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C onerete structures reinforced with or
without prestressing are designed

to satisfy the requirements of safety
against failure and serviceability. Safety
against failure can be assessed by esti-
mating the ultimate load that can be car-
ried by the structure. This check is rela-
tively simple and is beyond the scope of
this paper. But to ensure the service-
ability requirements, it is essential to
predict the stresses and deformations of
the structure under service load condi-
tions.

Stresses and deformations vary con-
tinuously with time due to the effects of
creep and shrinkage of concrete and re-
laxation of prestressed steel. These ef-
fects lead to a redistribution of stresses
between various materials within a cross
section and to a change in reactions, and
hence, a change in the internal forces if
the structure is statically indeterminate,
The importance of these tiine-depen-
dent effects is much more pronounced

in structures built in stages than in those
constructed in one operation. Examples
of such structures are continuous
bridges built span by span; segmental
construction; and bridges built of pre-
cast prestressed concrete members con-
nected and made continuous by cast-
in-place concrete deck or joints and a
subsequent prestressing.

Under increasing service loads,
cracking occurs when the tensile
strength of concrete is exceeded, re-
sulting in further redistribution of
stresses in individual sections, a consid-
erable reduction in stiffness of different
members and important changes in de-
formations. In statically indeterminate
structures, the changes in member stiff-
nesses can result in changes in reactions
and internal forces.

In current practice, the initial pre-
stressing forces are treated as external
forces applied on a plain concrete
structure, The time-dependent change
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in prestressing force, commonly re-
ferred to as the prestress loss, is esti-
mated and its effect is treated in thy•
same way as the initial prestressing
force. The variation of the prestress loss
from section to section is commonly ig-
nored. Prestressed structures generally
contain a considerable amount of non-
prestressed steel. The presence of this
steel, although frequently ignored, has a
significant effect on the time-dependent
redistribution of stresses between con-
crete and steel. Therefore, it is impor-
tant to account for the time-dependent
stress changes in both prestressed and
nonprestressed steels.

Several methods and computer pro-
grams are available in the literature for
the time-dependent analysis of seg-
mental constructions and structures
built in stages.'- 9 However, none of
these methods and programs includes
the effect of cracking under increasing
service loads.

In this paper, a numerical procedure
is presented and a computer program is
described for the analysis of reinforced
concrete plane frames with or without
prestressing. The analysis gives the in-
stantaneous and time-dependent
changes in the displacements, in sup-
port reactions and in statically indeter-
minate internal forces. It also gives the
corresponding changes in stress and
strain at various sections of the structure.

The analysis accounts for the effects of
creep and shrinkage of concrete and re-
laxation of prestressed steel, for the ef-
fects of sequence of construction and
change of geometry and support condi-
tions, for the effects of temperature vari-
ations and movement of supports, and
for the effects of cracking. At estimate of
the average crack width is also made.
With segmental construction and other
multi-stage casting and prestressing
procedures, the analysis gives the his-
tory of stresses and deformations.

Cracking drastically reduces the
stresses and internal forces induced by
temperature variations or support

Synopsis
An efficient numerical procedure is

presented and reference is made to
an available computer program for the
analysis necessary in the design for
serviceability of reinforced concrete
plane frames with or without pre-
stressing. Applications include contin-
uous bridges and building frames.

The procedure accounts for the ef-
fects of creep and shrinkage of con-
crete and relaxation of prestressed
steel. The effects of cracking, partic-
ularly on the deflections, the reactions
and the internal forces in statically in-
determinate structures, are also con-
sidered.

A frame member can be made up of
concrete parts of different properties
constructed in different stages or of
concrete and structural steel. Material
properties and ages can vary also
from one member to another, as in the
case of segmental construction.

Instantaneous and time-dependent
changes in stress and strain in indi-
vidual sections are calculated using
one set of equations applicable to
both cracked and noncracked states.
The computer program is simple and
can be routinely employed in checking
the design of reinforced and pre-
stressed concrete structures for ser-
viceability requirements using a mi-
crocomputer. Two bridge examples
are presented to demonstrate the ap-
plicability of the program.

movements and thus should not be ig-
nored. This is discussed in a separate
paper. 10

In the analysis presented herein, the
approximate estimate of the time-de-
pendent prestress loss is avoided. In-
stead, the conditions of equilibrium of
forces and compatibility of strains in the
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Fig. 1. Typical reinforced or prestressed concrete plane frame. 	
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Fig. 2. Typical cross sections treated in the present analysis.



concrete and steel in any section are
employed to determine the changes in
strain and in forces in each of these
components.

The input data for prestressing is sim-
ply the magnitude of the initial pre-
stressing force and the locations of the
tendons at various sections. When
post-tensioning is employed, the loss in
the jacking force clue to friction and an-
chorage slip is taken into account. The
so-called balancing forces exerted on
concrete wherever a prestressing ten-
don changes direction are automati-
cally included and need not be calcu-
lated by the analyst.

The assumptions adopted in the anal-
ysis concerning the structural discret-
ization and the stress-strain relations are
given in the following sections, Two
numerical examples are presented to
illustrate the applicability and the prac-
ticality of the proposed method.

STRUCTURAL AND
TEMPORAL

DISCRETIZATION
The analysis is based on the dis-

placement method" in which a plane
frame is idealized as an assemblage of
straight beam elements connected at the
joints (nodes). The axes of the beams lie
in one plane and the external applied
loads act in the same plane, at the nodes
or on the axes of the members. The cen-
troid of a transformed cross section of a
member changes position with time due
to varying concrete properties and due
to cracking. For this reason, a reference
axis is arbitrarily chosen for each ele-
ment and is kept unchanged through all
steps of the analysis. The nodes of the
frame are located at the intersection of
the' reference axes of individual ele-
ments.

A member of the frame can be of con-
stant or variable depth (Fig. 1). The
member cross section can consist of sev-
eral concrete parts of different types or

of concrete and structural steel (Fig. 2).
A concrete part can be divided into a set
of rectangles or trapeziums for which
the dimensions are specified. When a
section has a structural steel part or a
standard precast element, the area prop-
erties and height of this part are entered
as data instead of its detailed dimen-
sions. A cross section can also contain
more than one layer of prestressed or
nonprestressed steel reinforcements. A
prestressed tendon can be pretensioned
or post-tensioned and is represented by
a series of straight line and parabolic seg-
ments. A prestressed or nonprestressed
steel layer can extend over a portion or
over the full length of the member.

The time is divided into intervals, the
instant t, at the start of interval i coin-
cides with the addition of new members
or new parts of a member, with the ap-
plication of load or prestressing, or with
the change in support conditions. For
each time interval, the analysis gives the
instantaneous and time-dependent
changes in three nodal displacement
components: two translations and a ro-
tation (Fig. 3a), three forces at the two
ends of individual members (Fig. 3h)
and the reactions at the supports. The
corresponding changes in stress and
strain in individual cross sections are
calculated using methods 'Y .' a , k4 which
are reviewed here.

Deformations due to shear are ig-
nored, while those due to bending and
axial force are taken into account. Exter-
nal Ioads can be in the form of forces or
couples applied at the nodes (Fig. 4a),
concentrated loads or couples at any
point on the axis of the member or a dis-
tributed load of any variation covering a
part or the full length of the member
(Fig. 4b).

INITIAL PRESTRESSING
FORCE

In pretensioned members, the input
must include the tension in the tendons
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Fig. 3. Coordinate systems for plane frame analysis.

immediately before transfer. In case of
post-tensioning, the jacking force is re-
girired as input data. Instantaneous
losses due to friction and anchor set are
calculated by: ' 5' 1°

Pj Pre -tae,<r;.tli	 (1)

Area (ABC) = SA,^F, m 	 (2)

where P i and Pt are the prestressing
forces at two consecutive sections, with
section i closer to the jacking end; se arid
B. are, respectively, the length of the
tendon and the change in its slope, in
radians, between sections i and j; 1, and

k are the curvature and wobble friction
coefficients, respectively. Values for f.c
and k are suggested in Refs. 17 and 18
for different types of tendons. Succes-
sive application of Eq. (1) starting from
the jacking end gives the variation of the
prestressing force along the tendon
length as shown in Fig. 5.

