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D eformations due to creep and
shrinkage are normally several

times larger than elastic deformations
in concrete structures. Frequently,
these deformations cause excessive
cracking and deflections or possible
failure with an inherent loss in ser-
viceability, durability and long-time
safety of concrete structures. Thus,
there is an urgent need for a reliable
method to predict creep and shrink-
age, especially for slender prestressed
concrete structure's.

Recently, we have witnessed efforts
to introduce creep and shrinkage into
design recommendations 1,2,3 and to
develop more realistic prediction for-
mulas.4 Over the last decade, how-
ever, the subject has been plagued by
persistent disagreement as to what is
the proper and optimal formulation to

be used.s8 Although several pertinent
conclusions have been drawn from
theoretical arguments, 8 we shall de-
liberately leave them out. The most
relevant and convincing argument is,
of course, the experimental evidence
and how well the data correlate with
the actual behavior of existing struc-
ture s.

Although this has not been gener-
ally realized, vast experimental infor-
mation on creep and shrinkage has al-
ready been accumulated in the liter-
ature. 4 Unfortunately, the provisions
of a recent international model code
were supported by very limited com-
parisons with test data, selected
somewhat arbitrarily. This was under-
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standable in view of the tediousness
of test data fitting when performed in
the traditional way—by hand. Re-
cently, however, highly effective
computer optimization methods for
analyzing and fitting test data have
been developed5' 6 and, at the same
time, the available test data from vari-
ous laboratories have been collected
and organized.'

This enabled development of a new
prediction model in Reference 4
which we will call the BP model.
Compared to other existing mod-
els,1,2,3 this one gives a far superior
overall agreement with the bulk of
available test data4 (80 different data
sets). The coefficient of variation of
the creep prediction is as low as 8 to
12 percent when the elastic modulus
or one shrinkage value is known, and
about 16 to 24 percent when it is un-
known.

To attain good accuracy, the earlier
BP model4 requires that not only the
strength but also several composition
(mix) parameters of concrete be
known. Branson's (ACI 209) 2,3 model
is similarly based. On the other hand,
the input for the CEB-FIP Model
Code formulation' is more limited,
requiring only the strength and the
type of cement, and possibly the elas-
tic modulus of concrete. For prelimi-
nary design, in which the composition
of the concrete to be used might not
yet be known, and also for the design
of ordinary structures, it is desirable to
have a simpler model that requires as
few material characteristics as possi-
ble, preferably just the strength, while
maintaining at the same time a suffi-
cient accuracy.

Development of such a model,
which we will call BP2, is our main
objective. This model will represent a
simplified version of the earlier BP
model;' hence, the background dis-
cussions 4'^ 11 need not be repeated.
Although an accurate prediction of
creep and shrinkage is needed mainly

for prestressed structures, the model
can of course be used for all concrete
structures.

To estimate the error in material de-
scription, we adopt as our second ob-
jective a statistical analysis of the de-
viations from test data. At the same
time, we will compare the data fits for
the present model with those of Bran-
son's (ACI) model2'3 and the CEB-FIP
Model Code.' In the process these
two will be also compared mutually;
this has not been done previously, in
spite of much discussion. For a com-
parison of the previous BP model with
the same and many further test data,
Reference 4 may be consulted.
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Proposed Model

The essential structure of our
model, which distinguishes it from the
ACI,2 ' 3 CEB-FIP, 1 and other formula-
tions, is as follows:
Shrinkage strain:

Esh = E sh ,,k h S (1.), t =— o (1)
Tsh

Strain due to unit stress:

E= J(t,t')= Eo +A(t')F(t)+

instant basic creep

kh'P(Ad)B(t')^ I)	 (2)
Tsh /11

drying creep

where
J (t,t') = creep (compliance)

function34
= strain at time t (in days)

caused by a unit
uniaxial stress
sustained since time t'
(in days)

t = t — t' = stress duration
A d = t — to

= lag of the instant of
loading t' after the start
of drying

t = drying duration
k h and kh' = functions of ambient

humidity
T $h = shrinkage-square

halftime which is
proportional to the size
square

Note that S, A, F, P, B, and f are
functions of the indicated variables.

There are no humidity and size ef-
fects in the basic creep term; these
effects appear only in the drying creep
term. A change of humidity is man-
ifested by a vertical scaling of this
term, and a change in size (thickness)

causes in the log-time plots a hori-
zontal shift of the drying creep term,''2
which can be imagined to slide on top
of the basic creep curve depending on
the value of Tsh . The presence of the
shrinkage-like function f(t /TSh ) in Eq.
(2) means that shrinkage and creep are
not assumed to be simply additive,
which agrees with experimental evi-
dence. (The relative differences with
respect to other creep laws are dis-
cussed in Reference 42.)

Shrinkage
We use4 the hyperbolic law in time

and the cubic humidity dependence:

S( t )=S (3)
` T sh )	 Tah+ t

k h = 1 — h 3 forh - 0.98; (4a)

	

k h =- 0.2 forh = 1.00	 (4b)

For the effects of size, diffusivity
and age, the earlier BP formulas' are
simplified as:

z
Tsh = C S^ ) ; D = 2 S ,

C 1 (t0)

	C 1 (to) = 2.4+ 120	 (5)

in which
t = time (in days), repre-

senting the age of con-
crete

to = age when drying begins
t = duration of drying

E sh = shrinkage strain
E shm = ultimate shrinkage

h = relative humidity of the
environment

Tgh = shrinkage square half-
time

C 1 (to) = coefficient proportional
to drying diffusivity at
age to

D = effective cross section
thickness in mm
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v/s = volume-to-surface ratio
in mm

ks= shape factor which
equals 1.0 for a slab, 1.15
for a cylinder, 1.25 for a
square prism, 1.30 for a
sphere, 1.55 for a cube
(see Reference 11 which
is based on Reference
12)

These formulas are deduced from
the BP model by omitting the temper-
ature dependence and the relatively
small influence of the increase of
elastic modulus with time. The fact
that all shrinkage curves as functions
of t /T8h are proportional, and that TSh is
proportional to D 2 , k, and to 1/C1i
follow from nonlinear diffusion
theory.', 12 The remaining aspects are
empirical. For a detailed analysis, see
References 9 and 12.

Previously, both C 1 (t o ) and E8h,

were derived as functions of the com-
position of concrete.' It has now been
found that no large error is caused by
omitting the composition dependence
of C 1 (to), but for E sh. this turns out to
be impossible without introducing er-
rors over ±50 percent. It simply is not
feasible to predict all properties of
concrete without knowing its com-
position. For shrinkage, even a very
crude guess of composition parame-
ters is far better than none. Therefore,
the composition formula from Refer-
ence 4 must be retained, except for
removing the influence of elastic
modulus; hence:

E,h. = (1330 - 970y )10-6 	(6a)

y = (390z 4 + 1)-'	 (6b)

/ g ) 2 ]=T 1.25	 +0.51 

x ( 1 +S/C 11/3 
12

l w/c J

ifz % 0, otherwise z = 0	 (7)

where

f standard 28-day cylinder
strength in ksi (1 ksi = 6.895
N/mm2 )

wlc = water-cement ratio
a/c = aggregate-cement ratio
g/s = gravel-sand ratio (all by

weight)

Sand is the aggregate passing sieve
No. 4 (4.7 mm), and gravel is the rest.
For an analysis and justification of Eq.
(7), see Reference 4.

