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I
n the analysis of prestressed members

 the presence of more than one layer
of prestressed or non-prestressed steel
complicates the computation of pre-
stress loss and deformation. 1--3 This is
particularly true in the case of a combi-
nation of prestressed and non-pre-
stressed reinforcement in one or more
layers, or in the case of composite
beams. In these cases the analysis is
greatly simplified by using the so-called
"creep-transformed" section properties
in a quasi-elastic stress analysis.

The proposed approach makes use of
well-known methods of stress analysis
and is, in principle, similar to the elas-
tic stress analysis of a member consist-
ing of two materials in which one com-
ponent (concrete) changes its tempera-

ture while the temperature of the other
(reinforcement) remains constant. The
easiest way to determine the tempera-
ture-induced stresses in the two com-
ponent materials is to apply the forces
corresponding to the free temperature
strain of the one component, to the
transformed section which takes ac-
count of the different material proper-
ties of the two components.

In this proposed time-dependent
analysis of reinforced or prestressed
concrete members, the strain due to
free shrinkage and creep corresponds to
the temperature strain, and because of
the time-dependent nature of the
problem at hand, the "creep-trans-
formed" cross section properties in-
clude the effect of concrete creep.
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General Description
of Proposed Method

The method described in this paper
deals only with uncracked reinforced or
prestressed members.

Because of the gradual development
of the strains due to creep and shrink-
age, the time-dependent forces devel-
oped by creep and shrinkage in the
steel and in the concrete also develop
gradually. The response of the concrete
to gradually changing stress is best cal-
culated by Bazant's 4 age-adjusted ef-
fective modulus formula:

E =E^(t o)![I + x cb(t,t o)1 	 (1)

where
E(t 0) = modulus of elasticity of

concrete loaded at age to
O(t,to) = creep coefficient at time t

for concrete loaded at age tq
x = aging coefficient

The concept of the aging coefficient
was first introduced by Trost s and fur-
ther developed by Bazant. 4 The aging
coefficient expresses the aging effect on
creep of concrete loaded gradually and
it depends on the magnitude of the
creep coefficient, the age of the con-
crete at first loading, and the time
under load. Strictly speaking, the argu-
ment (t,to) should be added to x but
since this argument is always the same
as that of the creep coefficient x with
which it is associated, it is omitted.

The aging coefficients presented in
Figs. 1 and 2 were established accord-
ing to the procedure reported by Bazant
in Reference 4, but instead of the ACI
creep function, the 1978 CEB-FIPB
creep function was used. Additional
graphs are given in Reference 7. The
aging coefficients based on the ACI
creep functions are tabulated in Refer-
ence 4.

To arrive at the time-dependent
stresses and deformations in the mem-
ber, the lorces in the steel correspond-

Synopsis
A simple yet accurate method of

analyzing creep in uncracked rein-
forced and prestressed concrete
members is presented which makes
use of the aging coefficient to cal-
culate so-called "creep-trans-
formed" cross-sectional properties.
With these properties time-depen-
dent stresses, deformations and
statically indeterminate forces are
calculated in a quasi-elastic
analysis. This method is particularly
advantageous for members with
multiple layers of prestressed
and/or non-prestressed steel and
for composite beams,

ing to unrestrained creep (i.e., not re-
strained by steel) to free shrinkage of
the concrete (Fig. 3) and to "reduced"
relaxation of the prestressing steel (if
any) are applied to the creep-trans-
formed section in which the steel is in-
cluded with the modular ratio:

n* = E,IEC* = n 0 [1 + x0(t,t0) 1 (2)

where E 8 is the modulus of elasticity of
the steel and n o is the elastic modular
ratio.

The term "reduced" relaxation will
be explained shortly. For reasons of
internal equilibrium the forces change
sign when applied to the creep-trans-
formed section. The concrete stresses
resulting from this analysis are due to
all the time-dependent effects, and the
corresponding steel stresses (obtained
with the modular ratio n*) are added to
the stresses due to unrestrained creep,
free shrinkage and (reduced) relaxation
to obtain the time-dependent steel
stress. The method is entirely general
and rigorous if it is assumed that
shrinkage develops at the same rate as
creep. It can he applied to any cross
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ing to Reference 6; (b x is the ul-
tim ate creep coefficient c (t,,,t,,)
determined with E (t ).
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Fig. 1. Aging coefficent versus time under load for different creep coefficients and different ages t o at first application of load.
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section (even a composite one) con-
taining any number of layers of non-
prestressed or prestressed steel.

Reduced Relaxation
Before proceeding with the detailed

discussion of the new method the term
"reduced relaxation" is explained. It is
well known that creep and shrinkage
reduce the intrinsic relaxation of pre-
stressing steel. The inter-relationship
between the loss in prestress due to
creep and shrinkage of concrete and the
relaxation of steel can be taken into ac-
count accurately by the procedure de-
veloped by Tadros et al.2

Based on a step-by-step numerical
procedure and the relaxation-time
function developed by Magura et a1, 9 a
chart has been developed (Fig. 4)
which gives the relaxation reduction
coefficient a, as a function of the ratio:

` Loss due to creep and shrinkage
Initial prestress

__	 rxlrp+M}

fav

For different ratios:

_ Initial prestress = fav
	Ultimate strength	 fD„

The "reduced relaxtion" is:

	

f(t) = a,fr(t)	 (3)

where fr(t) is the intrinsic relaxation
developed from the time of prestressing
until time t.