When the anchor sets a distance fi, the
jacking force drops and the friction force
reverses direction over a length L. The
shortening of the tendon over L R is equal
to a

This leads to Eq. (2) in which A y, and
E „x are the cross-sectional area of the
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Fig. 5. Typical variation of prestressing force along a post-tensioned tendon
after losses due to friction and anchor set (jacking from both ends).

tendon and its modulus of elasticity, In
the computer program developed for the
present study, Point C in Fig. 5 is de-
termined by trial such that Eq. (2) is
satisfied.

When jacking takes place at both

ends, Eqs. (1) and (•?) are applied mea-
suring the parameters BU and .sv from
each end, giving two values of P i at each
section; only the larger of the two values
is of significance (curve BCEC'B in
Fig. 5).
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ASSUMPTIONS AND
CONSTITUTIVE RELATIONS
It is assumed that, under service

loads, instantaneous strains and creep of
concrete are linearly proportional to the
applied stress. Steel reinforcements are
also assumed to be within the elastic
range. Plane cross sections before de-
fonnation are assumed to remain plane
after deformation. Further, compatibil-
ity of strains is assumed between con-
crete and steel and between parts of
composite cross sections.

Shrinkage of Concrete

The symbol A€ t °) represents the
free (unrestrained) shrinkage of con-
crete during a period to to t. In compos-
ite sections the value E,, can vary from
part to part, but it is assumed to be con-
stant over the cross-sectional area of any
part.

Creep of Concrete
A stress increment Arr, (to ) introduced

at time to and sustained without change
in magnitude up to time t produces in-
stantaneous strain and creep of total
magnitude:

= Ao-c(t0) [1+0 (t,t0 )1 	 (3)E^ (to)

where E,. (ta) is the modulus of elasticity
of concrete at age to and 0(t, t°) is the
creep coefficient.

When a stress increment  r (t, t„) is
introduced gradually from zero at t„ to its
full value att, the total strain att will be:

(t, t0 ) _ Aac(t, to) 	 (4)
to)

where E, is the age-adjusted modulus of
elasticity of concrete:

E^ (t, to) =	 Ec (t° )	 (5)
I + x 0(t, t0)

in which x = X(t, to), the aging coefl'i-

cient,'° ° is usually between 0.6 and 0.9.
Suggested values of €C8 , 6, x and E,,,

which are dependent upon the relative
humidity, the size and shape of cross
section and the age of concrete, are
given in Refs. 12 and 20 to 23.

Step-by-Step Analysis

Let t„ t 2 , ... represent instants at
which external loads or prestressing are
applied. The symbol ,o-, (t;) will be
used to represent a stress increment in-
troduced at time t;. In reinforced and
prestressed concrete, the reinforce-
ments restrain the deformations due to
creep and shrinkage. The restraint sub-
jects the concrete to stress increments
which develop gradually. Let wr (t+1,
t)t i ) represent the stress increment gradu-
ally developed between t; and t j+l . In a
later section, the analysis will be done
step-by-step; for any inter val i, the stress
increments during earlier intervals will
be known from the preceding calcula-
tions.

Assume that both Arr, (t i) and
(tj + 1 , t ) ) are known forj – I, 2, ..., i-1. It
is required to calculate the hypothetical
free strain which would occur in the ab-
sence of the reinforcement during an
interval t t to t; +„ with i > j. For this
purpose, consider that u. (t i) and w,
(t, + ,, t;) are lumped together as if the
two increments occurred at t j . Thus, the
lumped stress increment produces
creep during the interval considered
equal to:

re(i3) + ©ac(t l+ ta t;) X
E(t)

[0 (ti + 1 , tt) — d^ (t,, t,)]

If at t, external loads are applied pro-
ducing a stress Arr, (t,), the correspond-
ing creep during the time t; to t f+; will
be:

Ao-^(t{) ^(.t i+ late)
E(t1)

Shrinkage during the same interval is
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Aee, (t it1 , t i ). Thus, the total hypothetical
free strain which would occur between
t i and t 1+1 is given by:

AEc ( t i+1, t t)Jie —

r=i

	

	 \	 1
rXo (tj) + i^a (t j+ 1, ti)

t=i	 Er (ti)

[(t + 1 ,t) — W (t1,t1)]} +

AQ^( t;)	
(t+1,t) + De / trat F+1 t)

E,(ti)

(6)

Eq. (6) will later be used to de-
rive the stresses developed in any
time interval when the free strain in
concrete is not free to occur due to
the presence of the reinforcement or
due to the attachment to other con-
crete parts having different creep or
shrinkage parameters.

Relaxation of Prestressed Steel

The intrinsic relaxation, JQp., is the
reduction with time in the stress of a
prestressed tendon when it is stretched
and held at a constant length between
two fixed points. 24 The amount of intrin-
sic relaxation occuring during a given
period of time depends to a great extent
on the stress level in the steel.

In a prestressed concrete member, the
prestressed steel commonly experiences
a constantly dropping level of stress due
to the effects of creep and shrinkage of
concrete. Thus, the actual relaxation is
expected to be smaller than the intrinsic
value. Therefore, a reduced relaxation
value . should be used in design.
This reduced value equals the intrinsic
relaxation multiplied by a reduction
factor x,. given by:z5

Xr = e(-6.7; 5.3.11!1	 (7)

= 	 — ,Ilpr	
(8)

rr^

where A is the ratio of the tensile stress

a- in the tendon at the start of the
period considered to the tensile
strength; is the change in stress in
prestressed steel during the period con-
sidered due to the combined effects of
creep, shrinkage and relaxation; and
Over is the intrinsic relaxation in the
same period. The value Ao-„ is generally
not known a priori because it depends
upon the reduced relaxation. Iteration is
therefore necessary; first an assumed
value Xr = 0.7 is used to calculate chap$
and later adjusted by Eq. (7).

Cracking of Concrete

The analysis is linear before cracking
occurs. Nonlinearity occurs only when
the stress in concrete exceeds its tensile
strength, producing cracking. After
cracking, concrete in tension is ignored
and no tensile stresses can exist across
the crack face. Only compressive
stresses can develop across the crack
face and a load reversal will cause re-
opening of the crack without any resis-
tance.

In reality, tensile stresses exist in con-
crete between the root of the crack and
the neutral axis. Also, between cracks,
tensile stresses are transferred from the
steel to the surrounding concrete by
means of bond stresses. This enables
concrete in the tension zone to contri-
bute, to some extent, to the stiffness of
the member, an effect which is usually
referred to as the tension stiffening ef-
fect of concrete. This effect can be sig-
nificant in members subjected to service
load levels, and ignoring it can result in
underestimation of stiffness and hence
overestimation of displacements. Con-
sideration of tension stiffening is dis-
cussed in a later section.

SIGN CONVENTION
Figs. 3 and 4 show the positive direc-

tions of the nodal displacements, of the
member end forces and of the externally
applied loads.

A tensile force, N, a tensile stress, u,
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Fig. 6. Symbols and their positive sign convention.

and the corresponding strain, e, are po-
sitive. A bending moment, M, is re-
garded as positive when producing ten-
sion at the bottom fiber. Positive curva-
ture, qr, and slope of stress diagram, y,
are associated with a positive moment
(Fig. 6).

The reference axis 0102 of a member
(Fig. 3b) intersects any section at a ref-
erence point O. Any fiber below 0 has a
positive y coordinate. The symbol A in-
dicates a change in value; a positive A
represents an increase. Thus, the sym-
hols ae,, and Acr, are always negative
quantities.

INSTANTANEOUS
STRESS AND STRAIN

Consider a composite cross section
made up of concrete parts of different
properties and reinforced with several
prestressed and nonprestressed steel
layers (Fig. 6a). At the start of any inter-
val i, the cross section is subjected to
increments of an axial force N at an
arbitrary reference point 0 and a bend-
ing moment M.

The changes in stress and strain im-
mediately after application of AN and

A M can he determined by the equations
given in Appendix A assuming that the
composite section is replaced by a
transformed section composed of the
area of concrete in each part plus the
area of the reinforcements, each multi-
plied by its modulus of elasticity and di-
vided by an arbitrary reference value,
Ere,.