The verification of the above (BP2)
formulas by the well documented
shrinkage test data available in the lit-
erature'3-16 is shown in Figs. 1 and 2.
The basic information on these data is
summarized in Reference 4. The fits
are good but not as close as those with
the BP model.4

Basic Creep
This is the creep in the absence of

moisture exchange. It is measured on
sealed specimens and is pertinent to
mass concrete as well as to the core of
more massive cross sections. The
creep under water is almost the same.
The double power law, 5,9,10 used in
the BP model, is simple enough to be
retained:

	

J(t,t') = E + C 0 (t,t')	 (8a)
0

	

C 0 (t,t'.) = o(t' -m + a) (t – t') 	 (8b)

where E 0 is the asymptotic modulus.4
The expressions given for parame-

ters m, n, a, (p, and E o give the value
of the conventional static elastic mod-
ulus E (roughly in accordance with
the ACI formula for calculatingE from
ff)asE=1/J when t–t'=0.1 day is
substituted. The formulas even give
the value of dynamic modulus Ed,,,^ as
1/J when t – t' = 10-7 day is substi-
tuted, and the age dependence of E
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Fig. 1. Comparison of proposed model with shrinkage data.16

and E dYn . However, to achieve	 j=0.3+ 15(ff)- 1.2 	(9b)
simplification, we restrict this broad	 m = 0.28 + 1/(ff )2	 (9c)
range of applicability because it is not
needed for normal creep structural 	 n = 0.115 + 0.0002 (f^ )3	 (9d)

analysis.	 a = 0.05	 (9e)

The following simplified formulas, where f f is in ksi and 1/E 0 is in 10-6/
applicable to normal weight and nor- psi.
mal strength concretes for load dura- 	 Because of the afore-mentioned
tions t – t' % 1 day, have been iden- simplification, the approximate con-
tified:	 ventional elastic modulus at any age t'

is obtained from these formulas as
11E 0 = 0.1 + 0.5/(f^ )2	 (9a) E = 1/J for t – t' = 1 day, rather than
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0.1 day. It should be also mentioned had been used in fitting the data in
that slightly different formulas, figures, and were later modified to
namely:	 Eq. (9) in order to extend the validity

to relatively high f f and very long
1/E 0 = 0.09 + 0.465/(f f ) 2	 times beyond the range of test data in

the figures.
and

The fits of the available well
n = 0.115 + 0.00013 (ff )3.4	 documented test data 17,26 are dis-
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0.30

025

Q20

0.15

played in Figs. 3 and 4 (and basic in-
formation on test data used can again'
be found in Fig. 4). Understandably,
the fits are not as close as those with
the BP model.4

92

Drying Creep
Simultaneous drying intensifies

creep. This may be described by
superimposing on the basic creep ex-
pression a shrinkage-like term, Cd
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(t,t',t 0 ), where t' is the age at loading very thin structures, such as thin
and t o is the age at the start of dry- shells, but for most other structures
ing: 1' 11 this does not matter because their

drying reaches the stage of moisture
J(t,t') _	 — +C,(t,t') +Cd(t,t',to) equilibrium in the micropores long

E ° 	 (10) after their design lifetime.
By simplifying the expression of the

The effects of humidity and size BP model,4 the following expression
enter only through the additional, has been obtained:
drying creep term. The full model in
Reference 4 involves another additive Cd(tt',t0) =	 knt' -in12 S d (t,t' )
term, –Cp(t,t',ta), which models the Eo
decrease of creep that takes place long (11)
after the drying terminates. This term
is omitted here, which means that our in which the humidity effect and the
simplified model cannot describe the effect of the time lag of loading after
test data for predried specimens. the start of drying are given by:

This omission precludes application
of the formula to long creep times for kn = 1 – h"5 	(12a)
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f t	 size and on diffusivity as a function of
'Pd = 1 + 	 — tTsh 10	 'Pd (106 63k)	 age [Eq. (5)], as indicated by the non-1O

(12b) linear diffusion theory. A detailed dis-
and the time evolution of the shrink- cussion of the individual terms of Eqs.

age-like term is: 	
(9) to (13) can be found in References
4 and 11.

\-o.35	 Since the use of composition pa-
S d (t,t') _ 1 + t _3t 	 (13) rameters is found to be inevitable for

J shrinkage, it would be inappropriate
where Tgh involves the dependence on to discard the same composition pa-
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rameters for drying creep, and it
would certainly introduce a significant
error. However, at least a simplified
composition dependence has been
identified:

o
r = ( -ffl.a^ g )1.3 X

.s
`0.00161—

wlc l '
I – 0.85 (14a)

Eah 
/

.,

forr> 0:cpd = 0.0056+ 0.0189
1+0.7r 14

otherwise Bp d = 0.0056 (14b)

In Eq. (14a) f f must be in ksi.
The fits of the most important test

datals'1723,25 achieved with these for-
mulas are shown in Figs. 5 and 6, and
basic information on the test data used
can again be found in Reference 4.
The fits are clearly not as good as
those with the BP model.'

Temperature and Cyclic Loading
These effects are normally ne-

glected in the design of ordinary
structures. It is preferable, though, to
include them; the formulas from Ref-
erence 4, which do not involve any
further composition effects, may be
used.

Comparison with CEB
and ACI Models

With the help of computer optimi-
zation of data fits, the solid curves
shown in Fig. 1 through 6 have been
obtained for the proposed model. The
agreement with test data appears to be
satisfactory. For comparison, the pre-
dictions of the CEB-FIP Model Code
1978 1 and of Branson's (ACI 209)
Model3'2 are matched against the same
test 'data in Figs. 7-11. It is seen that
the proposed (BP2) model gives

clearly superior accuracy. (Compari-
sons with all data sets from Reference
4 have been considered but not all can
be displayed here.)

Looking at Reference 4, we see that
the previous BP model gives the best
accuracy for the same data as dis-
played here. Furthermore, it closely
fits the test data on other effects which
are beyond the scope of the ACI and
CEB models (such as short-time
creep, very long time creep, creep
after drying, temperature, and cyclic
loading).

To make a quantitative comparison,
the deviations of the prediction curves
from the measured data have been
evaluated at characteristic time points,
taken as uniformly spaced points in
log-time scales of t – t' and t –t o , two
points per decade. From these de-
viations, the coefficients of variation w
for all data sets combined have been
evaluated. For the designer, more
meaningful parameters are the 95 per-
cent confidence limits o. In Refer-
ence 4 and here, the confidence limits
referred to are one-sided 95 percent
limits, i.e., the probability of ex-
ceeding the limit is 5 percent on the
plus side, and also 5 percent on the
minus side. This corresponds to the
more usual two-sided confidence limit
of 90 percent. These limits are ob-
tained as w 5 = 1.645o and their val-
ues, calculated on the basis of numer-
ous data sets, are given in Table 1(A).
The coefficients of variation and con-
fidence limits for individual data sets
are listed in Table 2. -The method of
statistical analysis is described in de-
tail in Part VI of Reference 4.

When judging the statistical com-
parison in Tables 1 and 2, it must be
appreciated that it is strongly biased
against very long creep durations
t – t' and higher ages at loading t'.
This is because the available data
points for medium creep durations
and medium ages at loading are far
more numerous, and because, in cal-
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Table 1. 95 percent confidence limits (in percent).
A. Comparison of various models

Model Shrinkage Basic Drying Overall
creep creep

1. ACl209 (1971) 86 52 42, 63
2. CEB Model Code (1978) 118 47 32 76
3. Proposed BP2 model 37 45 29 37
4. BP Model (Ref. 4) 27 39 27 31
5. BP Model, one initial value given 22 13 16 18

B. Effect of selective use of test data on 95 percent confidence limits of BP model

Data set Material parameters Parameters adjusted
kept same for best fit

1. Creep at room temperature:
(a) All 36 data sets °(Ref. 4) 31.6 31.6
(b) Selected 25 best fitted data

sets 22.51' 16`'
(c)	 Selected 8 best fitted data

sets 8.75 7!
2. Shrinkage:

(a)	 A11 12 data sets "(Ref. 4) 52.2 52.2
(b) Selected 8 best fitted data

sets 20.7 13`°

C. Sources of error (95 percent confidence limits) in the BP model

Prediction model Everything One value Each set fitted Error due to
predicted known independently composition effects

la) BP Model
Shrinkage 27.1" 21.7 8' 19'
Basic creep 39.5 13.2 7' 32'
Drying creep 26.8 15.8 8' 19f
All combined 31.7 17.3 8' 24f

(b) Present BP2
Model (All) 38 10' 28'

(c) ACI 209 (All) 65 35' 30'
(d) CEB 78 (All) 75 40' 35'

"From Ba2ant-Panula, 1978-79.
Material parameters kept the same as for all sets combined.
Material parameters adjusted to give best fit for the selected data.

d This is the intrinsic error due to form of creep and shrinkage law.
e For 7 data sets; and 31.7 for 12 data sets (Ref 4).
f Denotes very rough estimates.

culating Tables 1 and 2, the same
weight has been given to all sampling
points uniformly distributed in log-
time scales (in order to avoid possible
criticism of a subjective selection of
uneven weights).

This bias works in favor of the ACI
and CEB-FIP models rather than the
BP and BP2 models whose broader
scope (very long creep durations, high

and very small ages at loading) is not
adequately reflected in the values in
Tables 1(A) and 2. Nevertheless, de-
spite this bias, the proposed model
still comes out superior.

Compared to the BP model, the
proposed model overestimates the
creep of very young concrete, al-
though not as much as the ACI model,
and its use therefore should be lim-
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Table 2. Comparison of coefficients of variation (in percent) for individual data sets
and various prediction models (biased against very long creep durations and high
ages at loading).