Since the losses due to creep and
shrinkage alone must be evaluated be-
fore the coefficient a, can be deter-
mined, the calculation of the total loss
due to prestress will require two steps
as indicated in the examples to follow.

Non-Composite Members

The new method is now explained in
detail for the simple case of a pre-
stressed concrete beam with one layer
of prestressed steel.

The change in strain due to unre-
strained creep (i.e., the restraining ef-
fect of steel on creep is not considered)
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and due to free shrinkage at the tendon
level is:

L (t) = Ec1 4'(t,t0) + Ea5(t,t0)	 (4)

where
c.1 = ff1 1E,(t o) elastic concrete

strain at the level of the
tendon (fiber 1) due to
load applied at age t„ pro-
ducing the stress fi

e 8h(t,ta) = free shrinkage since time
of prestressing

The corresponding steel stress, in-
eluding reduced relaxation, is:

J S( t) ` nafn (t, t0) + E11(t , t0) E, ± f, (t)
(5)

and the corresponding normal force is
found by multiplying this stress by the
steel areaA,:

Na = Asfs(t)	 (6)

The subscript p which is normally
used to indicate that we are dealing
with prestressing steel is not used be-
cause these equations (without the re-
laxation term) are also applicable to
non-prestressed steel.

The normal force N, is normally act-
ing eccentrically on the creep-trans-
formed section and generates a bending
moment:

M: = N,li	 (7)

where y; is the distance between the
centroid of the steel and the centroid of
the creep-transformed section.

Stresses
The concrete stress corresponding to

the forces N, and M; :

f(t) = – I 
N R + _ q* 

J 
(8)*	 *c	 r

is the actual time-dependent stress in
concrete. As mentioned before, for rea-
sons of internal equilibrium the steel
forces change signs when applied to the
concrete section, hence the minus sign
in this equation. The terms in Eq. (8)

not previously defined are:
AC = cross-sectional area and
1,* = moment of inertia.
Both properties are calculated for the

Concrete cross section in which the
steel is transformed with:

n* = n 0 [1 + xcb(t,to)]

The steel stress obtained from the
relation:

	

4f(t) =( N, + 	 R* (9)
l A ` 	I*C

is added to the stress f; expressed by
Eq. (5) in order to obtain the time-de-
pendent change in stress, Thus:

Af(t) =}:(t) + Af*(t)	 (10)

For more than one layer of steel, the
steel stress fl(t) has to be found for
each individual layer, and the normal
force and bending moment due to the
stresses in all layers have to be deter-
mined. Form layers:

N =
m
 I .f(t)Aas	 (11)

i=1

and

m

	

AIg = E l.jt)yT-	 (12)
i=1

Deformation

The time-dependent deformations
are calculated by multiplying the initial
elastic deformations by the creep coef-
ficient t,to), adding the deformations
due to free shrinkage, and then de-
ducting the deformations due to the
moments N* and M*, which are:

	

Ae*(t) _ –	 8	 (13)
AEa

and

	

a o = – ` `	 (14)r * 5'*

The time-dependent axial strain at
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Fig. 5. Cross section and initial concrete stress distribution of member analyzed
in Example 1. [Note: Dimensions are in in. (mm) and stresses in ksi (MPa).1

the level of the centroid of the creep-
transformed section is thus given by the
expression:

R t) = E e0 (t,te) +E ,A(t,to) 	 d	 (15)
A*E*

where e,o is the initial strain at the level
of the centroid of the creep-transformed
section.

The time-dependent curvature is:

4i(t) = 41 .4(t,t,) — 
2Li C	

(16)
1 *,E

where ip o is the initial curvature of the
section due to external load and pre-
stressing, both applied at age to.

Knowing the time-dependent curva-
ture the time-dependent deflection at a
given point can be determined using
the well-known relationship:

.a(t) = f , A 4K t,x)Mu 1(x)dx	 (17)

where
M 1(x) = moment at point x due to

unit load applied at the
given point

Alkt,x) = time-dependent curvature
at point x

l = length of the span

For the special case of a parabolic
variation of the time-dependent curva-
ture along the beam, with a maximum
value A/(t),,,ar at midspan, the time-de-
pendent deflection at midspan is:

.a(t) = 5 [AgJ(t)],,a.^12	 (18)

For a simply supported member with
time-dependent curvature [Q(t)] =_o at
the supports and It) ,„^ at midspan,
and assuming a parabolic variation
between these two points, the time-de-
pendent deflection at midspan is:

E
4[(t) = 

48 I5 z, 1(t)mns + D g t)1..0	 (19)

EXAMPLE 1 — MEMBERS WITH
MULTIPLE LAYERS OF STEEL

For members containing multiple
Iayers of steel, the calculation of
creep-transformed section properties
and time-dependent stresses (prestress
losses) is best performed in tabular
form.