The distribution of the strain change
is assumed linear and is defined by the
value De, at the reference point 0 and
the slope , (the curvature); see Fig. 6b.
The two parameters can be determined
from Eq. (A6). The stress distribution
I Eq. (A2)1 is in general represented by a
separate straight line for each concrete
part of the section; each line can he de-
fined by two parameters: the stress
at 0, and Ay, the slope (Fig. 6c).

When construction is performed in
stages, some concrete parts may not
exist at a particular instant. Moreover,
particularly in segmental construction,
grouting of the prestressing ducts is car-
ried out in stages or at the end of pre-
stressing. To simplify input data, the se-
quence of grouting is ignored and it is
assumed that grouting of an individual
tendon is done shortly after its pre-
stressing. When calculating the instan-
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taneous changes in stress and strain at
any stage, the properties of the trans-
formed section exclude the areas of the
nonexistent concrete parts and their
reinforcement layers, and also the area
of the ducts arid the tendons which are
prestressed at the stage considered or at
later stages.

The equations in Appendix A are ap-
plicable to cracked and noncracked sec-
tions. The analysis of stresses and
strains in a cracked section is discussed
next.

STRESS AND STRAIN IN A
CRACKED SECTION

Consider the strain and stress changes
clue to the effect of live load applied at
time t producing at a composite cross
section (Fig. 6a) a normal force AN at a
reference point 0 and a bending mo-
ment A M. Assume that at time t prior to
the application of AN and AM, the
stress distribution is known and that it is
defined by two values, o- (t) and y(t), for
each concrete part in the composite sec-
tion (Fig. 6c). Assume that the mag-
nitudes of AN and AM are high enough
to produce cracking in concrete Part 1.

For the analysis of stresses and strains
after cracking, partition AN and AM
such thatl2,E4

L1 N = A Nrtecnmpraxrsnn + 4 Nn,,, crru'ks'd (9)
AM = J.k1 ,frrnrnpw-mOn + A ^'^JMLly erarAf d

The pair (AN, A 4f },,QCOmPreSSiOn, re-
ferred to as the decompression forces,
represents the forces which, when
applied on the noncracked composite
section, will bring the stresses in the
concrete Part 1 to zero. The values (AN,
A M ^,^e.rnnjprrAR, are given by [Eq. (A5)]:

ANdernmvrr.Yinn =A ( — °n) i + B(–y)i }(10)
^1 ArrnnvPrr.vrinn =B(— ro)1+t( —y}1

where the subscript 1 refers to concrete
Part 1; A, B and I are the area, and its
first and second moments about an axis

through the reference point 0 of the
noncracked transformed section for
which E,T, is E,,(t), the elasticity mod-
uhis of concrete of Part 1_

Under the effects of (AN, A M } ,rom _
vreegion no cracking occurs and the
changes in strain and stress at this stage
can be determined by Eqs. (A6), (Al)
and (A2) using the properties of the non-
cracked transformed section.

The forces {AN, AIll } fn f^v rrarkre^

which represent the portions of AN and
AM in excess of the decompression
forces, are applied on a transformed
frilly cracked section for which concrete
in tension is ignored. Eqs. (A6), (Al) and
(A2) can again be applied to determine
the changes in strain and stress due to
{AN, AMF .nav raked• The transformed
section properties A, B and Ito he used
in this stage must include only the area
of concrete in the compression zone
plus the area of reinforcements. Thus,
the depth c of the compression zone
(Fig. Blb) must be determined beforeA,
B and I can be calculated. Determina-
tion of the depth c is discussed in Ap-
pendix B.

The total change in strain and stress
due to AN and AM is the sum of the
values calculated for the decompression
and the cracking stages.

In the composite section considered
in Fig, 6a, it is unlikely that, under ser-
vice conditions, cracking will extend
beyond the full height of concrete Part
1. For this reason, AN and AM are par-
titioned in Eq. (9) into two portions
only. In a more general case, when
cracking of the two concrete parts oc-
curs, an additional portion of AN and
AM necessary for decompression of
concrete in Part 2 must be determined
before application of {AN, AM}

on the fully cracked section. For
further details of cracking in composite
sections, the reader can see Ref. 14.

In the next section, time-dependent
stresses and strains will be considered
first for noncracked sections and then for
cracked sections.
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TIME-DEPENDENT
STRESSES AND STRAINS

Noncracked Sections

Consider a composite section (Fig. 7a)
for which the distribution of the
hypothetical free strain due to creep and
shrinkage during a period t to t 1+1 has
been determined [Eq. (6)]. Thus, two pa-
rameters are known defining the strain
distribution over each concrete part
(Fig. 7b): IJeo(tj+,, tf), **(t1+1, t1)]j q.
The curvature lr(t r+,, t,}M.e can he de-
termined by Eq. (6) by replacing a- with
y (= dhidy), the slope of stress diagram,
and setting ec„ = 0.

It is required to determine the time-
dependent changes in stress and strain
occurring in each concrete part between
time tr and t,+,, assuming the material
parameters 0, x, e c, and ^,,. are known
for the time interval considered.

In Fig. 7c, the hypothetical free strain
can be prevented by introducing an ar-
tificial stress whose distribution over
the jth concrete part is defined by a
stress value at 0 and the slope:

(AO'O rertrulnt )! _ — [.Er AEo( t f+1, t1)frpJ)
(11)

(AYrrstralnr)1 = -E. u1I (t f+1, t!)Iree]!

(12)

where Ej _ [Ec (t f+ 1 , t f )] 1 is the age-ad-
justed modulus of elasticity of concrete
Part j [Eq . (5)).

The forces AN,,, and 0 Mme,, shown in
Fig. 7c represent the resultants of the
artificial stress. The values of these
forces can be determined by [Eq. (A5)):

'R

	

A Nt,s = 	 (A 	 m rrnu^t + B c Ayreatraent )1
1 =1

(13)

	

Mc,s =	 (Bc Duo n- r,-' f*u + Ie ^Ym^rrsent)f
^=1

(14)

The summations in these equations
are performed for the concrete parts. For
each part A,, B, and 1, are the concrete
cross-section area, and its first and sec-
ond moments about an axis through 0.

The strain in concrete due to relaxa-
tion of prestressed steel can he artifi-
cially prevented by applying the forces:

AN,,= Y,(Arp,A) k 	 (15)
k=1

AMp = ( prAp,1Jp,) k	 (16)
k=1

where the summations are performed
for the prestressed steel layers ten-
sioned before or at tj. A and yp.k are
the cross-sectional area and the y coor-
dinate of the kth prestressed steel layer.

Summing up the forces in Eqs. (13) to
(16) gives {AN, AM} reetrcinl, the total
forces which would artificially prevent
creep, shrinkage and relaxation.

The artificial restraint is eliminated
by the application of{ A N, A M in
reversed directions on the age-adjusted
transformed section (Fig. 7d). This pro-
duces the change in strain Ae(t f + 1 , t1)

defined by the value at 0, Aeo (ti+l, ti),
and the slope of the strain diagram,
A'(ta + 1 , tf); see Fig. 7d. These two pa-
rameters can be calculated by Eq. (A6)
using the properties of the age-adjusted
transformed section: E r,t, A, B and 1.
The age-adjusted transformed section is
composed of the area of concrete in each
part, multiplied by Ec 1 E,.1, plus the area
of reinforcements, multiplied by E,IE ref.

Multiplication of the strain shown in
Fig. 7d by E, of each concrete part gives
the corresponding stress change. The
sum of this stress and the stress in Fig.
7c gives the total stress increment,
tae(t f+l, t1).

Cracked Sections

The analysis of the time-dependent
strain and stress increments presented
earlier applies also to cracked sections
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in which the concrete in tension is ig-
nored. The transformed section is com-
posed only of the concrete in compres-
sion and the reinforcements. Appendix
B gives the equations from which the
depth c(t,) of the compression zone is
determined due to any specified combi-
nation of normal force and moment
applied at time t i . The nonnal force and
moment used here should be equal to
the increments introduced at t i minus
the decompression forces discussed in
the preceding section [Eq. (9)].

Due to creep and shrinkage during
the period t I to t 1+1 , the depth c gradu-
ally changes and the new value c(tr+i)
can be determined by iteration:

1. Perform the time-dependent
analysis presented earlier, ignoring the
change in c. The depth of the area of
concrete taken into account in deter-
mining the properties of the transformed
section is c(t;). The analysis gives the
stress distribution at time t f+ , and hence
a new value e(t j fI).