1. SHRINKAGE

BP Model (1978)$ Proposed ACI CEB
Test data E1. Mod. or All by model (1971) (1978)

e,,	 given' eqs s

1. Hansen, Mattock 11.2 11.4 13.4 33.6 72.7
2. L'Hermitea 1968 19.3 22.7 35.2 82.1 35.0
3. L'Hermite° 1965 14.6 23.6 35.1 34.8 21.6
4. Troxell° et al. 5.6 5.7 11.3 55.5 84.5
5. Kesleere et al. 16.2 20.6 22.5 30.5 93.3
6. Keeton-size 12.4 13.9 12.1 52.1 80.7
7. Keeton-age 7.9 8.3 8.5 59.1 81.9

_ (£ w7/7) 13.2 16.5 22.4 52.5 71.7

(95% con£ limit)t (21.7) (27.1) (36.8) (86.4) (117.9)

2. BASIC CREEP'

8. L'Hermite° et al. 8.1 25.2 8.9 52.3 19.8
9. Canyon Ferry' 8.0* 39.6* 45.4 47.3 18.7

10. Ross Dam' 15.6* 27.7* 25.1 16.3 25.5
11. Shasta Dam9 8.5 16.6 9.3 27.5 20.3
12. Dworshak Dami° 12.0 21.2 12.5 30.0 45.4
13. Wy1fa Vessel" 9.4 21.0 46.0 35.4 46.0
14. A. D. Ross 4.3 33.7 13.1 35.0 14.2
15. York et al. 13 3.6 16.1 9.0 23.2 8.7
16. Rostasy et al. 3.7 5.1 8.9 12.2 7.9
17. Keeton 3.3 26.9 49.2 36.4 52.4
18. McDonald 4.1 20.0 8.3 24.1 4.0
19. Maity, Meyers 14 4.1 14.2 30.5 15.4 27.5

_ ( wJ/12)4 8.0 24.0 27.2 31.9 28.6
(95% con£ limit)t (13.2) (39.5) (44.7) (52.5) (47.0)

3. DRYING CREEP

20. L'Hermite6, RH 50% 10.4 34.6 21.7 20.7 18.8
21. L'Hermite° 1965 15.9 3.7 8.0 25.6 9.8
22. Keeton 3.9 20.2 29.3 28.4 22.4
23. Troxell' et al. 5.9 8.6 4.4 31.3 27.5
24. Rostasy 5.3 6.1 17.1 8.0 16.9
25. Mossiossian18 14.3 6.2 23.3 31.7 15.6
26. Maity, Meyers" 5.9 17.4 14.7 35.3 27.0
27. Hummel et al. 36.2 6.5 12.8 10.3 16.3
28. Lambotte, Mommens° 12.0 16.9 15.8 24.6 16.0

cd = (Y. WI/9), 9.6 16.3 17.8 25.6 19.7
(95% conf. limit)t (15.8) (26.8) (29.3) (42.1) (32.4)

4. COMBINED SHRINKAGE, BASIC CREEP AND DRYING CREEP

<w> _ (£ w'/3)+ 10.5 19.3 22.8 38.4 46.0

(95% con£ limit)t (17.3) (31.7) (37.5) (63.2) (75.7)

*Data for t' = 2 days included here but not for other columns, 'modulus E. or €, optimized or mea-
sured, 'complete prediction, including elast. modulus, 'Ref. 4, 'where hydration heat caused expan-
sion zero strain was assumed, 6 ((wr/12) }for 12 tests: P2, P13, P23, P26-29, P31, P34-35 P40-41, P49,
P50-51, P52 & P54, ewith Mamillan, 'with Raphael, Davis, 'with Wallo, Juan, 'Hanson, Harboe,
1°Pirtz, "Browneet al., "with Kennedy, Perry, "Mixes A and B, "with Gamble.
t95% confidence limit in percent = 1.654.times the preceding line (for one-sided limit).
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ited to loading ages t' % 7 days. The
effect of the age at loading is generally
more poorly represented in the
CEB-FIP Model Code, and more
poorly still in the ACI model; for
these models, both the basic and dry-

ing creeps are much too high at high
ages of loading. Even though the rep-
resentation of drying creep at small
loading ages is acceptable using the
CEB-FIP Model Code, the effect of
loading age upon drying creep is not
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Table 3. Comparison of errors (95 percent confidence limits A,) and laboriousness (man-hours, T;) of structural analysis and creep
prediction.

1. Error in structural analysis
(internal torce, displacement,
max. stress) due to method of
structural analysis alone°

Method of structural
analysis T, A,

A.	 Back of envelope '/sh 25%
calculation°

B.	 Stat. determinate 3h 10%
simplification
(portal method)

C.	 Simplified stat. 6h 6%
indeterminate

D.	 Slope-deflection 20h 4%
method, moment
distribution, yield
line th., etc.

E.	 Frame program, 60h 2%
finite element
program'

2. Error in structural analysis due to error
in creep properties alone

2a. Error in predicting 2b. Resulting error of
creep properties structural analysis
as such

bl. Creep sensi- b2. Insensitive
Method of creep tive problem° problem°

prediction T2 D: Da A+

(a) CCA 78° ¼h 75% 75% 8%

(b) CEB 78 2h 70% 70% 7%

(c) ACI 209 1h 65% 65% 7%
or' h'

(d) BP2 2h 40% 40% 4%

(e) BP 3h 30% 30% 3%
or Y4hr

(f) BP, initial 3h 18% 18% 2%
value known

52-page formulation of Cement and Concrete Association, England, 1978.
°Assumes experienced analyst, no human error.
"For example, precast, simply supported beams made continuous; differential settlement; composite cross section; forces in midspan hinge of segmental bridge;
creep buckling; shells.

°For example, stress distribution in a homogeneous frame, stresses in cracked cross section.
'Chiefly input preparation, output interpretation.
rif the creep prediction formulas are put on a computer.



well represented. The creep data
which cover a wide range of loading
ages (e.g., Wylfa Vessel concrete or
Dworshak Dam concrete) are not pre-
dicted satisfactorily at all by the CEB
and ACI models. The extremely large
deviations, exhibited by these models
in many cases, appear neither in the
BP model nor in the proposed model
(except that the Wylfa Vessel data are
fitted poorly by the proposed model).
The fits by the proposed model repre-
sent a compromise.

In comparison to the proposed
model, the ACI and CEB models do
not represent very well the overall
trend of the creep curves and espe-
cially the basic creep curves; this,
therefore, precludes the use of these
models for extrapolating short-time
creep data. At the beginning as well as
at the end, the creep curves plotted in
log-time scales are much too flat.

In the case of the ACI mode1,2,3
based on the work of Branson et
al., 3032 one is at least rewarded by
simplicity. In fact, if for the sake of
simplicity the curves for basic and
drying creeps are chosen to have the
same shape (i.e., to be mutually pro-
portional), one cannot really do much
better than the ACI model. But, this is
not worth the penalty in error.
Moreover, vertical scaling (multiply-
ing by a constant factor) of the creep
curves to account for the size effect, as
used by the ACI model, is not realis-
tic.

Rather, the change of size should
be represented, according to the diffu-
sion theory, by a horizontal shift of the
additive drying creep term rather than
by vertical scaling, and this procedure
agrees with test results. Con-
sequently, if vertical scaling is used,
the long-time extrapolation of drying
creep obtained for thin specimens is
inevitably much too high, and for
thick specimens much too low.

In general, the ACI and CEB mod-
els work better for drying creep than

for basic creep. For the CEB Model
Code in particular, the overall be-
havior within the available range of
drying creep data is acceptable.
(However, there exist too few drying
creep data with loading ages outside
the 28 to 90 days' range.) As for basic
creep, the ACI curves lie generally
too high, and so do the CEB-FIP
curves, though to a lesser extent. The
ACI model humidity dependence
does not compare well with data; the
difference between h = 20 and 50
percent is too small (see data of
Keeton and L'Hermite et al.). For
shrinkage, as opposed to creep, both
the ACI and CEB models are espe-
cially far away from the data, while
the proposed model is rather close. In
the case of the CEB Model Code, this
is partly due to the lack of composi-
tion (mix) factors, which confirms that
the use of these factors is necessary
for a good prediction of shrinkage.

