatibility analysis in 
AASHTO

▪ Use available commercial software 
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Recommended Short Cut for Prestressed Members



▪ Examples: top flange of decked I-beam and box beam are

▪ Not prestressed 

▪ Ribbed slab are structurally optimum 

▪ For T-sections:

▪ No rebars for negative moment

▪ Likely, will need rebars in the stems for positive moment

▪ Resistance factor:  (a) fibers only, use 0.75; (b) fibers with bars, 

use 
𝜑 = 0.75 + 0.30

𝑀𝑛𝑏

𝑀𝑛
≤ 1.0
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Recommended Design in Transverse Direction
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Product Testing in Flexure, PCI-UHPC Decked I-Beam 



▪ 50’ long decked bridge 
girder

▪ Tests in flexure (3-pt), 
shear (both ends), and 
local deck and diaphragm 
tests

Decked I-Beam for FACCA, Inc, Ontario, Canada
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▪ Loaded to about 10% 
over factored moment

▪ No visible cracking 

▪ However, strain data 
suggests cracking at 
about 1800 kip-ft

Flexure Testing
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Vertical Shear
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 Use AASHTO’s general MCFT, with modifications

 𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑽𝒇(new) + 𝑉𝑝

 𝑉𝑐 = 0.0316𝛽 𝑓𝑐
′𝑏𝑣𝑑𝒗

 𝜀𝑠 =
(𝑀𝑢/𝑑𝑣)+(𝑉𝑢−𝑉𝑝)−𝑃𝑒

(𝐸𝑠𝐴𝑠+𝐸𝑝𝐴𝑝𝑠)

 Use negative strain     𝜺𝒔 =
Τ𝑴𝒖 𝒅𝒗 + 𝑽𝒖−𝑽𝒑 −𝑷𝒆

𝑬𝒔𝑨𝒔+𝑬𝒑𝑨𝒑𝒔+𝑬𝒄𝑨𝒄𝒕

 𝛽 = Τ4.8 (1 + 750𝜀𝑠)

 𝜃 = 29 + 3,500𝜀𝑠

 𝑽𝒇 = 𝒇𝒓𝒓 𝒄𝒐𝒕𝜽𝒃𝒗𝒅𝒗
 frr= residual rupture stress, recommended  = 0.75 ksi
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Shear Strength Design Recommendation

frr is the key parameter!



Shear Component Testing Considered:

Prestress level; Stirrups; Web Thickness; Fiber Length; Shear 
Span/Depth Ratio;  Member Size and Shape; Tension Tie 
Demand; Effect of Thermal Curing

Full Product Shear Testing:

Ribbed building floor slabs

Bridge box slabs 

Building and Bridge Decked I-Beams

31

Experimental Shear Program
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Test Specimens
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Product Testing in Shear,  PCI-UHPC Decked I-Beam



▪ This beam was meant to show that a beam with an 
integrated deck panel provides a fast and efficient design

Bridge Decked I-Beam



DIB Shear Tests-

End With No Stirrups
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▪ Failed in flexure (strand rupture) @ 437 kips

▪ About the same shear as the other end

▪ Flexure cracks initiated at each stirrup location

DIB Shear Test, End With #5@10” 
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Experimental 
vs. 

Theoretical 
Shear 

Strength, 
frr =  0.75 ksi
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…Including Tests by Others
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Tension Tie is Important. Two specimens with low 
anchorage gave relatively low shear capacity

𝐴𝑠𝑓𝑦 + 𝐴𝑝𝑠𝑓𝑝𝑠 ≥
𝑉𝑢

ϕ𝑣
− 0.5𝑉𝑠 − 𝑉𝑝 cot 𝜃 (AASHTO)
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Most Importantly! Demand is much lower than capacity
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A3aS0P2-1 1.84 2.49

A3aS0P2-2 1.57 2.13

A3aS0P2-3 1.56 2.11

A3bS0P2 2.57 3.48

A3aS0P1 1.91 2.72

A3aS0P0 1.97 3.21

A3aS0P2-4 1.79 2.42

A3aS0P2-S 1.64 2.22

A3aS0P2-
L3.5

1.61 2.18

A3aS0P2-
L1.5

2.51 3.40

A3aS1P2 1.58 2.68

A3aS2P2 1.41 2.78

A2aS0P2 1.80 2.02

A4aS0P2 1.54 2.79

DB4aS0P2-1 1.16 2.31

BS6aS0P2-1 1.50 4.27

BS6aS0P2-2 1.07 3.05



Interface Shear
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Interface Shear Behavior