The loss of prestress and the deflec-
tion of the beam are calculated with the
cross section of Fig. 5a subjected at age
to = 3 days to the initial stresses de-
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Table 1. Properties of creep-transformed section.

(1) (2) (3) (4) (5) (6) (7) (8)

A * A*y y* = A1(y9)3
(1) x (2)

in . s
Area Multiplier y

in.
(3) x (4)

in.3
(y	 y"`)

in
(3) x (6)

in.4

10

in.4

A. = 400 1.0 400 0 0 -1.11 493 53,333
= 1.20 (n* -- 1) 26.6 -17.5 -465.5 -18.61 9,212 -

A,. = 1.29 = (23.2 - 1) 28.6 14.0 400.1 12.89 4,752 -
A 	 = 1.57 = 22.2 34.8 17.5 609.0 16.39 9,348 -

.4c = 490 543.9 23,805 53,333

543.9
= 49 = 1.11 in.	 It* = 77,138 in.4

picted in Fig. 5b. The span is l = 50 ft
(15.25 m), The sign convention adopted
is: tension and elongation positive and
compression and shortening negative.
The data given are:

Free shrinkage: e,, a = -400 x 10-e
Creep coefficient: 4(t.,,3) = 2.5
Aging coefficient: x(t m ,3) = 0.75 (Fig.

2)
Intrinsic relaxation: f,.,, _ -20 ksi

(138 MPa)
Initial prestress: fb = 189 ksi (1302

MPa)
Tensile strength of prestressing steel:

,1'PU = 270 ksi (1860 MPa)

E,(3) = 3.6 x 10 2 ksi (24.8 X 10'
M Pa)

E, = E,,, = 29 x 109 ksi (200 X 109
M Pa)

no= E,/E,(3)= 9.0

With this information we calculate:

n * = 8.0(1 + 0.75 X 2.5) = 23.2
Ec = 3.6 x 103/(1+0.75 x 2.5)

= 1.25 X 108 ksi (8.63 x 10 MPa)
The creep-transformed section prop-

erties are calculated in Table 1 and the
time-dependent stresses in the three
layers of steel are computed in Table 2.
In order to include the reduced relax-
ation of the prestressing steel, the loss
of prestress due to creep and shrinkage
is calculated first. With a loss due to

creep and shrinkage of -20.8 ksi (see
value in bracket in Column 11 of Table
2), it is found that = 20.8/189 = 0.110,
11 = 189/270 = 0.70, so that Fig. 4
yields; a r = 0.71. With this, f,' _
0.71(-20) = -14.2 ksi.

Time-Dependent Deformation

The time-dependent axial strain at
the level of the centroid of the creep-
transformed section is obtained from
Eq. (15) with the values e,, m = -400 x
10-e, 6,o = -0.631(3.6 x 103) = -175 x
10'8 and the value vfN, from Table 2:

Ae(t m} = (-175 x 10- 6)2.5 -

400 x 10 -e - 
-124.8

1.25 x 103
-738 x 10-$

Assuming the tendon profile to be
parabolic, its eccentricity at the support
equal to zero, and the applied load to
be uniformly distributed, the time-de-
pendent deflection is obtained from Eq.
(18) with:

^ =	
-0.96 - (-0.26)

(40-2 x2.5)3.6x103

_ -5.56 x 10-6 in.-' (-141 x
10 -0 mm-')

and
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Table 2. Calculation of losses.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Normal Moment
Steel force N , y' MIt

Steel Area f i. l _ [E9. (7) ] (see [Eq. (8) ] ^^c.^ Dj..E
Fiber A,, nef,.4i E.^,L^' s f;,i (3)+(4)+(5) (2)x(6) Table 1) (7)x(8) (E9. (9)] [Eq. (11)]

i in.a ksi ksi ksi ksi kip in. kip-in, ksi ksi

1 1.20 -5.2 -11.6 -16.8 -20.2 -18.61 375.9 -0.021 -17.3
2 1.29 -17.8 -11.6 (-29.4) (-37.9) 12.89 (-488.5) (0.369) (-20.8?

-14.2 -43.6 -56,2 -725.0 0.446 -33.3
3 1.57 -19.2 -11.6 - -30.8 -48.4 16.39 -793.3 0.497 -19.3

NOTES: (a) Suhscripti in caption 	 N; = N:, _ (-106.5) kip M; = FM;, _ (- 905.9) kip-in.
denotes fiberi.	 -124.8 kip	 -1142.4 kip-in,

(b) Values in brackets are 	 Conversion Factors: For in, to obtain m; 0.0254.
without relaxation of steel.	 Forksi to obtain MPa:6.89.

For kip to obtain kN: 4.448.
(c) Argument of all time-dependent 	 For kip-in. to obtain kNm: 0.1130.

terms are omitted for brevity.
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aIi(t) _ (-5.56 x 10- 6 )2.5 ---

—1142.4
77,138 x 1.25 x 103

_ —2.05 X 10-6
(-52.7 X 10 -e mm -1)

to he

^1ri(tm) =	 (-2.05 x 10 -e ) (65 X 12)2

–0.13 in. (3.3 mm)

Actually, because of the different
areas of A 8 ,, A,,, the time-dependent
curvature at the support is not exactly
equal to zero, but this is neglected.

