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The presence of non-prestressed re-
inforcement in a prestressed con-

crete member can have an important ef-
fect on the time-dependent stresses and
deformations caused by shrinkage and
creep of concrete and relaxation of
steel. This is particularly true in par-
tially prestressed members where the
area of the non-prestressed reinforce-
ment is relatively large.

In a prestressed simple beam,
bottom non-prestressed steel restrains

the deformations of concrete and re-
sults in reduction of prestress loss and
camber (or increase in downward
deflection). As concrete shrinks and
creeps under compression, the non-
prestressed steel continues to pick up
compression and consequently in-
creases the loss of precompression in
concrete.

There are substantial differences be-
tween the various investigators 1 -4 over
the quantitative effects especially on
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A simple accurate method is presented for
calculating prestress loss, axial strain, and
curvature at a cross section of a member
containing prestressed as well as non-
prestressed steel. Two sets of graphs are given
as design aids, and their use is demonstrated
by numerical examples.

The method indicates that the presence of
non-prestressed steel slightly reduces the loss
in tension in the prestressed steel, but can
significantly reduce the prestressing force in
the concrete. It has a small effect on the axial
shortening but can have a much more
pronounced effect on the camber or the
deflection.

the loss of prestressing force trans-
ferred to concrete which is of primary
importance in design.

In the present paper, a simple meth-
od is developed for the accurate evalu-
ation of prestress loss, axial strain and
curvature in a cross section of a mem-
ber containing both prestressed and
non-prestressed steel. Numerical exam-
ples are worked out to show the order
of magnitude of the effects of non-
prestressed steel in practical cases.

Problem Statement

Consider a cross section of a pre-
stressed concrete member (Fig. 1) sub-
jected to dead load axial force N and
bending moment M introduced at time
to, the age of concrete at transfer of
prestress.
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The axial force N is non-zero only
in special cases, e.g., statically inde-
terminate post-tensioned frame. The
section is assumed to have prestressed

sl

CENTROID OF
CONCRETE SECTION

Aps	 eps e
ens

CENTROID OF TOTAL
Ans	 STEEL AREA As(=Aps+An,)

AREA OF CONCRETE = Ac ;
ITS RADIUS OF GYRATION = r

Fig. 1. Prestressed concrete section
with prestressed and non-prestressed
reinforcement.
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and non-prestressed steel of areas Ars

and A,,.
It is required to find at time tk,

usually the end of an extensive period,
the axial strain, e, and the curvature,
0, of the concrete section, and the
forces in the concrete, the prestressed
and the non-prestressed steel.

The axial strain and curvature, when
evaluated for various sections along a
member, can be used to determine the
member shortening and deflection.

In addition to the geometric prop-
erties of the section, the following
values are assumed to be known:

s, the free shrinkage of concrete in
the period tk — to;

v, the creep coefficient which is
equal to the ratio of creep at age
tk, due to a constant sustained
load applied at to, to the in-
stantaneous strain;

L,., the intrinsic relaxation loss of
steel stress in a tendon stretched
between two fixed points with
initial stress f,,, for the period
tk — t0;

0.1	 0.2	 0.3	 0.4	 0.5
Q

Fig. 2. Relaxation reduction factor
(i versus il.

E, the modulus of elasticity of con-
crete at t0 ; and

E 3, the modulus of elasticity of steel,
assumed to be the same for both
prestressed and non-prestressed
reinforcement.

Sign convention
The prestress forces PP, in steel and

P6 in concrete are always positive. N
is positive when compressive. M is
positive when it produces tension at
the bottom fiber of a member. Posi-
tive E and c) correspond to positive N
and M, respectively. The concrete
stress is positive when compressive.

The above sign convention is chosen
to conform "to the PCI Design Hand-
book.5

General Description
of Method

The same problem was discussed in
an earlier papers with the only differ-
ence that additional non-prestressed
steel is here considered. The procedure
to be followed in design is fully given
in the present paper, but some of the
development details included in Refer-
ence 6 are not repeated.