The creep formulation from Refer-
ences 33 and 34, which has been used
in the German Code DIN and also
appeared in the preliminary version of
the CEB-FIP Model Code, 35 was
found in Reference 36 to be unsatis-
factory and distinctly inferior in data
fits to Branson's (ACI) model,2,3
whereas the current CEB-FIP Model
Code' predicts creep overall some-
what better than the ACI Model, al-
though it is less simple. The substan-
tial improvement is the result of mod-
ifications proposed in Reference 36 in
order to compensate for the practice of
"vertical shifting" of the creep curves5
while displaying data fits. This im-
provement, which is based on a com-
puter optimization of fits of many test
data (summarized in Appendix A), has
been subsequently adopted for the
final CEB-FIP Model Code' (in which
it however appears under a different
name). By means of Figs. 7-11 and
utilizing the values for basic and dry-
ing creeps in Table 1, we now demon-
strate that this adopted modification of
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References 33-35 does indeed bring
about a rather significant improve-
ment, mitigating part of the previous
criticism.

Nevertheless, as we see from the
figures and Tables 1 and 2, the CEB-
FIP Model Code formulation' is still
clearly inferior in data fits (confidence
limits). It is also much more limited in
scope than the BP model. 4 The proce-
dure is not even simpler, although at
first it might appear so because fewer
formulas are used in the Model Code.
This is partly because many functions
are defined by graphs (16 curves). If
all the curves were defined by equa-
tions, as in other models, the Model
Code formulation would appear more
complicated than the BP model. For
computer programs, equations are of
course clearly preferable to graphs.
Formulas are also advantageous for
predictions especially when using
measured short-time values of creep.

In discussing the deviations from
the experimental data, we should ap-
preciate the importance of avoiding
the subjective element in selecting
the test data with which we compare
our model. When we make a totally
unbiased selection of test data (i.e.,
random, by casting a dice), the re-
sulting error of course should not sig-
nificantly depend on the number of
data sets used (unless this number is
too small, say six). However, any sub-
jective judgment in selecting the data
sets can be dangerously misleading.
This is illustrated in Table 1(B). For
example (see Reference 4), if among
the 12 available shrinkage data sets4
one selects the 8 best fitted data sets
(which would certainly look to a
casual reader as sufficient experi-
mental verification), the confidence
limit obtained from comparing our
model to the test data drops from 52 to
21 percent and if one fits these 8 data
sets independently of those which
were left out, it drops to about 13 per-
cent.4 (It was for this reason that prac-

tically all test data which could be
found in the literature were used in
Reference 4.)

With regard to extensions beyond
the range of available test data,
theoretical and conceptual aspects
are, of course, very important too.
For their critical analysis, other
works 7' 9" 1°,41 are applicable.

Model Accuracy and Complexity
The fact that an increase in accuracy

of prediction is inevitably accom-
panied by an increase in complexity of
the model prompts us to ask: Is the
increase in complexity worthwhile?
The question must be viewed in con-
text of the entire structural analysis
process. The analysis of complex pre-
stressed concrete structures is fre-
quently performed by sophisticated
methods (e.g., computer frame
analysis, finite elements and elasto-
plastic methods), the error of which
might be less than 2 percent, whereas
the creep and shrinkage strains, which
are several times larger than the elas-
tic strains, are usually predicted by
models whose error exceeds 65 per-
cent with a 10 percent probability and
is much larger than the error in
strength. Such an approach makes lit-
tle sense. Optimally, the effort spent
on various tasks in the structural
analysis process should be commen-
surate with the expected accuracy
gain due to refinement of that task. A
rough illustrative comparison of this
type is attempted in Table 3. Although
the precise values in this table may be
disputed, they nevertheless give a
general idea of the problem. It is ap-
parent from this table that none of the
existing methods for creep prediction
is too complicated for all but creep-in-
sensitive structures.

Errors Stemming from Creep Law
and Composition Effects

What is the main source of error—is
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it the form of the creep and shrinkage
laws or the material parameters in-

volved?-Decidedly the latter. Table
1(C) shows that for our model the lat-
ter source causes about three-quarters
of the total prediction error. The in-
trinsic error of the creep and shrink-
age laws was determined by fitting
the data set for each concrete inde-
pendently of others, which was done
in References 10 and 11. It is solely
this type of experimental verification
which should be used to judge
whether the chosen form of creep and
shrinkage law is good. 1011 The BP and
present models appear in such com-
parisons far superior to any other
available model.10"11

If we do not determine the best
material parameters for given concrete
but predict them from strength and
composition, the error increases. Un-
fortunately, this increase, which rep-
resents the error due to composition
effects, is comparatively very large for
all models [see Table 1(C)]. Despite
much effort, our formulas for predict-
ing the material parameters from
composition are apparently not too
good, and obviously there is much
room for further research.

When the composition error is much
larger than the intrinsic error of the.
creep law, as is true of our model in
contrast to other models, a great im-
provement of prediction must result
when even one short-time (or initial)
value is measured. The improvement
is found for our model to be indeed
significant. For example, Reference 4
and Table 1(C) shows that the error
drops on the average to one-third in
basic creep and to two-thirds in drying
environment. Note that for a creep law
whose intrinsic form is not too realis-
tic (theoretically unfounded, as in
some other models), the improvement
based on one measured value is rela-
tively much less significant. It is here
where the main advantage of the pro-
posed model lies.

Prediction Improvement if a
Short-Time Value is Known

The improvement on the basis of a
measured short-time value can be
achieved easily only if the creep and
shrinkage laws are defined by for-
mulas rather than graphs, and if these
formulas can be inverted to allow a
simple calculation of material param-
eters. The proposed model, like the
BP model and unlike the CEB 78
model, makes this possible, as we will
now demonstrate.

We should note that, to minimize
the error, the measured short-time
deformation value should be deter-
mined as an average from several
specimens. Moreover, the average
should be taken, if possible, only after
the time curve of each specimen is
smoothed in the vicinity of the chosen
short time (e.g., 10 minutes, or 1 day).

Assume we know the value ofe8h°),
corresponding to some time t (not too

short, though, t> T h/3), time t° , and
some D, h and k3. We may then pro-
ceed as follows:

First, calculate C,, T1h , k h , S from
Eqs. (3) to (5).

Then, solve e8h = Egn°) /k hS from
Eq. (1).

Now, using this value of e8^,, we can
then calculate esh for other values of t,
t 0 , D, h and ks, obtaining a far
superior prediction, much better than
that in Figs. 1 and 2. Obviously, by
acquiring a single measured shrinkage
value, we can disregard the composi-
tion parameters altogether.

Still closer predictions are possible
if two shrinkage values e shl) and €,2)
for two sufficiently different values
t(1), t (2) (say t (2) % 3Tsh, t (1) "'r h/2), and
possibly also for two different h (, ) , hu)
and D (, ) , Da ) , are measured. We then
discard Eqs. (6) and (5) for e$h„ and C,
and calculate:

1 	 t(2) – At(1)
C 2 (t0 ) A(ksD (1))2 – (ksD(2))2

(15a)
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t (2) Es 
(1) k h	 2

	

`2)	 (15b)A = tcv E sA2) kh
(1)

T, (1) ks D2 (y= 	 (15c)
C1(to)

	

Tg (2) = kSD2cz)	 (15d)
C1(to)

S(i)=	
t(j)	 (15e)

Tsh + t(i)

	

Sn) =czt
(2) 	(151)

Tsh + t(2)

E s (2) __ Eshl)
E8^^ = kh2)S(2)	 k(I)Sci)	

(15g)

From the above equations we can
predict e sh (t,to) for any other case.

Basic Creep
If the elastic modulus or some

short-time strain value is known, the
prediction accuracy approximately tri-
ples.4 Assume we know the value of
the conventional static modulus,
which is here obtained as J at
t – t' = Ot = 1 day, i.e.,

E (t') = 1/J (t' + A t, t' )
The following procedure can then

be used:
1. Evaluate cp,, m, n and a from Eq.

(9).
2. Substitute these values along

with) (t' + At, t') = 1/E (t').
and t – t' = At into Eq. (8) and solve
for E0:

E o = E(t')[1+ rp 1 (t'-"'+ a)Otn]
(16)

where Atn = l= 1.

3. Using this E 0 value instead of
that found from Eq. (9), substantially
better predictions of J (t,t') at any t
and t' can be obtained, much better
than those in Figs. 3 and 4.