Composite Members

The use of the creep-transformed
section is also useful in solving the
complex problem of time-dependent
stresses and deformations in a compos-
ite member. The approach is, in princi-
ple, the same as for non-composite
members. However, the following ad-
ditional points have to be considered:
the force and moment corresponding to
the difference in time-dependent free
strains between the girder and the deck
have to be added to N", and M",, re-
psectively, and the concrete deck has to
be included in the creep-transformed
section.

The difference in time-dependent
strains between the precast girder and
the cast-in-place deck is calculated at
the level of the centroid of the concrete
deck under the assumption that girder
and deck are separated and that the
steel does not influence the develop-
ment of the concrete strains (i.e., we are
dealing with "free" or "unrestrained"
creep and "free" shrinkage). The free
time-dependent strain in the girder is
due to creep caused by grider weight
and prestress, to creep caused by slab
weight, and to shrinkage of the girder
concrete. The free time-dependent
strain in the deck is caused primarily by

the shrinkage of the deck concrete and
by the load applied to the composite
section.

All strains are determined for the
time after the beginning of the coin-
posite action. Referring to Fig. 6, the
initial elastic strain e l in any fiber of the
precast section (subscript 1) due to the
weight of the girder (moment M W and
to prestressing (both applied at age to)
will increase due to unrestrained creep
and free shrinkage from the beginning
of the composite action (time tl) until
time t by:

=E I[W I(t , t0) — &(t l,t) 1 + ESAI(t,ti)

(20)

At the level of the centroid of the
cast-in-place deck (fiber 2), this in-
crease is;

Ae-,, t) — E 1.2I` 14,td — `YPi,tu)7 +
E .hll t,td	 (21)

Because of the loss of prestress occur-
ring before the beginning of the com-
posite action, the above expressions for
the creep strain due to girder weight
and prestressing need some discussion.
If the initial elastic strain is separated
into two parts, one due to girder weight
E 1 ' and one due to prestressing, e,"°',
then the term E,"" [0, (t,t.) – r¢(t 1 ,te)J is
the correct expression for creep due to
girder weight, developing after the be-
ginning of the composite action. But if
E I IP ' is determined for the initial pre-
stressing force the term e,'P' [c (t,ta) –
0(t,,ta)] overestimates the creep strain
caused by prestressing because it in-
cludes the effect of the loss of prestress
occurring before time t,. However, if it
is assumed that the strain due to pre-
stress is Found by multiplying the elas-
tic strain due to the prestress force at
age t,, P(tx) = ^T'o + OP(t,)] (where Po is
the initial prestressing force and OP(t1)
the loss occurring between t o and t=) by

(t,to) — fr, (t,t o)], a fairly good ap-
proximation is obtained for the time-
dependent strain due to prestressing,
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developing after time t 1 because the
loss of prestress is normally small and
the time-dependent strain due to the
predominant term P„ is expressed cor-
rectly by the multiplier [0, (t,ta) – 0.
(t 1,t0)]. A more rigorous expression can
be formulated, but the extra work re-
quired for such analysis is not war-
ranted in view of the fact that the pre-
dominant parameter of this analysis is
the differential shrinkage between the
two concretes.

While the girder concrete develops
the strain expressed by Eq. (2I), the
deck shrinks by an amount E Bhs (t,t1)
where the ages t and t 1 are counted
from the moment at which the compos-
ite action begins, which normally is I to
3 days after the casting of the deck con-
crete.

In unshored construction where the
weight of the slat) is carried by the pre-
cast girder, the time-dependent strain
in fiber 2 is increased by e)?1 0, (t,t1)

where E¢ is the elastic strain in fiber 2
due to the moment M 12 ' (caused by the
weight of the slab) in the precast girder.
Moments due to the superimposed
loads applied after the commencement
of the composite action are treated in
the same way as the moment due to
slab weight in shored construction (to
be discussed later).

With the free strains, developing in
the precast girder the steel stressesf, (t) are calculated for each fiber
containing steel, and the corresponding
normal forces and bending moments
are determined in the way described
tar non-composite members. The relax-
ation of the steel is allowed for by
adding the reduced relaxation f, (t) to
the stresses of the prestressed layer(s),
if any.

In addition to the steel forces, the
deck generates a normal force and a
bending moment. The normal force cor-
responds to the difference between the
tree shrinkage of the deck, € R „2 (t,t1),
and the strain dice to unrestrained creep
and free shrinkage in fiber 2 which de-

velops after time t, due to the forces
acting on the girder. This difference in
strain is:

',E2 (t, t 1) = 1E 1.2 ^1 (t,t,) — t(t/,to)I +

E 12 1 E 1 (t , t1) + E .h,( t , t1) — E,h25t,t1)
(22)

In shored construction where the
weight of the slab is carried by the
composite section, the time-dependent
difference in strain due to M' at the
level of the centroid of the deck is
equal to Ea ` L0 ' (t,t 1) – 0 2 (t,t 1 )1. In this
expression c'2" is the elastic strain in
fiber 2 due to slab moment M I'', d (t,t1)

is the creep coefficient of the girder
concrete (after time t 1 ), and i$ (t,t 1) is
the creep coefficient of the deck con-
crete (also after time t 1 ). Thus, for
shored construction, E 4 i (t,t,) in Eq.
(22) is replaced by e1° [0 1 (t,t 1 – ^s
(t,tr)].