2. Repeat the calculations using c(t,)
when determining the artificial forces
necessary to restrain creep, while using
c(t,+,) for the remainder of the calcula-
tions. This will give a new stress dis-
tribution and a new c(t,). If this value
is substantiall y different from the value
previously determined, this step is re-
peated. Usually one or two iterations are
sufficient.

It can he shown, however, that if the
depth c of the effective area of concrete
is assumed constant between t and t^+„
while allowing the neutral axis position
to change with time, a small error results
in the time-dependent changes in strain
(see discussion of Ref. 13). The error is
small because an area of concrete close
to the neutral axis is ignored, although it
is subjected to compressive stresses.

The iteration procedure discusser) in
Steps 1 and 3 is included in the coin-
puter program CPF; t, hence, the effect
of change in c on the stiffness of mem-
bers and on the statically indeterminate
internal forces is not ignored.

MEAN STRAIN AND
CRACK WIDTH

Displacements of a member can be
calculated by integration of the axial
strain and the curvature determined at a
number of sections along the member
length. For a cracked member, dis-
placements can be evaluated more accu-
rately if the concrete in tension is not
completely ignored (i.e., if the tension
stiffening effect of concrete is taken into
account). One way of doing this is to use
mean values of axial strain and curvature
determined by interpolation between
two limiting states: the state with con-
crete area assumed fully effective (non-
cracked) and the state in which concrete
in tension is ignored. The following
empirical interpolation equation" z•29 is
adopted here:

E (l I can = ( 1 — b EO Nu,,t,Fwke4 ^ E O hllucinc rd

inrnN — U — S1 h1,wru•nukrd + 	 ^fhfl r,wb i

(17)

The interpolation coefficient C is
given by:

= I — j3  $2 ( fie ) 2 (with s; 0.4)
tJ

(18)

where f, is the tensile strength of con-
crete; v,„Qr is the hypothetical stress at
the extreme tension fiber that would
exist after application of the load as-
suming no cracking; $, = 1 or 0.5 for
high bond or plain reinforcing bars, re-
spectively; $2 = 1 for the first loading
and equals 0.5 for loading applied in a
sustained manner or in large number of
cycles.

Assuming that cracks are spaced at a
distance s, the mean value of crack
width at the level of a steel layer is:

[li = 4S 	 (19)

where €,r„u w rru. i,r,1 is the change in steel
strain calculated for a fully cracked see-
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 f,

xdx;u

(20)

tion. Empirical equations are availablen
to predict the crack spacings. Here it is
assumed thats is given as input data.

The parameter C represents the extent
of cracking and the damage of bond after
occurrence of cracks. The value of C ap-
proaches unity as the internal forces in-
crease above the values causing first
cracking. Once cracking has occurred at
a section, it will remain cracked For any
subsequent loading even when the
internal forces drop below the values
which produced the first cracking. Also,
the parameter C will continue to assume
the highest value reached under earlier
loadings.

STIFFNESS MATRIX
OF A MEMBER

In the preceding sections, equations
were presented to calculate the changes
in axial strain and curvature in non-
cracked and cracked sections due to
forces applied on the section or due to
the effects of creep, shrinkage and relax-
ation. In the present and following
sections, the changes in axial strain and
curvature will be used in the analysis of
the corresponding changes in internal
forces of statically indeterminate plane
frames.

The typical plane frame member
shown in Fig. 3b has six degrees of free-
dom located at the two end nodes O, and
02. Fix the member at end 0 2 (Fig. 3c)
and generate a flexibility matrix [fl cor-
responding to the three coordinates at
end O. The elements in any columnj of
the matrix [fl are:

f11 = -

= fo Iidx

where eoj and 4s; are the strain at the ref-
erence axis 0,0 2 and the curvature pro-
duced at any section at distance x from
0, by a unit force applied at coordinate,

j, withj = 1, 2 or3.
The integrals in Eq. (20) are evaluated

numerically employing values of €, and
^i determined at a number of sections
using Eq. (A6). For analysis of instan-
taneous effects, use the modulus of
elasticity of concrete and the trans-
formed section properties at the time of
application of the load. When the
analysis is for the time-dependent
changes during a period t i to t j+E , the
age-adjusted elasticity modulus E^(t,+„
t i) and the properties of the age-adjusted
transformed section are to he used to
give the age-adjusted flexibility, [T].

After cracking, the flexibility of a
cracked member is obtained by replac-
ing E. and 4, in Eq. (20) with mean values
eo ,^^aA and ^i,,,ef1,  determined from Eq.
(17). This requires that the depthc oithe
compression zone and the interpolation
coefficient be known a priori. An
iterative procedure will therefore be
necessary (to be discussed in a separate
section).

Inversion of [/l gives a 3 x 3 stiffness
matrix corresponding to the coordinates
atO, (Fig. 3c). The forces at end 0 2 (Fig.
3h) are obtained by equilibrium and
thus the stiffness matrix for the six coor-
dinates is generated:

[s) = [H] T [f] -1 [111	 (21)

where

1 O 0 -1 0 0
[H] 	

I 
0 1 0 0 -1 	 1
0 0 1 0 0 -1

with I being the length of the member.

FIXED-END FORCES
For external loads applied at any po-

sition between the two ends of a
member (Fig. 4b), the fixed-end forces
at the three coordinates at end O, (Fig.
3c) are:

{tF} = -[.f]-'{iD}	 (22)

where { A D} represents the three dis-
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placements at end 0, with the member
treated as a cantilever (Fig. 3c) and
subjected to the given loads. Corre-
sponding axial strain and curvature de-
termined by Eq. (A6) are to be used to
calculate { a D} :

AD S = – I Aeodx;
0

fl
AD2– 	 xdx;

U

t
D,=	 AOdx	 (23)u

For a cracked section, A]eo meun and
A mean are to he used in Eq. (23) instead
of Jeo and :]er,, and the values of c and C
must be known from earlier steps of
analysis. The forces at end 0 2 can he
determined by equilibrium, and thus,
the six fixed-end forces (Fig. 3b) can be
expressed as:

{ A F *} _ [M" { A F} + { A R} 	 (24)

The first three elements in vector
{ A R} are zero, while the last three are
the three reactions due to external loads
applied on a cantilever fixed at end 0
(Fig. 3c).

To determine the time-dependent
changes in the fixed-end forces during
an interval t f to t,+l , calculate for the
cantilever the increments JEQ (t ++1 , t1)
and 4ip (t {+1 , t i ). These values are sub-
stituted in Eq. (23) to give the time-de-
pendent displacement increments { A D
(tip.1 , t, )} .

Substitution in Eq. (22), replacing[ f]
with [f], gives the changes in the
fixed-end forces { A F (t l , t i )} at end
0 1 . These are substituted in Eq. (24),
with {AR} = {0}, to givethe increments
{ x'" (ts+l , t E)} of the six fixed-end forces
at the two ends.

ANALYSIS PROCEDURE
For each time interval, the conven-

tional displacement method of analysis"

is employed to determine the changes in
displacements, reactions and internal
forces which occur instantaneously at
the beginning of the interval due to
application of loads or prestressing
and to calculate the time-dependent
changes due to creep, shrinkage and
relaxation.

The displacements at the nodes, the
internal forces, the stresses and the
strains at various sections existing be-
fore introduction of new loads, or at the
beginning of any interval, are assumed
known. If cracking has occurred at any
section, the values c and i; are also
known. At the beginning of the analysis,
before application of any loads, all of
these variables are zero except c, which
equals the full depth of the section.

For each construction stage, load ap-
plication or time interval, the analysis is
performed in steps:

1. Generate the stiffness matrix for
individual members. Calculate the rela-
tive end displacements { D } and the
fixed-end forces { F *} I see Figs. 3b
and c and Eqs. (22) to (24) ]. The values
of c and , needed in the calculation of
axial strain and curvature at any section,
are those existing prior to application of
the new loads. Assemble the fixed-end
forces and apply in a reversed direction
on the structure, and then determine by
a conventional linear analysis the in-
crements of nodal displacements and
internal forces. When the analysis is for
time-dependent changes, the stiffness to
he used in this step is the age-adjusted
stiffness.

