

SCDOT Wando River 2018 Bridge Closure

M. Kevin Turner District 6 Bridge Engineer

ROAD

WORK

AHEAC

- Symmetrical, Twin, Post-tensioned, Concrete, Precast, Segmental Box Girder
- Constructed Between 1985 1989, Opened to traffic 1991

- T. L. James Associates for a cost of \$34M
- Figg and Muller Engineers

Segmental Construction

• Span-by-span

Balanced Cantilever

- Through investigation performed on both bridges
 - Corrosion Potential
 - Borescope
 - Petrographic Analysis
 - Chemical Composition
 - Chlorides
 - Sulfates & Acids
 - Electrical Resistivity

Location	Corrosion Potentials, mV CSE									
1A	-160	-172	-174	-158						
3	-139	-150	-151	-152	-140	-147	-169	-161		
5A	-182	-182	-181	-214	-231	-161				
7	-195	-180	-190	-196	-195	-194	-194	-194	-195	-195
	-196	-195	-196	-197	-196					
9B	-164	-144	-157	-165	-163	-168	-168	-175		
11	-175	-175	-169	-173	-177	-165	-169	-178	-171	-170
13	-159	-113	-160	-162	-160	-162	-157	-156	-160	
13A	-131	-136	-135	-135	-115	-138				
15A	-173	-173	-172	-172	-172	-171	-173			
18B	-149	-149	-150	-151	-148	-148				
24C	-160	-170	-174	-175	-172	-173	-175			

No corrosion activity. Corrosion activity is uncertain. Active corrosion.

SCH

Same wire as above, but deeper into the void.

Examples of corrosion products oozing out of crevices between individual wires.

SCR

• What we learned

- What we learned
 - Some voids existed in the Tendon Grout
 - No significant issues found in the "free length" of tendons
 - Water was definitely getting through the top of deck and was getting into steel cables and box interior.
 - More investigation was needed at the piers... but how?

• Efforts to Prevent Water Intrusion from Top of Deck

- Confirmed what we knew in 2010.
- WHAT NOW???

FOR SALE Used bridge over the Wando River Gently used. One side works great The other side.....not so much

SG

June 2

June 2

ROAD

WORK

AHEAC

99

Since Then....

-and the second TAN **AND IN** --ROAD WORK AHEAD SCH 101

E

The Future Holds...

- Continued Efforts To Prevent Water
- Other Known Repairs
- Redundancy in the EBLs
- Structural Health Monitoring Technologies
- More Rapid Repair Methodologies

Thank You For Your Time

Kevin Turner, PE District Bridge Engineer

111

ROAD

WORK

AHEAC