The force in the deck (subscript 2)
corresponding to the difference in
strains expressed by Eq. (22) is:

N = DE (t,t 1) E 2A C z 	(23)

where

E = Ens(t1)l[I +xzOE( t, t1) (24)

and

A ss	 = cross-sectional area of the
concrete deck

xz	 = aging coefficient for the
deck concrete

^i^(t,t 1) = creep coefficient for the
deck concrete at time t
from the beginning of the
composite action (time it).

The age-adjusted effective modulus
E is used because of the gradual de-
velopment of the normal force Nom,

The moment about the centroid of
tile creep-transformed section is Nc*2 yc* ,
y,* being defined in Fig. 6. In addition
to this moment, a moment is generated
in the concrete deck by the time-de-
pendent curvature which develops in
the precast girder after the beginning of
the composite action. This moment is
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c°o	 Fig. 6. Strains in composite girder due to initial forces on girder, unrestrained creep and free shrinkage.
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Fig. 7. Cross section of the Composite girder of Example 2.

found by multiplying the change in
time-dependent curvature in Section 1,
by the time-dependent flexural rigidity
of the deck:

A! =Atki(t,t^)12 ^a

_ 	 M"'

^^(to) 	
(&(t,t0) — dt,.t.J]I I^E 

M(2(

1E1(t) 
0t(t,ti) lrzE"s	 (25)

Note that in Eq. (25)' C2 is the nio-
ment of inertia of the concrete deck.
The total moment is thus:

Mc* = N *C2 qC + MC2	(26)

It should he noted, however, that the
contribution of the moment M to the
total moment _M,* is normally so small
that it may be neglected in most practi-
cal cases (see Example 2).

The total forces acting on the creep-
transformed concrete section are those
developed in the steel and in the deck
concrete. Adding the normal forces de-
fined by Eqs. (11) and (23), we find:

N*=N*.+Nom.	 (27)

The total moment is obtained by
adding Eqs. (12) and (26):

M* =M8 Mr	 (28)

The time-dependent stresses in the
steel and in the concrete of the girder
are calculated by Eqs. (8), (9), and (10)
replacing N, and M,* by N* and M"' of
Eq. (27) and (28), respectively. The
concrete stresses at the centroid of the
deck slab is:

Afc2(t) = eES (t,t>> E g

_	 +	 cs1 	 x'41 *	 E

114 (29)
A	 1	 I Ee^

The creep-transformed section prop-
erties of the composite section are de-
termined by multiplying the steel areas
by (ni – 1), where:

rai = E a/E 	 (30)

and

	

E 1t'1 = Eci(ti)JI1 + xi0i(t,ti)]	 (31;

and by multiplying the area of the deck
concrete by the ratio:

A* = E 21E 1	 (32)

In order to check the results, all the
changes in normal three are summed,
the requirement being I AN = 0:

I Aj'8jAaa + Afr. (t) A ,, + f2(t)A2 = ()

The time-dependent deformations
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Table 3. Material properties for Example 2.

Free shrinkage:	 Concrete I

Concrete 2:
Creep coefficients: 	 Concrete 1:

Concrete 2:
Modulus of elasticity: 	 Concrete 1:

Concrete 2:
Steel:

Agingcoefiicient: 	 Concrete 1:

Age adjusted effective modulus:

E,h, (48,7) = -365 x 10-"
E„ l (150,48) = -200 x 10 -e
E.rnx (7,119) = -560 X 10-6

0, (48,7) = 1.05
4, (150,7) = 1.45

0, (150,48) = 1.08
0s (119,7) = 1.54

E, 1 (7) = 4,090 ksi (28.2 X 109 MPa)
E,, (48) = 4,760 ksi (32.8 x 10 3 MPa)
E, Q (7) = 3,020 ksi (20.8 X 103 MPa)

Ep, = 27,400 ksi (189 x 103 MPa)
E, = 29,000 ksi (200 x 10 1 MPa)

Xi (150,48) = 0.82
xa (119,7) = 0.82

Concrete 1: E 1 =E,, (48)1[1 + X, ¢, (150/48) = 2,530 ksi (17.4 x 103 MPa)
Concrete 2:	 E s - E 2 (7)/I1 + x2 0 s (119/7) = 1,330 ksi (9.16 x 10- 3 MPa)

Relaxation of steel:	 f, (150,48) = -7.8 ksi (-53.7 MPa)
Stress in prestressing steel at beginning of composite action;

f,, = 185 ksi (1275 MPa)
Tensile strength of prestressing steel: 	 f,,,, = 270 ksi (1860 MPa)

(strains, curvatures and deflections) are
obtained by subtracting from those due
to unrestrained creep and free shrink-
age the values due to the forces N* and
M*, calculated with the age-adjusted
effective modulus of the girder con-
crete, E, defined above. The time-de-
pendent change in axial strain in Girder
1 is:

e 1 (t) = EI ^ Y'1 ( t, to) — 01 (ti,t.)I +
E?1 0, t, t1) + E ,hI (t,to

N*	 M*-	 +	 y; I (33)
A,E 1	 1c'Cl

where E and € 21 are the strains at the
centroid of Girder 1 due to the prestress
force and moment M' s ', respectively.