2. Add the increments of nodal dis-
placements and internal forces to the
existing values. Compute the changes in
axial strain, curvature, and stresses, ac-
counting for any cracking, at all sections.
Add the changes in strain and stress to
the existing values. Update c and .

3. Use the current axial strain and
curvature to calculate the relative end
displacements { D} of individual rnem-
hers using Eq. (23). The same displace-
ments can he calculated by:
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{D} = [N] {D*}	 (25)

where {D*} are the nodal displacements
at the member ends (Fig. 3b). When
cracking does not occur, the relative end
displacements by the two methods will
be equal. When this is not the case,
calculate the difference in displace-
ments and substitute in Eqs. (22) and
(24) to obtain a vector of residual fixed-
end forces. Note that for these calcula-
tions {z R} = {O} in Eq. (24) and [f] is
based on the updated c and s; values.

4. The residual forces calculated in
Step 3 for the individual members are
assembled and applied in a reversed di-
rection to the structure with its stiffness
updated. Determine by a conventional
analysis the increments in nodal dis-
placements and in internal forces.

5. Go back to Step 2 and terminate
the analysis if the residual forces calcu-
lated in Step 3 are smaller than pre-
scribed values or when the increments
in nodal displacements are less than a
specified percentage of the current total
values.

It is worth noting that this analysis has
an advantage over the standard finite
element techniques, particularly when
nonprismatic members are involved.
The essential feature of the present
analysis is that the actual deflected
shape of a member is obtained by inte-
gration of the actual strains and curva-
tures.

In the finite element method, the de-
flected shape of a member is usuaIIy as-
sumed as a function of the displace-
inents at the nodes, and equilibrium
between the external and the internal
forces is satisfied only at the nodes. A
larger number of elements is usually
needed to overcome this drawback,
especially in those places where a
markedly nonlinear behavior is ex-
pected.

A computer program will greatly fa-
cilitate the preceding analytical steps
and evaluation of the equations. This is
described next.

COMPUTER PROGRAM
A computer program, CPF' (Cracked

Plane Frames in Prestressed Con-
crete), L6 has been developed to perform
the analysis presented here. The pro-
gram gives the instantaneous values and
the time-dependent changes in joint
displacements, support reactions and
internal forces, stresses and strains in
concrete and steel, and the crack width
at selected sections.

CPF is suitable for the analysis of
structures composed of precast or cast-
in-place segments or of members cast
and erected at different ages. The dif-
ference in the time-dependent defor-
mations of the parts is accounted for
when the members have different ages
or when the cross sections of individual
members are composed of concrete
parts of different ages.

The logic of the CPF program is illus-
trated in the flow chart in Fig. 8. The
program requires a small core storage
and can be used on a microcomputer.

To demonstrate the applicability of
the present method of analysis, the CPF
program is employed for the analysis of
two bridge examples presented in the
following section. Further details and
results on these and other examples are
given in Ref. 27.

APPLICATIONS

EXAMPLE 1
Fig. 9 shows a three-span symmetrical

bridge made of a steel box and concrete
deck. The deck is made of precast rec-
tangular segments; each segment has the
full width of the deck and covers a short
part of the span. The segments are
post-tensioned longitudinally as shown
in Fig. 9a. Dimensions and area proper-
ties of the cross section are given in Fig.
9h and Table 1. The example borrows
most of its dimensions from the design
of Arvid Grant and Associates of the
Wallace Viaduct in Idaho.

PCI JCURNAUJanuary-February 19B9	 69



Start.

Read number of ronatrucl ion and loading stages
or time intervals, geometry, material properties,
boundary conditions at different stages, maximum
nomher of iterations. tolerances.

Calculate prestressing forces in post: tensioned
tendons after friction and anchor set losses.

luit ialiae nodal dispisermcnts, {D} = {L}. member
end forces, {A) _ {Ii}, strain, e = 0, streaa. a.. = 0,

a,,,, = 0, n^„ - 	 ^„ r = full depth, r = 0.

Loop over construction and loading
stages or time intervals.

Read external loads, forces caused by removal of
supports. Calculate self weight of newly constructed
elements and concrete parts.

Generate attffneee usalrix [Eq. (21)] for
the completed part of the structure,

For each element, calculate relative end displace-
menta, {D) [Ewq. (23)j and fixed-end forces (F'} [Eqs.
122) and {24)[. Assemble fixed-end forces.

Fig. 8. Flow chart for computer program CPF.
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Solve fnr incrr, ruts of nodal displaretnents and
internal forces, l Add increments to existing values.

For all sections, calculate :Xc, .:]t1 and .X' and the
tolsI values. Calculate e„,,, and e,,, for cracked
sections cif any). Update c and {.

Ear cracking occurred?

Yes

Are displacement increments less than	 / ]t tSme-dependent Analysis required?
tolerable percentage of total values ?	 /	 I	 \

Yes

Is maximum number of	 1er	 f Read d, x, Ac.-. and A^,
for current interval.

iterations exceeded?

For earl, elemegt, raculatr relative end displace-
ments, {L) [Eq. (23)1 using c,,, and W,,,• Calculate
the same displacement. from Eq. (2S).

Vu	 I,; uumi.er of loading
r'	 stages exceeded?

Calculate the difference in displacements from the two

	

equations and tine corresponding vector of residual 	 yes
fixed-end forces {Eqs. (22) and (u)].

Stop

I Update el iffncrs matrix- [

Fig. 8 (cont). Flow chart for computer program CPF.
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Table 1. Variation of cross section properties over bridge length (Example 1).

Section Region A B C

Top flange thickness (in.) 2'/4 1'/s Ya

Bottom flange thickness (in.) 2 1'/4 7/s

Web plate thickness (in.) 9'3s 911r 'lie
Steel box Cross-sectional area (in. 2 ) 279 190 124

Centroid above bottom (in.) 32 29.5 25
Moment of inertia about
centroid (in.') 248,000 146,000 81,500

Gross cross-sectional
area (in, 2 ) 4,372 4,500 4,543

Concrete Centroid above
deck bottom (in.) 9.5 10.34 10.61

Gross moment of inertia
aboutccntroicl (in.) 85,500 98,100 102,800

Nute: 1 in. = 25.4 mm; 1 in. 2 — 645.2 inrn 2 , I in.^ = 416231 mm.

AXIS OF
A	 SYMM.	 PRESTRESSING

^--.	 .--^-- 4	 TENDONS

A	 B	 C	 D

	

B	 B	 B	 B
C	 A	 C	 A	 C

87ft	 I 	 I	 74ft^ I	 I	 I	 87f1
123ft	 146tt	 123ft 

^A

(a) SPAN ARRANGEMENT

26 f
g in.	 9.5f1	 -rj

19in. L	 ; + :. : a . ++. +. +	 + + . .

TOTAL Ans	 PRECAST CONCRETE

	

10.8 in2	 DECK SEGMENTS
64in	 POST-TENSIONED

	

STEEL	 STEEL, Aps=O.868in2/TENDON
BOX- GIRDER	 ADUCT =3.142 in2

7ft —+

(b) CROSS SECTION A-A

Fig. 9. Three-span composite concrete-steel bridge (Example 1). Note: 1 in. = 25.4 mm;
1 in.' = 645.2 mm 2 ; 1 ft = 0.3048 m.
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The construction is performed in the
following sequence: The steel girder is
placed in position without shoring to
carry a load of 4.3 kips/ft (62.7 kN/rn),
representing its own weight and the
weight of the precast concrete segments
which is introduced in steps. First, seg-
ments are placed in Region A (Fig. 9a)
and post-tensioned with four tendons.
Segments are then added in Region B
and post-tensioned from end to end
using seven tendons. The bridge deck is
completed by placing segments in Re-
gion C and post-tensioning eight ten-
dons throughout the bridge length.

The precast segments are of age 60
days at the time of post-tensioning and
the prestressing force per tendon is 164
kips (730 kN). Shortly after prestress-
ing, the bridge is made composite by
casting concrete to fill in pockets in the
precast segments at the location of studs
welded to the top flanges of the steel
girder. Finally, 30 days after erection of
the steel girder, a superimposed dead
load of 0.4 kip/ft (5.8 kN/m), represent-
ing the surface cover, is applied and the
bridge is opened to traffic.