If we also measure one short-time
creep value J„ e.g., for t – t' = t2 = 14
days, t' = 28 days, we further improve
the prediction:

1. Calculate m, n and a from Eq.
(9).

2. Write Eq. (8) twice, once for) at
the aforementioned times, and once
for 1/E as before; this yields a system
of two linear equations for 1/E 0 and
(p,/E0:

	

+ (t' -" + a) At ' = E	 (17a)
E 0	E0

	

1 + (t' -- + a)q P' = Jl	(17b)
Eo	 Eo

3. Solving 1/E 0 and (p 1 /E 0 , we can
then predict J(t,t') for any t and t'
from Eq. (8).

Other alternatives of course, are
possible. For example:

1. Use Eq. (9) to get 11E 0 , m and a.
2. Noting that log Co = n log

(t –t') + log[(t'-m + a),p l /E 0 ], write
this relation for Co = (1/E) – (1/E0)
and for Co = J1 – 1/E 0 (with t – t' = t2
= 14 days):

nlogAt+ log Eo=log(_ 
E )\	 o

	

log(t'-m + a)	 (18a)

1
nlogt2 + log `p =log J 1 -- –

Eo	 Ea

log(t'-m + a) (18b)

which is a system of two linear equa-
ions for n and log (4, 1 1E 0 ). Solving
them, we can obtain n and ,IE0,
upon which we can predict J (t,t') for
any time t' and t from Eq. (8).
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The latter prediction will normally
differ somewhat from the previous
one [Eq. (17)]. It may, however, be
advisable to carry out both predictions
to get an idea of the range to expect.
Various other alternative procedures
are possible, too, but they require
solving transcendental equations.

Drying Creep
If we can measure the value of

J(t,t') for some relatively small t – t'
value (perhaps t – t' % r,,/10) and
certain parameters t', to , D, h, ks, we
can again greatly improve the accu-
racy:

1. Calculate Eo, ^p 1 , m, n and a from
Eq. (9) and also k,, S,(t,t') from Eqs.
(12) and (13), and Co (t,t') from Eq. (8).

2. Then solve C,(t,t' ,to ) for these t,
t' and to values from Eq. (10), and also
solve the (p d value from Eq. (11).
_ 3. Now use this (p d value, instead of
Bpd from Eqs. (12) and (14), to calculate
J(t,t') for any other t, t', to , D, h and
k, greatly improving the accuracy and
at the same time eliminating the need
for composition parameters.

Further accuracy is possible if we,
in addition, have the experimental
elastic modulus E (e.g., for t – t' = 1
day). Then we do not need to estimate
E. from Eq. (9), as above, but instead
we can calculate it from Eq. (8), as in
case of basic creep. We then proceed
using Steps 1, 2, 3 as described above.

It is interesting to note that by hav-
ing some measurements we can disre-
gard the composition parameters in
the BP model.4 For this, we need to
know the measured values of: (1)
shrinkage at two different times or
thicknesses, (2) elastic modulus and
one short-time basic creep value (for,
say, t –t' = 7 days) to predict basic
creep, and (3) elastic modulus and two
creep values to predict drying creep.

It is also worth mentioning that, be-
cause graphs are employed rather than
formulas, the CEB-FIP model be-

comes too cumbersome to use effec-
tively when a measured short-time
creep value or two shrinkage values
are given.

Application—Prestressed
Segmental Bridge

To illustrate the proposed method,
let us calculate the long-time deflec-
tions and internal force redistributions
due to dead load for a typical box
girder bridge erected from precast
segments by the cantilever method.
To allow use of the same steel form
and traveling scaffold, the erection of
the second cantilever forming the
span begins after the first one is com-
pleted.

We assume that the left cantilever
(Fig. 12) is t4 = 270 days old and the
right one is t, = 90 days old when

X,

IIIIIIAIII•I•II IIIIIIICIIIIIII

a
I.-,	 fT--i 2 5i t

b
t	 10 t o, t^-rt b--i 2--1►

age	 X2
difference

X,
t

Fig. 12. Example of a segmental bridge.
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they are joined at midspan. The join-
ing is continuous or by a hinge. The
cantilevers are connected without any
jacking, and so the force in the joint is
zero at the beginning. For simplicity
we assume that both cantilevers are
fixed at their ends.

Although our proposed method is
applicable to varying ages of concrete
along the span, we assume that within
each cantilever the age is uniform in
order to abbreviate the length of cal-
culations. In practice, the dead weight
increases gradually as the cantilevers
grow, but for the sake of simplicity we
consider that all dead weight is
applied at once, when the concrete is
t' = 60 days old. We further assume
that the dead load is uniform with
q = 140 kN/m.

Each cantilever is 48 m long
(span = 96 m). The centroidal mo-
ments of inertia of the cross sections
spaced at intervals Ax = 12 m, begin-
ning at midspan, are I = 2.52, 4.27,
10.9, 28.3, and 64.2 m 4 . (These values
are taken from first author's design of
the bridge over Vltava at Hladna,
Czechoslovakia, in 1961.) We assume
our bridge is built of concrete of 6000
psi (6 ksi) standard cylindrical
strength, water-cement ratio 0.42, and
sand-gravel-cement ratio 2.1:2.7:1. Let
us now go to the detailed calculations.

From Eq. (7):

E

=- [ 1.254.. 8+0.5( 2:i) ]x

1+2.1 1113_ 12=5.003
0.42 J

From Eq. (6):

y = (390 x 5.003-' + 1) = 0.616

e,h _ (1330 - 970 x 0.616) x 10-6
= 732 x 10-6

From Eq. (9):

1/E0 = (0.1 + 0.5/0.62 ) x 10-8 (19a)
= 0.1139 x 10-6/psi

(p 1 = 0.3 + 15/61.2 = 2.047 (19b)
m = 0.28 + 6-2 = 0.3078 (19c)
n = 0.115 + 0.0002 x 6 3 = 0.158

(19d)
a = 0.05

(19e)

As for the effects of drying we will
assume, again for the sake of simplic-
ity, that all segments of the girder are
0.35 m thick (D = 350 mm, ks = 1),
drying on both surfaces in an envi-
ronment of 65 percent relative
humidity (h = 0.65), and that the ex-
posure to the environment begins
when the concrete is 7 days old
(to = 7 days). From Eqs. (1) through
(5):

C, (to ) = 2.4 + 120/ f7= 47.76 (20a)
k h = 1 - 0.653 = 0.725'	 (20b)
T, = (1 x 350)2/47.76 = 2565 days

(20c)

The bridge is to be designed for the
life span t i = 50 years (i.e., 18263
days). Then:

t = t 1 - to = 18,263-7 = 18255 days
and

S(i) = (1 + 2565/18255)-1= 0.9364
(21a)

e 3h (t,to ) = 732 x 10-6 x 0.7254
x 0.9364	 (21b)

= 497 x 10-8

From Eq. (8):

E (60) = J(60+ 1,60Y'	 (22a)
= {0.1139E1 + 2 .047(60-0.3078 +

0.05) x 10.158]}-1
= 5.216 x 106 psi

E (90) = {0.1139[1 + 2 .047(90-0.3078 +
0.05) x 10.1581}- 1 (22b)
5.437X 106  psi

E (270) = { 0.113911 + 2.047(270-0.3078
+ 0.05) x 10 .158 1}-1 	 (22c)

=5.982 x 106 psi
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Also from Eq. (8), the basic creep 	 This gives the total creep function
function values are:	 values [Eq. (10)]:

J(18263,60)= 0.1139[ 1 + 0.6829] X
182030.15$ x 10-6

= 0.4803 x 10- 6/psi (23a)

J(18083,60) = 0.1139[ 1 + 0.6829] x
180230.158 x 10-6

= 0.4797 X 10-6 /psi (23b)

J(90,60)= 0.1139[ 1 + 0.6829] x
300.158 x 10-°

= 0.247 X 10-6/psi (23c)

J(270,60)= 0.1139[ 1 + 0.6829] x

J(18263,60)= (0.4803 + 0.2817) x
10-6

= 0.762 x 10-6 /psi (26a)
J(18083,60)= (0.4797 + 0.2836) x

10-6
= 0.763 x 10-6/psi (26b)

J (270,60) = (0.294 + 0.0902) x 10-6
= 0.384 x 10-°/psi (26c)

J (90,60) = (0.247 + 0.046) x 10-°
= 0.293 X 10-6/psi (26d)

210° •1S8 X 10-6 	The corresponding creep coeffi-
= 0.294 X 10-6/psi (23d) cients cp (t,t') = E (t' )J (t,t') - 1 are:

where 0.6829 = 2.047(60- 0.3078 + 0.05).