The change in curvature is expressed
by:

otArt) = 011 11 ^01(tlto} — 41(t1,t0)I +

01210, (t,t^1- r 
M5

(34)

where t;” is the initial curvature of the
precast girder due to girder weight and
prestressing and 4112' is the curvature

due to moment M 1 $1 which is either
applied to the girder section (unshored
construction) or to the composite sec-
tion (shored construction).

EXAMPLE 2— COMPOSITE
BEAMS

An example will now be worked out
in order to further explain the method
presented. Two of the composite beams
investigated by Rao and Dilger 1° are
analyzed. The girders were prestressed
by a force of 65.7 kips (292 kN) at age to
= 7 days, and a reinforced deck was
cast at age 41 days while the girder was
shored. The formwork was removed 7
days later (age t 1 = 48 days) and addi-
tional load was applied to one of the
girders (Beam B) at age t2 = 53 days.
The dimensions of the composite
member, spanning 12 ft (3.66 m) are
given in Fig. 7.

The deck was kept moist during the 7
days before the removal of the form-
work so that shrinkage of the deck can
be considered to have started at the age
of 7 days. A prestress loss of 9.4 kips (42
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kN) occurred till the age of 48 days.
Axial strains, curvatures and deflections
were observed till the age of t 3 = 150
days. The girder and the slab generated
a moment M' = 13.5 kip-in.
(15.3 kN.m) and a moment M 13) = 280
kip-in. (31.5 kN.m) was produced by
two Ioads applied at third points at age
53 days. The time-dependent data of
the two beams are presented in Table
3.

The complete analysis of Beam B in-
volves five steps: (1) elastic analysis at
the age of 7 days, (2) period 7 to 48 days
during which the girder alone is sub-
jected to the action of its self-weight
and of the prestressing force; (3) period
48 to 53 days after beginning of the
composite action; (4) elastic analysis of
the superimposed load applied at age
53 days; (5) time-dependent efforts due
to composite action and due to moment
Mm

For Beam A without the superim-
posed load, Step (3) extends until 150
days and Steps (4) and (5) are not
needed. In the following numerical ex-
ample, Step (3) is presented for Beam
A, but a comparison of computed and
measured deflections is given for both
beams.

The properties of the transformed
and of the creep-transformed section of
the composite beam are calculated in
Tables 4 and 5, and the calculation of
the time-dependent stresses are per-
formed in Table 6. The properties of
the transformed section are needed to
calculate the stresses due to moment

= 13.5 kip-in. (1.53 kN •m) caused
by the slab weight.

Note that in this particular case these
stresses are very small and could be
neglected, but in a real structure, the
weight of the deck causes much higher
stresses. As mentioned before, if the
precast girder is not shored during
casting of the deck, the slab has to be
carried by the precast girder alone.

From Table 6 it is apparent that the
differential shrinkage between the

girder and the deck:

AE ah (t, t l) = E eA, ( t, t i) — E nA2 (t,t1)
360 X 10-e

is the main source of the time-depen-
dent stresses in this member. If only
the shrinkage induced stresses were of
interest, they could be obtained simply
by applying the force:

-N* = - D esh(t,t1)Al2E A

eccentric by yc , to the creep-trans-
formed section. The resulting stresses
in the girder would be the shrinkage
induced stresses. The stresses in the
slab would be obtained from Eq. (29)
with:

Ar: (t ,t ,) = AE,h(t5t1!

The time-dependent curvature at
midspan is calculated using Eq. (34)
with:

^ `t) = 13.5 - 56.3 (1.61)
4090 x 503.9

_ -37.4 x 10-e in.-'
(0.950 x 10- 9 mm-' )

and

X21=	 13,5
4160)< 1504

= 1.89 x 10 -6 in.-'
(0.048 x 10 - ' rnm-` )

to yield:

Aq)(150) = 1-37.4(l.45  - 1.09) +

1.89(1.08)-	
-113.8

2530 x 1491
x 10-6

= 18.75 x 10 -6 in.-'
(0.477 x 10 -3 mm')

Repeating the procedure for the sec-
tion over the support we find:

A'(150) - 19.04 x 10`6 in.-' (0.484 X

10-3 mm')

Assuming a parabolic variation of
curvature along the beam, the time-de-
pendent deflection can be calculated
from Eq. (19):
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Table 4. Section properties of composite beam.

1 2 3 4 5 6 7 8 9

Transformed
Area Area

Section A, Multiplier A g1 Aiy1 yi-O A !(y -t )' f

in. 2 in.' in. in.$ in, in.'