Because of the advanced age of the
precast segments and the short period of
construction, the time-dependent
changes in stress and strain are calcu-
lated for the time interval t = 60 to =
00, and the self weight and the superim-
posed dead load are applied at t = 60
and sustained thereafter.

Other data are: E, = E,,, = 29,000 ksi
(200 GPa); E. = 27,000 ksi (186 GPa);
E, (60) = 3200 ksi (22 GPa); c(x, 60) =
2.28; X = 0.788; Ac,, (x, 60) _ —230 x
10-; pr(, 60) = —13 ksi (-90 MPa.)
Friction is ignored here for simplicity
but is considered in Example 2.

For comparison, the analysis is per-
formed with the steel girder unshored
(as described above) and repeated for
shored construction. The shores are as-
sumed closely spaced and removed im-
mediately after the structure becomes
composite, Some results for the un-
shored and shored constructions are

given in Figs. 10 through 13. The results
represent the effects of self weight,
superimposed dead load and prestress-
ing,

The restraint provided by the steel
girder and the prestressed and nonpre-
stressed steels to the time-dependent
deformations of the concrete deck pro-
duces important changes in internal
forces. Fig. 10a shows the variation over
half the bridge length of the bending
moments immediately after completion
of construction and at time t = oo. The
bending moment at any section is here
considered as the resultant of the
stresses on all components: the steel
box, the nonprestressed and prestressed
reinforcements, and the concrete.

The variations of the tensile force in
the prestressed tendons at the time of
prestressing and at time infinity are
plotted in Fig. 10b.

The deflected shapes of the bridge at
completion of construction and at t = =
are depicted in Fig. 11. As expected,
shoring during construction reduces
deflection considerably, and the time-
dependent changes in deflection are
larger in shored than in unshored con-
structions.

The stress distribution at two critical
sections are given at completion of con-
stniction and at t = - in Figs. 12 and 13
for unshored and shored constructions,
respectively. A substantial reduction in
the compressive stresses produced by
prestressing in the deck slab occurs due
to time-dependent effects. For example,
the average stress in the slab is changed
over the interior support from —675 to
—175 psi (-4.7 to —1.2 MPa) (see Fig.
12).

It can be noted that the small loss in
tension in the tendons (Fig. 10b) has no
practical significance because it does
not represent loss of compression in the
concrete. It can also be seen from Figs.
12 and 13 that the time-dependent
change in stress in the steel box is
mainly compression; an increase of
6,000 to 12,000 psi (41.4 to 82.8 MPa)
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-20,000 UN SHORED--SHORED	 AXIS OF-15,000 	 SYMM,
I ^ r 	 AT TIMEAT COMPLETION 	 I	 I=M

a - 10,000 	 OF CONSTRUCTION 	 fr	 ^,
2 -5000	 / ^/	 \•^ \^^
W	 •\00 5000 a)BENDING MOMENTS DUE TO SELF WEIGHT PLUSSUPERIMPOSED DEAD LOAD4000 	 --- AT TIME OF PRESTRESSING 	 AXIS OF3000	 AT TIME 1=ro 	 SYMM.(UNSHORED)  
U	 2000—
fr
0 1000	 --- IO 0	 20 40 60 80 100 120 140 160 180DISTANCE FROM SUPPORT A (ft)b) FORCE IN PRESTRESSING TENDONS

Fig. 10. Variation of bending moments and force in prestressing tendons in the bridge of
Example 1. Note: 1 ft = 0.3048 m; 1 kip = 4.448 kN; 1 kip-ft = 1.356 kN •m.AXIS OFI	 UNSHORED 	 j SYMMSHORED0

z
Q 2'VAT ME
w
U_ 3 ETIONw

4	 OF CONSTRUCTION
Fig. 11. Deflected shapes of half the length of the bridge of Example 1 due to self weight
plus superimposed dead load. Note: 1 in. — 25.4 mm.

74



C-)
C-0
C
33
z

I-
A)

C

T1ro
C
A)

CDCD

-650
-700	 16590

-15660
AT INTERIOR SUPPORT

-330

- 240
-11550

7650
AT MIDDLE OF INTERIOR
S PAN

-180
-170	 8,370

- 20630
AT INTERIOR SUPPORT

30psi

- 17550 -20^

-4160
AT MIDDLE OF INTERIOR
SPAN

q 1 IMMEDIATELY AFTER COMPLETION OF CONSTRUCTION 	 bt AT TIME t = - AFTER OCCURRENCE OF TIME -
DEPENDENT EFFECTS

Fig. 12. Stress distributions at critical sections — unshored construction. Note: 1 psi = 6.895 x 10- 3 MPa.
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Vcn I	 Fig. 13. Stress distributions at critical sections - shored construction. Note: i psi = 6.895 x 10- 3 MPa.
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w/4	 LIVE LOAD
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75 ft	 100 ft	 75 ft

(a) SPAN ARRANGEMENT AND POSITION OF LIVE LOAD

CENTROID OF 16
PRESTRESS TENDONS	 AXIS OFAp5 = 1.836in2 / TENDON	 SYMM

AREA OF DUCT

REFERENCE	 =43W/ TENDON	 25 ft	 22 5 ft
AXIS

0.16% 	 0.50%6yn	 0.16%	 TOP

173in	 01	 31 in	 Ihn^	 Il in p
38 42in

A	 B	 ^,

	

_^ --	 0.13 %	 0.20 % F

	

30ft 	 36.25f1	
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(b} TENDON PROFILE
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6in	
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	 PTOP
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42	 IOin
in	 40 in	 2 in

CASTING
JOINT

PBOTTOM
----^

	L9.5ft	 ISft —	 F+^-9.5ft
O 5ft	 05ff

(c) CROSS-SECTION DIMENSIONS

Fig. 14. Three-span concrete bridge cast and prestressed in stages (Example 2).
Note: 1 in. = 25.4 mm: 1 in.' = 645.2 mm 2 : 1 ft = 0.3048 m.

can be seen at various locations. Recall
that the analysis assumes no slip be-
tween the concrete and the steel; the in-
crease in compression on the steel
would be smaller if slip occurs.

EXAMPLE 2
The computer program CPF is em-

ployed also for the analysis of the par-
tially prestressed three-span continuous
bridge shown in Fig. 14. The bridge
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20ft
75 ft

A	 ~P4
8	 E

(a)PART CAST AND PRESTRESSED IN
STAGE I

	

	 loft
BOft

A	 B	 C	 t=	 t

(b) PART CAST IN STAGES I AND 2 AND PRESTRESSING APPLIED IN STAGE

-.. 55tt ---►,

(c) PART CAST IN STAGES I TD 3 AND PRESTRESSING APPLIED IN STAGE 3

P2

A	 B	 C

(d) CASTING OF CANTILEVERS AND PRESTRESSING APPLIED 1N STAGE 4

Fig. 15. Construction and prestressing stages of the bridge of Example 2.
Note: 1 ft = 0.3048 m.

P1

cross section is made of a solid slab of
3.5 ft (1.05 m) depth, with two side can-
tilevers providing a two-lane roadway
(Fig. 14c). The bridge is post-tensioned
with 16 tendons having the profile
shown in Fig. 14b; each tendon consists
of twelve '/z in. strands. The span ar-
rangement and the concrete dimensions
of the cross section are adopted from
those reported in Ref. 28.

Here the bridge is assmned to be built
in the following stages (Fig. 15). At time
t = 0, the thicker part of the deck of
width 16 ft (4.8 m) (referred to as the
spine) is cast over a length AE covering
Span AB and 20 ft (6 m) overhang (Fig.
15a). At t = 14 days, the same part AF is
prestressed with 11 longitudinal ten-
dons (P i ) and its forms are removed.

Twenty-eight days later, the spine is
completed for the remainder of Span BC
and 20 ft (6 m) of Span CD. Prestressing

F i is applied on this part at t = 56 days
(Fig. 15b). The remaining portion of the
spine in Span CD is cast at t = 84 days
and prestressed with Pl at t = 98 days
(Fig. 15c).