For the drying creep terms we get
from Eqs. (12) and (13):

fpa = [1 + (60 - 7)1(10 x 2565)]- t x
0.01521 x 732

= 11.13
= 1 - 0.651.5 = 0.476

Sa(18263,60)= [1 + (3 x 2565)/
(18263 - 60)] -0.35

= 0.8839 (24a)

S d (90,60) _ [ 1 + (3 x 2565)1
(90 - 60)] -0.35
0.1433 (24b)

S d(270,60) = ... = 0.2809 (24c)
S d (18083,60) = 0.8830 (24d)

Now from Eq. (11):

C d(18263,60,7)= 11.13x 0.1139x
0.476 x 60-0.a07e!2 x
0.8839 x 10-6

= 0.2817 x 10-8 (25a)
C d (18083,60,7)= 0.3212 x 0.8830 x

10-6
= 0.2836 x 10-6 (25b)

C d (270,60,7)= 0.3212 x 0.2809 x
10-6

= 0.0902 X 10-6 (25c)
Ca(90,60,7) = 0.3212 x 0.1433 x

10-6
= 0.046X 10-6 (25d)

(p (18263,60) = 5.216 x 10 6 x 0.762 x
10-6 -1

	= 2.975	 (27a)
('(18083,60)= 5.216 x 10 6 x 0.763 x

10-6 - 1

	

= 2.98	 (27b)
,p(270,60) = 5.216 x 106 x 0.384 x

10-6 - 1

	

= 1.003	 (27c)
ç(90,60) = 5.216 x 10 6 x 0.293 x

10-6 - 1

	

= 0.528	 (27d)

During the bridge's lifetime, its
internal forces change substantially.
Reference 38 shows how a theoreti-
cally exact solution of creep effects in
a segmental box girder of arbitrarily
non-uniform age and any construction
procedure can be obtained by a step-
by-step calculation. This method,
however, is too tedious to execute
without a computer.

Therefore, we will employ here the
age-adjusted effective modulus
method, which is simple and has been
demonstrated to be quite accurate.
Interested readers may consult Refer-
ences 9, 37, 38, and 39 for an explana-
tion of the method.

The age-adjusted effective modulus
E" may be calculated with the aid of a
table of the aging coefficient X, which
would have to be determined initially
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for our creep function. We may, how-
ever, dispense with a table of .X and
calculate E" as:

E"(t,t')= E(t')- R(t,t')	 (28)
'p(t,t' )

where R (t,t') is the relaxation func-
tion, for which recently a general and
fairly accurate approximate formula
has been established:40

R (t, t') = 
0.992 - 0.115

J(t,t') J(t,t- 1)x

	

J (t' +,t') - 1)	 (29a)
J(t,t - e)	 1

where f = (t-t' )/2	 (29b)

To use Eq. (29) we need to know
the following additional values, cal-
culated similarly as before:
Fort = 18083, t' = 90:

Jb (t + e,t') = 0.409 X 10-6 /psi	 (30a)

where= 8996days,Jb=E0' +C 0 =
part off due to basic creep [ Eq. (10)] ;

(p= 11.12,S d = 0.8055,
C d = 0.243 X 10-6/psi (30b)

J (t' + e,t') _ (0.409 + 0.243) x 10-6
= 0.652 X 10-6/psi (30c)

Jb (t,t - e)= 0.2225 X 10-6/psi (31a)
(p d = 9.5709, S d = 0.80548,

C d = 0.1028 x 10- 6/psi (31b)
J(t,t - 6) = (0.2225 + 0.1028) x 10-6

	= 0.3253 X 10-6 /psi	 (31c)

Fort = 18263, t' = 270:

J b (t' + e,t') = 0.3395 x 10- 6/psi (32a)
(p d = 11.08, S d = 0.8093,
C d = 0.2054 x 10-6 /psi (32b)

J (t' + e,t') = (0.3395 + 0.2054) x 10-6
= 0.5449 X 10-6 /psi (32c)

Jb (t,t - C)= 0.2221 x 10-6/psi (33a)
(pd = 9.546, S 	 = 0.8055,
C d = 0.1022 X 10-6 /psi (33b)

J(t,t - e) = (0.2221 + 0.1022) x 10-6
= 0.3243 X 10-6 /psi (33c)
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Fort = 18,063, t' = 90:

Jb (t,t' )= 0.4432 x 10-6/psi	 (34a)

PPd = 11.188,5 4 = 0.8828,
C d = 0.2662 x 10-6/psi (34b)

J (t,t') = (0.3243 + 0.2662) x 10-6
= 0.5905 x 10-6/psi	 (34c)

Fort= 18263; t' = 270:

Jb (t,t') = 0.3644 x 10- 6/psi (35a)
(p d = 11.08, S d = 0.8828,
C d = 0.2240 x 10-6/psi (35b)

J (t,t') = (0.3644 + 0.2240) x 10-6
= 0.5884 x 10- 6/psi	 (35c)

For t = 18263, t' = t - 1:

J b (t,t') = 0.1369 x 10-6/psi (36a)
Bp d = 8.512, S d = 0.04363,
C d = 0.00445 x 10-6/psi (36b)

J(t,t') = (0.1369 + 0.00445) x 10-s
= 0.1414 x 10-6/psi	 (36c)

Fort = 90,t' = t - 1:

Jb (t,t') = 0.1841 X 10-6/psi (37a)
cpd = 11.12, S d = 0.04363,
Cd = 0.01318 x 10-6/psi (37b)

J(t,t') = (0.1841 + 0.01318) x 10-6
= 0.1973 x 10-6/psi	 (37c)

Fort= 270, t' t - 1:

J,(t,t') = 0.1672 x 10-6/psi (38a)
'Rd = 11.08, S d = 0.04363,

C d = 0.0111 X 10-6/psi (38b)
J (t,t') = (0.1672+ 0.0111) x 10-6

= 0.1783 x 10-6 /psi	 (38c)

Now, from Eq. (29):

R (18263,270) = (0.992/0.5884) -
(0.115/0.1414) x
[ (0.5449/0.3243) - 1]

= 1.133 x 106/psi (39a)
R(18083,90)= ... = 0.5813 x 106/

psi	 (39b)
E Q' = E" (18263,270)

= (5.982 - 1.133) x 106/2.52
= 1.924 x 106/psi	 (39c)

E' = E" (18083,90)
= 1.704 x 106 /psi	 (39d)



Note that the corresponding aging
coefficients, which are used in Refer-
ences 9, 38, and 39 but are not needed
here, are (E – E")/E" 0 or 0.849 and
0.770.

After joining the cantilevers at
midspan, there are two statically in-
determinate forces at midspan: shear
force X 1 and bending moment XE.

Note that for a hinge connection,
Xz = 0; see Fig. 12. Using the princi-
ple of virtual work and evaluating the
integrals by Simpson's rule, we obtain
the following elastic flexibilities:

S i lo =84 = I E'M' dx= Lx 0+

4	 + 2122	 242 +4 362 +
4.27	 10.9	 28.3

482
64.2)

= l 9 r 1 l	
(40a)

– S 12 = S 12 = f MEME dx = 3E 1 0 +

4 12 + 2 24 + 4 36 +
4.27	 10.9	 28.3

48 )64.2J

= 85.92[   m 1	
(40b)

 2J

S22 
6 2
	

(0+_-i.+ 
3E 

2 + 4 + 1
10.9 28.3 64.2

= 
5•'°9 

I m I	 (40c)
L 3J

Si=-6L'= 
frcI1ML 

dx =q Ox
EI	 3E

0+4
12x 72 +2

24x 288 +
	4.27	 10.9

4 36x 648 + 48 x 1152)
	28.3	 64.2

	

= 24950E	 (40d)

2= E =-q Ox/	 72
S	 S	 3E1 0+ 44.27+

2--
 288 + 4 648 + 1152 1
10.9	 28.3	 64.2)

	

= 919.3--1  	 1	 (40e)

In the above equations, the indices
a, b refer to the left and right cantilev-
ers; E = elastic modulus; M l , M2
bending moments due to X, = 1 at XE

=0, and to X 2, = 1 at X, = 0; M L =

bending moments due to load q for X 1

= X 2 =0; Si, SQ = deflections due to
load q in the direction ofX, and X2.

Note that here, similar to treating
creep, we neglect the effect of rein-
forcement which is relatively small.
To account for it one would have to
calculate the transformed section
properties for various moduli E" (t,t' )
and E (t') for concrete.