Precast
Girder 60.0 1.0 60.0 0 0 2.50 375.0 500.0
Stab 60.0 0.634 38.04 -6.25 -237.8 -3.75 534.9 19.8
A a , 0.306 (5.8-1) 1.47 1.65 2.4 4.15 25.3 -
A, 0.785 (6.1-1) 4.00 -6.00 -24.0 -3.50 49.0

A,' = 103.5	 -259.3	 984.2	 519.8

£c1 (7)/E 1 (48) = 0.634
E vIEc1(48) 	 = 5.8
E,/E, (48)	 = 6.1

-259.3
y =

	

	 = -2.50 in.
103.5 

l,' = 984.2 + 519.8 = 1,504 in.-

Table 5. creep-transformed section properties of composite beam for period t 1 = 48
days to t3 = 150 days.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fiber Section
Area

A
Multi-
plier

Trans-
lorrned
Area
M y1 My, J f = &r& AT(y )' 1

in. s in.' in. in. in. in.' iii.'

1 Precast
girder 60.0 1.0 60.00 - - 2.36 334.2 500.0

2 Slab 60.0 0.532" 31.92 -6.25 -199.5 -3.89 483.0 16.6

3 A,,, 0.306 10.8-1`s ' 3.00 1.65 5.0 4.01 48.2

. 1 A, 0.785 11.5-1 931 8,24 -6.10 -49.4 -3.64 109.2

103.2 -2.13.9 974.6 516.6

(1) E ,1E,, = 0,532
(2) E,,,/E  = 10.8
(3)E,IE,=11.5

_ -243.9 
=

-*

	

	 -2.36 in.103.2

I' = 974.6 + 516.6 = 1491 in.'
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Table 6. Computation of time-dependent stresses.

(I1 (2i (31 (4) i:5: (6) (7) (8) (9) (10) (II? (12) (1.3 (14) i15f

Fil,s-r Section Concrete Stresst Strains F, ft = f Nr = 4r = API E of
[(5)+(6)+ A,[(9)+ N7yF Eq. (9) F i (9)+(10)+
(7)] x (8) (10)) (13)(14)

Pr Dirt !i'	 X	 49
.? f) E,.,(7) Er,(48) ErF

ksi ksi x 10- x l" < 10 -^ ksi ksi ksi kip kip-in. ksi ksi

1 Precast -- - - - - 2,530 - - - - -0.010 1.0 -0.010
girder

Slab 0.047 -0.0.34 4.1 3.3 36(Itt 1,331 0.489 - 2H.93"" -112.5 -(>.487 0.532 0.230

3 .4,. -1.161 0.037 -102.2 8.4 -200 27,400 -8.054) -6.94" (-2.46) (--9.88) (0.072) 10.8 (-7.27)
-4.59 -18.39 0.115 -13.74

4 1, 0.009 -0.(1.31 0.8 -7.1 -200 29,(X)11 -5.983 --4.70 17.10 -0.408 11.5 -11.37

(21.77) (-105.35
19.64 -113.8

tSuperscript (1) refers to stresses due to girder weight plus prestressing, and Subscript (2) to stresses due to slab weight calculated with the properties ofTable 4.

tt a"k, - E,sx = (-200 + ,560) x 10-• = 360 x 10-•

§ O," = 4, (150,7) - &48,7 = 1.45 - 1.09 = 0.36

=& & (150,48)= 1.08,lor slab 01 -¢i'= 1.08-I.54=-0.46

Notes: (a) The values in brackets in Columns (11). (12) and 15) are without relaxation of the prestressing steel.
(b) The areasArneeded for calculation ofNt (Column 11) and ti]' needed for calculation M1 (Column 12) are listed in Table 4.
(c) The numerical values of Column (14) are given in Footnotes (1) to (3) ol'Table 5.

"Reduced relaxation: $ = 7.27/185 = 0.039 ar = 0.
1>=18,51270=069

f, 0.89 X ( -7.8) = -6.94 ksi

""Net area of Slab A,! = 600.00 - 0.785 = 59.21 in.=



inch mm

(A) Beam A without superimposed load	 — computer analysis (Reterence 10)
(B) Beam B with superimposed load

	 • analysis using creep-transformed section

Fig. B. Comparison of theory and experiment
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Aa(150) = 148 [5 x 18.75 +

= 0.0487 in. (1.24 mm)

A comparison between the calculated
and measured deflections for Beams A
and B is shown in Fig. 8. In addition,
the results obtained by a step-by-step
computer analysis are given for compar-
ison.'o

Continuous Composite
Beams

Composite girders are frequently
made continuous by cast-in-place joints
and deck. The time-dependent moment
developing at the cast-in-place joint can
be determined by expanding the well-
known compatibility conditions to in-
clude the time-dependent curvature.
For a two-span continuous girder the
tbllowing equation (see Fig. 9) must be
satisfied:

D it) +fijt) OM 1(t) = 0	 (35)

where

1J 1(t) = j A kt) M u,dl
t	 (36)

which is equivalent to the time-depen-
dent displacement developing at Coor-
dinate 1 after the girder is made con-
tinuous.