The completed spine serves as a track
carrying a moving carriage for forming
and casting of the two cantilevered parts
of the deck in the period t = 98 to 126
days. During the same period, five ad-
ditional longitudinal tendons (P 2 ) are
prestressed (Fig. 15d). To simplify the
analysis, the application of the weight of
the cantilevers and the prestressing P 2 are
lumped as if they occurred in one in-
stant at t = 126 days. Transverse ten-
dons are required to join the cantilevers
to the spine. However, their effects are
not included in the present analysis.
The superimposed dead load of the
wearing surface, curbs, etc., is intro-
duced at t = 154 days.
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Table 2. Time-dependent properties of concrete in the bridge of Example 2.

(.f4nstruCtiof and

'lime Spine in Part ABE Cantilevers

E, (t ) Era (t j, tf) Ee (t l) Ee, (tl, tf)
loading stages t, tj ksi d,(tt^) x(t i , t.) 10-° ksi CA(ti,t^) X(tj,t 4 ) 10-"

Stage 1 14 56 4500 0.88 0.85 -13
14 98 1.19
14 126 1.32
14 154 1.43
14 10000 3.21

Stage 2 56 98 5017 0.57 0.90 -12
56 126 0.77
56 154 0.91
.5ti 10000 2.93

Stage 3 98 126 5106 0.36 0.91 -7
98 154 0.57
98 1(0)00 2.70

Stage 4 126 154 5134 0.33 0.95 -7 450(1 0.91 0.83 -42
126 10000 2.58 3.59

Superimposed dead load. 154 10000 5151 2.48 0.78 -300 4950 3.25 0.79 -371

Live load 10000 10000 5232 5232

Note: t = U at the day of casting of the spine in part ABE; I ksi = 6.895 111a.
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Fig. 16. Forces in prestressing tendons and in concrete after time-dependent losses.
Note: i ft = 0.3048 m; 1 kip = 4.448 kN,

The dead loads are: self weight of
spine = 8.2 kips/ft (120 kN/m); weight of
cantilevers = 2.6 kits/ft (38 kN/in); su-
perimposed dead load = 1.65 kips/ft (24
kN/m). The prestressing force at the
time of jacking = 390 kips (1735 kN) per

tendon. A live load representing a truck
is applied at the position shown in Fig.
14a at time t = 10,000 days.

'I'he spine and the cantilevers are as-
siimed to be made of the same concrete;
however, the parameters , 0, x and
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Fig. 17. Concrete stresses at top and bottom fibers at t 10,000 days just before
application of live load. Note: 1 ksi = 6.895 MPa.

differ according to the age. These are
taken according to the CEB Model
Code; 22 for brevity, Table 2 gives the pa-
rameters only for the spine in Part ABE
and for the cantilevers.

Other material properties are: fit
0.35 ksi (2.4 MPa); E,,, = 29,000 ksi (200
GPa); E, = 27,500 ksi (190 GPa); A = 1
and / = 0.5; curvature friction coeffi-
cient, u = 0.15/radian; wobble coeffi-
cient, k = 7.5 X 10- 4/ft (2.5 x 10-3/m);
anchor slip, S = 0.2 in. (5 mm). The in-
trinsic relaxation at time infinity, aav,,,
= –25 ksi (-172 MPa); values for

shorter periods are calculated from Eqs.
(4) to (6) of Ref. 25; the relaxation re-
duction factor, x,. = 0.7. The nonpre-
stressed reinforcements near the top and
bottom fibers are indicated in Fig. 14b
-is percentages of the cross section area.

Two analyses are performed, one with
the nonprestressed steel considered and
the other with the presence of this steel
ignored. Figs. 16 through 21 present
some results of the two analyses. Al-
though the bridge is not symmetrical
under the effects of prestressing and live
load, results are presented only for the
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Fig. 18. Concrete stresses at top and bottom fibers at t = 10,000 days just after
application of live load, W = 130 kips (578 kN). Note: 1 ksi – 6.895 MPa.

half of the bridge length which experi-
ences larger stresses and deformations.

The variations of the total prestressing
force in all tendons after the friction
losses and after the time-dependent
losses are shown in Fig. 16a. As shown,
presence of nonprestressed steel results
in a small reduction in the loss of ten-

sion in the prestressed steel. However,
the loss in tension is not equal in abso-
lute value to the loss of compression in
the concrete. In fact, in the presence of
nonprestressed steel, a large compres-
sive force is gradually transmitted from
the concrete to this reinforcement, re-
sulting in a much larger loss in compres-
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Fig. 19. Variation of bending moments at critical sections with increasing live load.
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Fig. 20. Variation of deflection at middle of interior span with increasing live load.
Note: 1 in. = 25.4 mm; 1 kip - 4.448 kN.
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sion on the concrete. This is shown in
Fig. 16b, which represents the variation
of the resultant compressive force in
concrete at t = 10,000 days. The differ-
ence in the ordinates between the two
curves in Fig. 16b represents the com-
pression in the nonprestressed steel.
The two steps in the continuous curve at
H and I in Fig. 16b are due to the cur-
tailments of the nonprestressed steel
(see Fig. 14b).

The variation of concrete stresses at
the top and bottom fibers just before and
after application of live load with W =
130 kips (578 kN) (Fig. 14a) is depicted
in Figs. 17 and 18, respectively. Fig. 18
shows the zones in which the tensile
strength of concrete (f,r = 0.35 ksi) is ex-
ceeded, indicating cracking. Where
cracking occurs, Program CPF recalcu-
lates the stress distribution over the
section, ignoring the concrete in ten-
sion, and determines the mean values of
axial strain and curvature accounting for
the tension stiffening [Eqs. (17) and
(18)]. Fig. 18 represents the stress varia-
tion before the concrete in tension is ig-
nored.

The dashed lines in Figs. 17 and 18
represent the stresses when the pres-
ence of nonprestressed steel is ignored.
The analysis based on this assumption
would indicate no cracking while, in
fact, cracking occurs over almost 30 per-
cent of the length of the interior span.

The graphs in Figs. 19 through 21 rep-
resent, respectively, the variation with

increasing live load, W, of the bending
moment at two critical sections, and the
deflection and the stresses in the pre-
stressed and nonprestressed steels at the
middle of the interior span.

The dashed lines in Figs. 19 through
21 illustrate the case of a linear analysis
which ignores cracking, while the can-
tinuous lines are for the analysis which
accounts for cracking. As shown, there is
a substantial difference between the re-
stilts of the two analyses.

Fig. 20 indicates that ignoring the
presence of nonprestressed steel results
in an underestimation of the deflection
at the middle of the interior span and an
overestimation of the live load level at
which cracking occurs [Wcr = 121 kips
(538 kN) instead of94 kips (418 kN)].

For the stresses in the prestressed and
nonprestressed steels, Figs. 21a and b
show that when the live load produces
cracking a large increase in stress oc-
curs. This increase in stress can be im-
portant if fatigue is of concern. Also, the
increment in stress in the nonpre-
stressed steel at and after cracking can
be used to predict the width of cracks.

For the cracked section at the middle
of the interior span and for a live load W
= 250 kips (1112 kN), the analysis gives
JEA roily craned = 735 x 10- ti for the bottom
nonprestressed steel and i; = 0.93 [Eq.
(18)1. Assuming a mean crack spacing, s
= 1 ft (0.3 m), Eq. (19) gives a mean
value for the crack width, w = 0.008 in.
(0.2 min).
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SUMMARY AND CONCLUSION

A numerical procedure based on the
displacement method is presented for
the serviceability analysis of reinforced
concrete plane frames with or without
prestressing. The analysis accounts for
the effects of friction and anchor setting,
creep and shrinkage of concrete and re-
laxation of prestressed steel, and for the
effects of cracking on the stresses and
deformations.

Variation of concrete properties
within individual cross sections and
from one member to another is taken
into account. External loads and pre-
stressing can be applied in stages. Pre-
stressing can be of any magnitude vary-
ing from zero, allowing cracking, to full
prestressing, eliminating cracks. The
effect of cracking on the reactions and
internal forces in statically indetermi-
nate frames is analyzed by an iterative
procedure_ Equilibrium of forces and
compatibility of strains in the pre-
stressed and nonprestressed steels and
in the concrete are used to calculate
time-dependent variations of the forces
in the three components. The need for
use of empirical equations for prediction
of prestress losses is eliminated.