An approximate equation to calculate
the loss of stress in prestressed steel
due to shrinkage, creep and relaxation
is:

L0 ,.=sE s +L,. +vnf60 	 (1)

where f^.a is the initial concrete stress
at the level of the prestressed steel,
and:

n = E,/E.	 (2)

Eq. (1) overestimates the loss be-
cause it ignores the continuous reduc-
tion in the concrete stress accompanying
the development of the prestress loss. It
also ignores that the reduction in steel
stress due to the shortening of the ten-
don results in a smaller amount of re-
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Fig. 3. Recovery parameter µo versus e.

laxation as compared to the intrinsic
relaxation, L,..

This is so because the intrinsic relaxa-
tion Lr depends to a large extent on the
stress level in the steel which may be
expressed as the ratio 83 equals the ini-
tial steel stress, fPBO divided by the ulti-
mate strength.

The method presented in this paper
adopts a more accurate equation:

LPs = s Es + t L,, + (v — (a,) n feo (3)

In the presence of non-prestressed
steel, f,o is the initial concrete stress at
eccentricity e, the level of the centroid
of the total steel area:

A8= AP4 +Ans	 (4)

The factor tai (<1.0) (Fig. 2) ac-
counts for the reduction of steel relaxa-
tion. 7 The parameter t.t accounts for the
strain recovery. Its value is equal to the
ratio of the instantaneous plus creep
strain caused by the prestress loss to
the instantaneous strain of concrete at
prestress transfer; both strains are at
the level of the centroid of A.

The graphs in Fig. 3 can be used to
obtain the recovery parameter, . They
are derived in Appendix B by a step-
by-step procedure similar to what is
recommended by the PCI Committee
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on Prestress Losses. The use of the
graphs eliminates the need for lengthy
incremental computations.

The strain recovery described above
has a significant effect on the deflection
and to a lesser degree on the axial
shortening. The same parameter, µ, will
be used to calculate the time-dependent
axial strain, e, and the curvature, 0.

Design Procedure

Because of the presence of non-pre-
stressed reinforcement, the loss in pre-
stressing force in steel, L BA,$ is less
than the absolute value of the loss of
the compressive prestressing force on
the concrete, OPT. The difference is a
compressive force picked up by the
non-prestressed steel.

The effective stress in concrete is of
primary importance in design. This is
equal to the initial concrete stress minus
the stress caused by AP, applied on
the concrete section at eccentricity e.

The values of LP3, OPT, the axial
strain a and the curvature 0 are cal-
culated in three steps:

Step 1:
Calculate the concrete stress at ec-

centricity e immediately after transfer:

f ̂ a = (&P 0 + N — Me/r2)/Ae (5)

where Ae and , r, are the area and the
radius of gyration of the concrete sec-
tion, and:

a= 1 + (ee,,/r2)	 (6)

The term P,0 is the compressive
force on the concrete immediately after
transfer (assumed for simplicity to be
acting at eccentricity e.). The value
of P,0 is to be calculated (as given in
the following section) from the known
value of the tension applied before
transfer in pretensioned members or the
initial prestressing force at transfer in

post-tensioned members.
The recovery parameter p, is read

from Fig. 3 which should be entered
by the creep coefficient v and the steel
area parameter:

e = Ac/(a n A8)	 (7)

where:

a=1+e2/r2 	(8)

The value µo obtained from the
graph corresponds to the situation
when the shrinkage and the relaxation
are zero. For the actual condition, the
recovery parameter p., is a larger value
to be determined in Step 2.