From the energy relation:
2

pi, (t) _ f M "' di	 (37)

in which

M, = unit moment applied at Co-
ordinate 1

AM,(t) = unknown time-dependent
moment developing at Co-
ordinate 1

and E and 1, are, respectively, the
age-adjusted effective modulus of the
girder concrete, and the moment of in-
ertia for the creep-transformed section.

The time-dependent curvature A* (t)
is defined by Eq. (34). The time-de-
pendent flexibility coefficient ft1 (t) is
the displacement clue to the unit mo-
mentM., applied gradually to the com-
posite beam.

If the beam analyzed in Example 2

PCI JOURNALJanuary-February 1982 	 115



	

I	 CAST-IN- PLACE DECK

/777]

I	 Q .	 CAST-IN- PLACE JOINT

TIME - DEPENDENT DISPLACEMENT D I (t) -- D1 1 ( t) + Der (t3

	

D1gtt) I 	 D,1r(t)
DIAGRAM DUE TO Mui

Mut

TIME - DEPENDENT DISPLACEMENT DUE TO MCI

(t)

Fig. 9. Time-dependent displacements at Coordinate 1 in
two-span composite beam.

was made continuous with another	 Solving Eq. (35) for AM 1 (t) we find at
identical beam at the time of casting the age 150 days:
deck, the time-dependent moment at
the joint would be readily calculated.	 .M (150) _ – 2714 x 10 -fi

According to Eqs. (36) and (37): 	 25.4 x 10

D 1 (t) = Jr A *'(t) Mu, dl

= 2^ x19.04– 3 (19.04–

18.75)] X 10 -e x 144

= 2714 x 10 - e rad.

and

ft1(t) _ f
ECI C

__	 2X144

3 x 2530 x 1491

= 25.4 x 10 -s (kip-in.)-'

–106.8 kip-in. (-12.07
kN Rm)

The value calculated means that a
negative moment is introduced at the
joint. This is so because a positive
time-dependent curvature is introduced
in each simply supported beam by the
predominant effect of shrinkage of the
deck. Forces such as concentrated loads
applied to the girder, or a prestressing
force introduced after continuity has
been provided will not induce time-de-
pendent moments or reaction except
those due to prestress losses.
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CONCLUDING REMARKS
A simple method is presented for

computing time-dependent effects in
uncracked concrete members contain-
ing any number of layers of prestressed
and/or non-prestressed steel. The
method is also easily applied to com-
posite beams and allows calculation of
the time-dependent moments in com-
posite beams made continuous by
cast-in-place concrete.

The method can easily be expanded
to the analysis of members where dif-
ferent layers of concrete exhibit differ-
ent time-dependent properties as in the
case of prestressed concrete pressure
vessels and prestressed containment
tanks where temperature differences
lead to different creep and shrinkage
behavior throughout the thickness of
the concrete member.
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APPENDIX - NOTATION
A = cross-sectional area
D, = displacement at Coordinate 1

in a statically determinate
structure

E = modulus of elasticity
E = age-adjusted effective mod-

ulus
1 = moment of inertia
M = moment
M„t = unit moment applied at Co-

ordinate 1
N = normal force
a = deflection
f = stress
F11 = displacement at Coordinate 1

due to unit moment Maj
f^ = reduced relaxation [see Eq.

(3)]
= tensile strength of prestress-

ing steel
l = span

= modular ratio
t = time (in days) since casting of

the concrete
i! = distance from centroid
ar = relaxation reduction coeffi-

cient
{0 =	 ratio of initial prestress to

tensile strength of prestress-
ing steel

E = strain
0{t,to) = creep coefficient at time t for

concrete loaded at age t,

x	 = aging cuefficent
]Z	 = ratio of loss due to creep and

shrinkage to initial prestress
t	 — curvature

Subscripts
C = concrete
i = layeri containing steel
p = prestressing steel
r = relaxation of prestressing steel
S = steel
sh = shrinkage
a = at first application of load
1 = Section 1, Fiber 1 or Time 1
2 = Section 2, Fiber 2 or Time 2

= at time infinity

Superscripts
= related to transformed section
= related to creep-transformed sec-

tion method
(1) = Construction Stage 1
(2) = Construction Stage 2

Prefix

A = change in stress, strain, force,
moment

Sign Convention
Elongation, tension: positive
Shortening, compression: negative

NOTE: Discussion of this paper is invited, Please submit
your discussion to PCI Headquarters by September 1, 1982.
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Architectural /Technical Feature

ATLANTA CENTRAL LIBRARY—Some 800 architectural precast sandwich wall
panels were used to sheath the 100,000 sq ft (9300 m2) exterior of this majestic
public building in downtown Atlanta, Georgia. A typical panel size is 10 ft wide by
14 ft high (3.05 x 4.27 m).

Architect: Marcel Breuer and Hamilton Smith, with Carl Stein and Frank Richlan,
Associates, New York, New York.

Associate Architect and Consulting Engineer: Stevens and Wilkinson, Atlanta, Georgia.
Owner/Client: Atlanta Library Board, Atlanta, Georgia.
Precast Manufacturer: Exposaic Industries, Inc.. Peachtree City, Georgia.
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