Proposed Model

𝑉𝑛𝑖 = 𝑐𝐴𝑐𝑣 + µ 𝐴𝑣𝑓 𝑓𝑦

Fluted Joint Details as Specified by 
AFGC (2013)

Shear Friction Hypothesis (Birkeland
H. and Birkeland P., 1966)



▪ Best solution to “roughen” the interface is to use a form liner 

▪ Mechanical interlock is more significant than cohesion

▪ Need to use connecting bars for uplift reaction
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Methods of Connection



The objectives of this test are: 

(1) To assess the adequacy of three 
different interface shear connections

(2) To demonstrate possible 
adjustments for camber and cross 

slope controls 
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Composite Bridge Beam
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Connection Details
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Decked I-Beam Assembled at SCP Tampa Plant, 
Ready for Shipment to FDOT Lab

▪ Decked I-Beam
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Strand and Bar Development 

Peak Strand Stress vs ℓ/db

(20 of 35 test results)

𝐿𝑑 = 𝐿𝑡 +
0.2𝑑(𝑓𝑝𝑠 − 𝑓𝑝𝑒)

where Lt = 20db

Confirming work by FHWA
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Optimized Products developed in the PCI-
UHPC Program 
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Decked I-Beams
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Comparison with Conventional Concrete, 
Span = 110 ft, Width = 50 ft, spacing = 8.5 ft.

Conventional NU 

1100

Total depth  (in.) 53.31
Compressive Strength at 

service, ksi

8

Compressive strength at 

release, ksi

6

Volume of beam, CY 20.00

Volume of deck, CY 25.80

Beam plus deck, CY 45.80

# of 0.7” Strands 32
Shear Reinforcement YES

Deck Reinforcement Both Directions
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Two Stage UHPC Cross Section 

Two-Stage 

UHPC, 

Modified 

NU100+ribbe

d slab

Percent 

reduction 

due to use 

of UHPC

Total depth  (in.) 51.31
Compressive Strength 

at service, ksi

18

Compressive strength 

at release, ksi

10

Volume of beam, CY 12.00 40%
Volume of deck, CY 13.7 47%
Beam plus deck, CY 25.70 44%
# of 0.7” Strands 32
Shear Reinforcement NO
Deck Reinforcement Transverse 

Only

Significant
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One-Stage Decked I Beam- Best Solution

UHPC 

Decked-I-

Beam

Percent 

reduction 

due to use of 

UHPC
Total depth  (in.) 51.31
Compressive 

Strength at service, 

ksi

18

Compressive 

strength at release, 

ksi

10

Volume of beam, CY 23.85 -
Volume of deck, CY 1.35 -
Beam plus deck, CY 25.20 45%
# of 0.7” Strands 24
Shear Reinforcement NO
Deck Reinforcement Transverse 

Only

Significant



U-Beams
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Box Slabs
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Volume reduced from 43 to 23 cubic yards for a 90 ft long piece
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Optimization of Northeast  Extreme Tee (NEXT) 



Optimization of Square Piles
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Deck Sub-Panels
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1.5” thick 

UHPC deck 

sub-panel with 

a wire truss 

reinforcement
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Typical Conventional Concrete Sheet 
Pile, 10-12” Thick 



Sheet Pile in the Netherlands: 
UHPC (a) versus Conventional concrete (b)

(Grünewald 2004)

(Walraven and Schumacher 2005, Walraven 2007)

(Walraven 2007)
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When can we start designing with PCI-UHPC?

The time is NOW!



1. Start with something simple

2. Many spans; relatively short 60-80 ft spans

3. Preferably aggressive environment site

4. Simple cross section; the Florida box slab is a top candidate

5. Aim for 50 percent reduction in conventional concrete volume

6. Aim for 80 percent reduction in rebars

7. Be conservative in your design
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Recipe for Success



▪ UHPC produced with local precasters at 30% of previous cost

▪ Products must be structurally optimized to have about 50% volume. Little 
rebar. Easier to fabricate

▪ These two conditions result in cost competitive bridges. Durability, 

shipping, foundations, shoring, etc., are bonus

▪ PCI-UHPC It is good for all applications and all span ranges

▪ PCI research aims to give simple guidelines: 

▪ Based on current AAHTO provisions 

▪ Reflect the best knowledge we currently have from previous research 
and international codes 
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Summary and Conclusions