The procedure is implemented in an
available computer program which is

suitable for the analysis of a wide range
of frames including Continuous bridges
built span by span, segmental construc-
tion, and structures built of precast pre-
stressed concrete members connected
and made continuous by cast-in-place
concrete deck or joints and a second
stage prestressing. The program can also
be used for the analysis of multistory
structures which are generally con-
structed in several stages,

The program gives the instantaneous
and time-dependent changes in the dis-
placements, the reactions and statically
indeterminate forces and the corre-
sponding stresses and strains, and the
crack widths at various sections. The
program requires a small core storage
and can be used on a microcomputer.*

Two bridge examples are presented to
show the significance of the time-de-
pendent deformations and cracking on
the serviceability of a composite steel
bridge and a partially prestressed con-
crete bridge built in stages.

*A version of CPF on diskette, for use on
IBM microcomputers, is available from the
Civil Engineering Department, The Univer-
sity of Calgary, 2500 University Drive N.W.,
Calgary, Alberta, Canada T2N 1N4.
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METRIC (SI) CONVERSION FACTORS

in, –25.4 mm 1 kip = 4.448 kN
1	 in. 2 = 645,2 mm2 1 psi = 6.895 x 10 - ' MPa
1 in.3 = 0.0000164 m3 1 ksi = 6.895 MPa
1 in" = 416231 mm" 1 kip-ft = 1.356 kN-m
1 ft = 0.3048 m 1 kip/ft = 14.594 kNlm

NOTE: Discussion of this article is invited. Please submit
your comments to PCI Headquarters by October 1, 1989.
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APPENDIX A - STRESS AND STRAIN
IN A CROSS SECTION

Consider a cross section made of a
homogeneous elastic material subjected
to a normal force N at an arbitrary refer-
ence point 0 and a bending moment M.
Assuming that plane cross sections re-
main plane, the strain and stress at any
fiber at a distance y below 0 can be ex-
pressed as:

E Ep+ Lu1; Q = E(EO + qJ,)

(Al and 2)

where E is the modulus of elasticity, Eo
is the strain at 0 and i (= de/dy) is the
curvature (the slope of the strain dia-
gram); see Fig. 6b. Equilibrium re-
quires:

N=JadA; M= f QydA

(A3 and 4)

Substitution of Eq. (A2) into (A3) and
(A4) gives:

N =A r +B y; M — Boo+l y

(A5)

where A, B and I are the area of the cross

section, and its first and second mo-
ments about an axis through 0; o (= E
€o) is the stress at 0 and y (- do-/dy =
E -) is the slope of the stress diagram.
Eq. (A5) can be used to determine the
stress resultants when the stress (or
strain) distribution is known, For given
N and M, the strain at 0 and the curva-
ture can he determined by:

_ IN—BM 	 _ —BN+AM
EQ E(AI —B E)' q E(AI —B2)

(A6)

When the equations of this appendix
are applied to a composite reinforced
concrete section with or without pre-
stressing, the symbols A, B and I re-
present the properties of a transformed
section composed of the area of concrete
in each part plus the area of reinforce-
ments, each multiplied by its modulus
of elasticity and divided by an arbitrary
reference modulus, E,er. The reference
elasticity modulus can be conveniently
taken as the modulus of one of the con-
crete parts.
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APPENDIX B -- DEPTH OF COMPRESSION ZONE
IN A FULLY-CRACKED SECTION

Figs. Bla-c show the strain and stress
distributions in a composite section due
to forces (AN, 0 M} a,,,y er kea producing
cracking. Prior to applying these forces,
the concrete stresses are assumed to be
zero in the lower part of the section. The
resultant of (AN, AM } fultu eraeke.d is lo-
cated at an eccentricity e from a refer-
ence point 0 (e is positive when the re-
sultant is situated below 0):

DM
e =	 (Bl)AN Aran 	 krod

The strain in any fiber can he ex-
pressed by Eq. (Al), but because con-
crete in tension is ignored, the stresses
in concrete and steel are expressed by
(go to top of right column):

Acrc = E e, (1 ----)A€0  when y < y„
YU

Avc = 0 	 when y } y„

(B2)

Acr,= E, I – y8 Aeo	 (B3)
Ya

where y„ (= c — do) is the y coordinate of
the neutral axis, with do being the dis-
tance from the top fiber to 0 (positive
when 0 is below top fiber).

The depth c of the compression zone
can be determined by taking moments
about an axis through the point of appli-
cation of the resultant of IAN, AM)
er,ji-krd and equating to zero. This leads to
the following equation:

UI	 U	 ill

e IA,ac(d(.—c)+

	

	 [A,(a,— ac)(d.—c}]^ 	 =	 Apac[(d,c—d;)+dc(2d,_
J1

do–c)+ 16^ l^ +1b2 	 + I [A.(a.–ac)(d,–c)(d.–do)1J} 	 (B4)

For the special case when AN,,,
sacked = 0, substitution of Eqs. (B2) and
(B3) into (A3) gives:

m

^ A, ac(dc – c) +

[A,(a, – a)(14 – c)le 	 = {1 	 (B5)
1 = 1	 ji

In the above two equations, subscripts
c and s refer to concrete and steel, re-
spectively. An additional subscript p or
n can be used with s to indicate pre-
stressed or nonprestressed steel. The
subscripts i and j refer to a concrete
trapezium (Fig. Bid) and a steel layer;
m is the total number of trapeziums and
n is the number of steel layers included
in the ith trapeziurn;A, = E cf/E„erand a,(
= E, /E,.ef. Note that E, = 0 for concrete
in the tension zone. Symbols A.1 and d,,

are the gross area of concrete trapezium
i and the distance from its centroid to
the extreme compression fiber; for a
trapezium of widths h, and h 2 and height
h (Fig. Bid):

	

2 (b, + h2 )l +	 (B6)
AQ^ L J= 

h
( b

1 + 2b2\1 (B7)- ______do{= [d1+ 3
	 b,+b	 t

Solution of Eq. (B4) or (B5) to deter-
mine the value of c is best obtained by
trial using Newton's iterative tech-
nique.29

Once c is known, the properties of the
cross section A, B and I can be deter-
mined leaving out the concrete below
the neutral axis and Eqs. (Al), (A2) and
(A6) can he used to find the stress and
strain changes in a fully cracked section.
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APPENDIX C - NOTATION

A andA = area of transformed
and of age-adjusted
transformed sections

B and R = first moment of area of
transformed and of
age-adjusted trans-
formed sections

= depth of compression
zone in a fully cracked
section

{U} and {D} = displacement vectors
E and E = modulus of elasticity

and age-adjusted elas-
ticity modulus

{F} and {i~ *} = vectors of fixed-end
forces_

[f 1 and [ f ] = flexibility and age-ad-
justed flexibility ma-
trices

f.t = tensile strength of con-
crete

JH] = transformation matrix
I andI = moment of inertia of

transformed and of
age-adjusted trans-
formed sections

k = wobble friction coeffi-
cient

M = bending moment
N = normal force
P = absolute value of pre-

stressing force
ISI = stiffness matrix

= length of prestressing
tendon between sec-
tions i andj

s = average crack spacing
t = time
w = mean crack width
y = coordinate of any sec-

tion fiber, measured

downwards from a ref
erence point 0

a = modular ratio
fi, and Qz = coefficients, 0.5 or 1 as

specified below Eq.
(18)

y = slope of stress diagram
= anchor set
= increment or decre-

ment
e = normal strain

= interpolation coeffi-
cient

= change in slope of a
prestressing tendon, in
radians, between sec-
tionsi andj

A = ratio of the initial ten-
sile stress in a tendon
to its tensile strength

= curvature friction co-
efficient

= stress
i o 	 and ]gi, = intrinsic and reduced

relaxation 	 of 	 pre-
stressed steel

= creep coefficient
X = aging coefficient
X r = relaxation reduction

factor
1u = curvature (slope of

strain diagram)

Subscripts
c, ps, its = concrete, prestressed

and nonprestressed
steel

Cs 	 = shrinkage of concrete
O	 = reference point
o 	 = initial time
s	 = steel
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