Step 2:
Compute the shrinkage-relaxation

parameter defined as follows:

w= (s E8+* L, APB /(n f<,0) (9)

At this stage, the relaxation reduction
factor * is not known, and a simple
iteration is needed. At first, an estimat-
ed value of if, (I) is used in the equa-
tion. The value of qi can be between 0.0
and 1.0, and for most practical cases, a
value of 0.7 leads to the accurate if,

value after a single iteration.
Now, the recovery parameter is cal-

culated from:

=µo+ (1+0.6v)W	 (10)
1+0.6v+e

A first estimate of LP$ is calculated
from Eq. (3). The accuracy of the as-
sumed value of tai = 0Ji (1) is now ex-
amined by using the graph of Fig. 2,
which is entered by 83 and the follow-
ing parameter:

,f1= (Lp8 — L,)/f, 0	 (11)

If the value of ifr obtained from the
graph is different from the assumed
value, Step 2 is repeated using i/i = if..

(II), the last value obtained from the
graph. This repetition if needed, will in
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most cases, give accurate values of the
recovery parameter ip and prestress loss
Lp., and no further iteration will be
necessary.

The change in the prestressing com-
pressive force in the concrete at age
th, equals:

AP,_ —A8 rsE8 +4rL,. Ap8+
L	 4

(v — µ) n fco
] 	

(12)

The negative sign outside the bracket
indicates a reduction in the compres-
sive force.

Step 3:
Calculate the values of the axial

strain E and the curvature 0 at age tk.

e=s+ P
A

0E N aE„^ (13)

	

M 2 A oo ers (1-I- v) + «efE

E,

	 (14)

Pretensioned Members

The transfer of the prestress in a
pretensioned member reduces the ten-
sile stress in AP., and induces compres-
sion in A,,,4 . This is equivalent to a re-
duction in tensile stress in the total
steel by the amount:

L^3 = nf.ti/(1 + )	 (15)

where f is the concrete stress which
would occur at the centroid of the total
steel area had there been no instantane-
ous loss. Its value can be calculated by
the equation:

fti = (a P,,j-l- N— Me/r2)/A, (16)

where P,i is the force in the prestressed
steel immediately before transfer.

Immediately after transfer, the com-

pression in the concrete is:

Pea = Ppsd ` A3nfca3(1 +-)	 (17)

The above equations are derived in
Appendix C from the conditions that
the instantaneous change in strain in
the non-prestressed or prestressed steel
is the same as that of the concrete at
the level of the centroid of the total
steel area, and that after transfer the
tension in the prestressed steel is equal
to the sum of the compression in the
concrete and the non-prestressed steel.

Post-tensioned Members

With post-tensioning, only the non-
prestressed steel, A„ 8 , restrains the de-
formation of the concrete. Thus, the
prestressing force Pr.,,, is larger than the
compression transferred to the concrete
which is calculated by:

P,o = Pp.a '— A, n fcd/ 11 +

C1 + e_$2^ n A ,^s

]

	 (18)
A

 fey is the concrete stress which
would occur at eccentricity e„8 in the
absence of the non-prestressed steel:

fci
Ac[(+el

— r2 1Pvso+

N—
Me” 	 (19)
r2

The second term in Eq. (18) is the
compression picked up by the non-
prestressed steel. The derivation of Eq..
(18) is included in Appendix C.

EXAMPLE 1
It is required to find the effective

prestressing force in the concrete, the
axial strain and curvature at the mid-
span cross section of the pretensioned
double-T simple beam "10DT32” of the
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PCI Design Handbook, 5 given the fol-
lowing data (Figs. 4a and 4b).

A,	 615 in.'; r = 9.85 in.; A, =
2.14 in.'; e,, = 18.48 in.; A,, =
1.22 in.'; e„s = 19.48 in.; M
5553.6 in.-kips; P,,. = 404 kips; E6

= 3640 ksi; E, = 28,000 ksi; v

1.88; S = 546 x 10-'; L, — 19.1 ksi;
fps ,, = 270 ksi.

Eqs. (17) and (5) give P0,o = 376.8
kips and f,,,, = 1.05 ksi. The total steel
area As = 3.36 in 2, its eccentricity e =
18.84 in. and = 5.11. With = 5.11
and v = 1.88, Fig. 3 gives µo = 0.555.