We must now write the conditions
that the deformation increments in the
direction ofX I and X 2 from the time of
joining to 50 years must be zero. Ac-
cording to the age-adjusted effective
modulus method they read:38

(aaE/ "+S	 EIE")X 1 +

(S a E/Ea' + a I E/Eb')X 2 +
(Si Zcp a + S; dpb )E/E(60)= 0	 (41a)
(8	 E/Ed' + SE1 E/E 1flX 1 +
(SE2 E /E Q' + 822 E /E a') X 2 +
(ss ^^Pa + sz O(P8) E/E (60) = 0	 (41b)
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Since '(p a = (p(18263,60) –
(p (270,60)

= 2.975 – 1.003
= 1.972	 (42a)

O(p b = (p(18083,60) – (p(90,60)
= 2.98 – 0.528 = 2.452

(42b)

We now have:

10-6[ (1.924- 1 + 1.704- 1 )1839 X,/m +
(-1.924-' + 1.704 1 )85.92X2/m 2 +
(1.972 – 2.452)24950 q/5.216] = 0

(43a)
10-s[ (- 1.924-1 + 1.704-1 )85.92 Xt/m+
(1.924- 1 + 1.704 1 )5.109X Q/m 2 -
(1.972 + 2.452)919.3 q/5.216] = 0

(43b)
or
2035X, + 5.766 X 2 = 2296[m2 I q (44a)
5.766X 1 + 5.654X 2 = 780.0[m2]q

(44b)

From the above, we can solve for
the desired force and moment:

X, = 0.740q[m ] = 103.6 kN 	 (45a)
X 2 = 137.2q[m] = 19208 kNm (45b)

It is interesting to note that, relative
to the end moment due to self weight
for the case of no connection at
midspan, the moment ± (48m )X 1 due
to X 1 represents ±3.1 percent and X2
represents 11.9 percent, causing the
maximum change of the fixed-end
moment to be 15.0 percent from join-
ing to 50 years. A creep effect of this
magnitude is certainly significant.

For an elastic structure upon which
the load is applied after the final stat-
ical system (i.e., a system with a con-
nection at midspan) is established, we
would find X 1 = 0, X 2 = 179.9q[m2].
We should note that the value of the
midspan momentX2 due to creep is 76
percent of this elastic value ofX2.

The deflection of the older can-
tilever at midspan at time of joining is:

A, = 81 (p(270,60) where S; is based

on E = E (60 days). Consequent-
ly:

A l = (24950/5.216 X 106 psi) X 1.003
= 0.0006957q[m 2/kN] = 0.0974 m

(46)

The deflection from the instant of
joining to 50 years may be calculated
as:

A2 = (6 ,,X , + 6 isX2) E/EQ' +
Si A( E/E (60)

= (1839 x 0.740 – 85.92 x
137.2q )/(1.924 X 106 ) psi +
24945q X 1.972/(5.216 X 10)

= 0.000582q/kN = 0.0814 m (47)

This value gives the total deflection
due to self weight:

Al+A2=0.0974+0.081=0.178m

Furthermore, one would have to
calculate in a similar manner the val-
ues X,, X Q and deflections due to
creep produced by the prestress.
These tend to offset the above values
and one may even obtain a design
where they almost cancel each other.
However, because of the statistical
variability of each effect, it would be
imprudent to rely in design on such
"almost canceled values," as has often
been done.

For comparison, if there were a
hinge rather than a continuous con-
nection at midspan, we would have:

X Q = 0 and 2035X, – 2296q[m 2 ] = 0
or

X, = 1.128q[m] = 158.0 kN

The corresponding moment
(48m)X 1 represents as much as 4.7
percent of the fixed-end moment for
no connection at midspan, i.e., almost
1½-times as much as the 3.1 percent
value found before, but about 3-times
less than the total maximum change of
15.0 percent computed previously.

Also for comparison, if there were a
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hinge at midspan the deflection from
joining to 50 years would be

A2 = 6 i X,E /Ea' + Otp a8 E/E(60)
_ (1839 x 1.128)/1.924 x 106 psi +

(24945 x 1.972)/5.216 x 106 psi
= 0.00152q/kN = 0.21 m	 (48)

This deflection is 2.58-times larger
than that for a continuous connection
at midspan. The change of slope in
the younger cantilever at the midspan
hinge from the moment of joining to
50 years would be:

0 2 = S QX I E /Eb' + b82 E/E(60)
= (85.92 x 1.128q .)/1.704 X 106 psi

+ (919.3 x 2.452)/5.216 x 10 6 psi
= 0.0099 radians = 0.57 deg	 (49)

A somewhat smaller but opposite
rotation occurs at the hinge in the
older cantilever, causing relative rota-
tion of more than 1 deg due to dead
load. This rotation is reduced by creep
caused by the prestress. Nevertheless,
it is probable that a fast passage of a
heavy truck at this change of slope
may cause non-negligible vibrations.
For this reason, and even more so be-
cause of the much larger deflections,
it is imprudent to design the segmen-
tal bridge with hinges at midspan.
Rather, one should always use con-
tinuous connections, even though one
must then provide extra reinforcement
or prestress to resist the positive
midspan moment X 2 . The reasons for
avoiding the hinge become compel-
ling if one considers the statistical
variability of creep effects, currently
ignored in codes and design practice;
and we should now add some com-
ments on this problem.

Although this is not done in prac-
tice, the designer should also calcu-
late the 95 percent confidence limits
on the foregoing creep effects. Based
on the information supplied in this
paper and Reference 4, this can be
done for the overall statistical varia-
bility of concrete properties in the
bridge.

To obtain these limits we consider
all the preceding J-values to be 29
percent higher (see Table 1) and re-
peat all the calculations obtaining
upper confidence limits onX ; ,X Q , and
deflections. Then we assume them to
be 29 percent lower and repeat all
calculations, obtaining the lower con-
fidence limits. The effects of creep
due to the prestressing forces (plus
the effects of shrinkage) can be calcu-
lated in a similar manner, and their
upper and lower confidence limits
should be also established.

We must be aware, however, that
we do not currently have a firm un-
derstanding on the statistical differ-
ences in creep between the upper and
lower fibers of the cross section and
between the left and right cantilevers.
These statistical variations, which un-
doubtedly represent important causes
of excessive deflections observed in
concrete structures, are not mutually
independent, and therefore the confi-
dence limits for their differences must
be less than those deduced on the
basis of Table 1. Thus, one needs to
obtain information on joint probability
distributions within the cross section
of the errors of creep in the upper and
lower fibers of the section. Further re-
search in this area is needed here.

Errors in the prediction of prestress
loss are likewise very important. For
example, we may have, as the mean
prediction, a downward deflection of
20 cm due to self weight, and an up-
ward deflection of 18 cm due to pre-
stress, giving a net mean deflection of
2 cm. But if there is a 10 percent error
in prestress, we have a downward de-
flection of 20 – 18(1 – 0.1) = 4 cm.
Hence, we see that a 10 percent error
in prestress loss causes a 100 percent
error in the net deflection. It is well
known that a small difference of two
large numbers is much more inaccu-
rate than the numbers themselves,
and the designer must be careful
about this potential error.
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Conclusions

1. Compared to the previous BP
model,' the proposed model repre-
sents a simplified method for pre-
dicting creep characteristics which
uses more limited material properties
but fits test data less closely.

2. In terms of test data fits, the pro-
posed model is the best one available
for predicting the basic creep solely
on the basis of concrete strength. This
is useful when the designer has no
idea of the concrete mix to be used.

3. Shrinkage cannot be satisfactor-
ily predicted without using some
composition parameters, and the de-
signer must make at least a rough es-
timate of the composition to be used.

4. Because drying creep is always
accompanied by shrinkage, it is better
not to use a simpler (and a less accu-
rate) formula for predicting it solely
on the basis of strength.

5. If we measure one short-time
shrinkage value (an average from sev-
eral specimens), we can, however,
generally predict shrinkage without
using composition parameters, and
with much better accuracy.

6. If we measure the value of the
elastic modulus we can greatly im-
prove the prediction of creep. The
same is true if we measure one short-
time creep value (average).

7. If we measure one short-time
value of drying creep (average), we
can generally predict drying creep
without using composition parame-
ters, and more accurately.

8. Explicit formulas for improved
prediction based on two measured
short-time values (average) are possi-
ble with the proposed model (includ-
ing also the ACI model). However,
models defined by graphs (e.g., the
CEB-FIP method) are unsuitable for
this purpose, and inconvenient for
computer programs.

9. The proposed model compares

distinctly better with test data than
the ACI model as well as .the new
CEB-FIP Model Code (Table 1). It
represents more of a compromise and
never exhibits the very large devia-
tions from some data as seen with the
other two models. Moreover, the
scope of the model is much broader.
The improvement is greatest for
long-time creep and higher ages at
loading.

10. The earlier BP model, which
fits the test data far better than the
ACI model and the CEB-FIP model,
is preferable to the present model
when the composition of concrete is
known.

11. The order of decreasing
simplicity appears to be (a) Branson's
(ACI 209) model;2.3 (b) the proposed
model, and the CEB -FIP Model
Code,' and (c) earlier BP model.4
Branson's (ACI 209) model, when
suggested about a decade ago, repre-
sented the best possible model at that
time, and it still remains nearly the
best that can be done with the same
degree of simplicity and under the
constraint of using the same time
shape for both basic and drying creep
curves. Nevertheless, this simplicity is
not worth the error in view of the
great improvement achieved by the
proposed model and especially the
earlier BP model.

12. The CEB model fits shrinkage
data less well than the ACI model but
in fits of creep data it is somewhat
better (Table 1), even though the cur-
rent German Code DIN on which it is
based is poorer. This was achieved by
the adoption of a modification 36 in
which a corrective initial term was
determined by computer optimization.

13. The CEB-FIP and ACI models
show much larger, and often unac-
ceptable, errors, especially in cases of
shrinkage, and the effects of humidity,
size and curing period on shrinkage or
creep. This is mainly because these
phenomena are not modeled on the
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basis of diffusion theory but are de-
rived empirically.

14. The general trend and shape of
the creep and shrinkage curves in the
proposed model, as well as the effect
of loading age, are much more realis-
tic than in the ACI or CEB-FIP mod-
els. This is important especially for
extrapolations beyond the range of
available test data.

15. The preceding point is corrobo-
rated by the fact that the error im-
provement for the proposed model,
compared to the ACI and CEB mod-
els, is much more marked when test
data for one particular concrete are
fitted independently. The proposed
model achieves much more improve-
ment in the form of creep and shrink-
age laws than it does in predicting
material parameters from strength and
composition of concrete. However,
a possibility of further improvement
in this area exists.

16. For experimental verification of
a creep prediction model it is ex-
tremely important to avoid any sub-
jective element in choosing the test
data. By omitting four worst data sets
among twelve, the coefficient of vari-
ation may drop to as low as one quar-
ter.

17. The coefficients of variation and
95 percent confidence limits estab-
lished here (Tables 1 and 2) enable
the designer to determine the statisti-
cal parameters of the distribution of
deflections, shrinkage stresses and
strain redistributions in the structure
due to creep, prestress losses, and
other causes. The statistical variation
of these effects is neglected in current
practice but is actually much larger
than the statistical variation of
strength for which the current codes
routinely account.

18. None of the creep prediction
models proposed so far are too com-
plicated for a creep-sensitive structure
if one compares the analyst's time
needed to calculate creep coefficients

to that he routinely spends on struc-
tural analysis and considers the error
originating from these two tasks.

19. The proposed model BP2 is ad-
vocated for consideration by code-
preparing bodies as a basis for an im-
proved practical prediction method to
be used for creep-sensitive structures
with normal concretes of strength
3000 to 6000 psi when a good estimate
of concrete composition is not avail-
able. The earlier BP model4 should be
used, however, for all structures of
high creep sensitivity, and generally
whenever the concrete composition
used is already known, because the
gain in accuracy outweighs the in-
crease in complexity. That model is
also valid over a broader range of
strengths and times.
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APPENDIX A-CALCULATION OF CURVES FOR
ACI AND CEB-FIP MODELS

ACI Model2,3

e .h(t,t° ) = 0.00078- 	 CF' = cic2csc,cg,	 (50)
55+t

forh 0.4:c2'=1;forh '0.8:c2'=3– 3h;for0.4<h<0.8:c2' = 1.4 – h	 (51)

cs = 1.2 e- °•°473"1', c; = 0.75 + 0.00061 c	 (52)

cs = 0.3 – 1.4 Q for a -_ 0.5, else cs = 0.9 – 0.2 a	 (53)

J(t,t') = 
1 + C^ , E (t') = 33 p3f,' t' , ff (t') = ff 2g 	 t	 , t' 	 7 days	 (54)
E(t')	 4+ 0.85t

C,,, C. = 2.35 CF, CF = c 1c2c3c4	 (55)
10 + (t – t' )°•6

c, = 1.25 t' -0•ns ; c2 = 1.27 – 0.67 h for h > 0.4, else c Q = 1.00;	 (56)

c3 = 2 (1 + 1.13 e_02'2')  c4 = 0.88 + 0.0024 S	 (57)
3	 a

Note that c; is a function of initial moist curing defined by Table 2.8 in Reference 3.
Here p = unit mass of concrete in lb/fis ; CF, CF' = correction factors, c = cement content
in kg/m3 , v/s = volume to surface ratio in cm, s/a = ratio of the fine aggregate (sand)
content to the total aggregate content (by weight). The slump and air content influences'
were not considered for the data in the figures because their values were not reported for
most data considered.
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CEB-FIP Model Code'

E sh = E,,[,6e(t) — - Is(t°)], E,, = € 31€,H 0 _ X
U
	(58)

The strain e, is defined by Table 0.1, Column 4 in Reference 1 as a function of
humidity h; E,zl is defined by a graph in Fig. e.4 as a function ofH ° ; Ar/U = ratio of
cross-sectional area to exposed surface; A is a function of h defined by Table e.1; f3 8 (t) _

function of age t defined by six graphs in Fig. e.6 for various values of effective thickness
H ° . Age t was not corrected for temperature (Section e.5 of Reference 1) because the test
temperatures did not differ appreciably from 20C.

1	 + ^a(t') + i, I3 (tt^)	 (pRNf(t) — /3,(t't' )l
J(t,t')= E,(t')
	 E28
	 +	 Ec	 (59)

	

za	 za	 za

Ra(t') = o.8(1_  f^^ ) J, (P a = 0.4, S°f = cofl cpfz 	 (60)

E 0 (t')= 1.25E °m (t'),E cm (t')=9500 3Vfc m (t'),E °28 = 9500 3V 	 (61)

where f, E ° and E are in N/mmz . The strength f f is given by a graph in Fig. e.1 of
Referenced as a function of t' ; (pf is given in Table e.1 of Reference 1 as a function of
humidity h; (p f2 is given by a graph in Fig. e.2 of Reference 1 as a function of effective
thickness H o ; /a is defined by a graph in Fig. e.3 of Reference 1 as a function of load
duration t — t' , f3, is given by six graphs in Fig. e.4 for various effective thicknesses H°
(Table 2.3 of Reference 1) as a function of age t, which does not have to be here corrected
for temperature as already noted.

Compared to German Code DIN33-34 and the preliminary version from Reference 35,
the modification proposed in Reference 36 and embodied in the above equations consists
of replacing the actual elastic deformation 1/E ° (t') with the term 1/E,,(t') = 0.46(1 + 3.22
t1-0_4 )/E ° a where E j,(t') was called "initial creep modulus."29 In the Model Code the
proposed change from 1/E ° (t') to 1/E 1 (t') is hidden within the term /3 a (t' )/E o, which is
called "irreversible initial deformation" and is given as 0.8[ 1 — f f (t' )/f] where f f (t') is
given by a graph such that this term is equivalent to the originally proposed36 function
1/E , (t') minus 1/E, (t' ), i.e., f f (t' )lf f . — 1 — [ 1/E (t') — 1/E k2s ] /0.8.
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APPENDIX B-NOTATION

a/c = aggregate-cement ratio (by weight)
Co(t,t') = unit basic creep strain (in excess

of 1/E 0 , not 1/E )
C 1 (ta) = drying diffusivity of nearly

saturated concrete at reference
temperature T 0 at age t

C d (t,t',t o ) = increase of creep during
drying

D = effective cross-section thickness
E = Young's modulus of concrete
E 28 = E at t' = 28 days
E. = asymptotic modulus of concrete
f,' = 28-day cylinder strength of concrete
g/s = gravel-sand ratio (by weight)
h = relative humidity of the environment

(0 h_- 1)
J (t,t') = strain at time t caused by a unit

sustained uniaxial stress acting
since time t'

ka = humidity coefficient
kh' = humidity coefficient
ks = shape factor
m = material parameter
n = material parameter
r = parameter

RH = relative humidity (in percent)
s/a = sand-aggregate ratio (by weight)
s/c = sand-cement ratio (by weight)
S (t) = function giving shape of shrinkage

curve
S d (t,t') = shrinkage-like time shape

function for increase of creep
due to drying

t = time in days representing the age of
concrete

t' = age of concrete at loading in days
to = age of concrete when drying begins
t = duration of drying
v/s = volume-to-surface ratio
wlc = water-cement ratio
y = parameter
z = parameter
a = material parameter
€ Sh (t,t o ) = shrinkage strain
Est = ultimate shrinkage (at zero

humidity)
,r8h = shrinkage square halftime
rp, = material parameter
Pa = material parameter
rp = coefficient characterizing the increase

due to drying

Discussion of this paper is invited.
Please submit your comments to
PCI Headquarters by January 1, 1981.
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