For a first estimate, take qi = tJt (I)
= 0.7. Substituting into Eq. (10) gives
a value for the recovery parameter j

-(I) = 1,49. A first estimate of the pre-
stress loss Lp3 (I) can then be obtained
from Eq. (3); Lr,(I) = 32.4 ksi. An im-
proved value for the relaxation reduc-
tion factor, tft, is now read from Fig. 2
by entering /3 = 0.669 and 11 = 0.074
giving /i(II) = 0.73.

Therefore, jt (II) = 1.43 and LP, (II)
= 32.9 ksi. Using p. = p (II) = 1.43 in
Eqs. (13) and (14), the axial strain

e = 9.42 X 10 -4 and the curvature 4
—0.126 x 10- 5 in. -1

Eq. (12) gives the reduction in the
prestressing compressive force in the
concrete, AX, = —93.5 kips. The stress
distribution immediately after transfer,
the loss and the effective stress in con-
crete are shown in Fig. 4c. The effect
of the nonprestressed steel can be seen
by comparison with Fig. 4d which cor-
responds to A a, = 0; other data are
unchanged.

Deflection Calculation

The deflection of a member support-
ed at its two ends depends upon the
variation of the curvature along the
member. The curvature 0 calculated
by Eq. (14) is the sum of the following
curvatures:

4	 r A E.(I+v) (20)dead load —	 2
c c

,{,	 P,,0 e3,,	
1	 21y^prestressing = ` 2	 ( '{^ V)	 )

r A,,E,,

PRESTRESSED STEEL CENTROIDAL LINE
CONCRETE C ENTROIDAL LINE

ii.:	 11.12 in

t= 76 ft
NON -PRESTRESSED

(a) BEAM ELEVATION	 STEEL CENTROIDAL
LINE

0.376 0.144	 0.520 ksi

1.132 -0.801	 0.331 ksi
IMMEDIATELY LOSS	 EFFECTIVE

AFTER TRANSFER
(c) STRESSES IN CONCRETE AT MIDSPAN

IN PRESENCE OF NON-PRESTRESSED
STEEL

0.363 0.121 0.484 ksi

1.207 -0.631 0.576 ksi
IMMEDIATELY	 LOSS EFFECTIVE

AFTER TRANSFER
(d) STRESSES IN CONCRETE AT MIDSPAN IN

ABSENCE OF NON-PRESTRESSED STEEL

ens =19.48in.	 A s='2.14inz	 =ep, 18.48 in.

• Ans^1.22m

(b) MIDSPAN CROSS SECTION

Fig. 4. Pretensioned beam considered in Example 1.
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without non-	 with non-
prestressed. prestressed

steel steel
E^ X 104 9.554 9.030

TOTAL AXIAL	 SHORTENING el	 E2	 EI EZx104 9.706 9.418

AL a s	+ 2	 )(E	 E +3	 I	
SECOND DEGREE PARABOLA

Ai(in.) 0.881 0.847

DEAD  2	 ^I 4Ix105(inn) 0 0

IO
LOAD DEFLECTION

+ 02 x105(in^) 7.358 7.358

dead load	 9.6 8dead load (in•) 6.376 6.376SECOND DEGREE PARABOLA

PRESTRESS 0 
I

SSI x 105 (ii) -5.610 -5.213
DEFLECTION _

42 x 105(in!) -9.444 -9.2102
$prestress' (#I+ 2SS2 )	 X24

STRAIGHT LINE 8	 (in.)prestress -8.490 -8.190

PRESTRESS LOSS 0I	 02	 'l •I x 10 5(in.) 0.928 1.632
DEFLECTION

+ ,)2
$ prestress loss ` 	 ^ I +5#2)Q/48

'k2 x 105(in 1.363 1.729

SECOND DEGREE PARABOLA $prestress loss(^n)	 1.342 1.778

TOTAL DEFLECTION

S total	 -	 adeadload + 8 prestress	 + s prestress loss 8total (in.) -0.772 -0.036

Fig. 5. Comparison of axial shortening and midspan deflection in a
beam with and without non-prestressed steel.

1 	 f.^ 	 (22)y'prestreus tons =	 a r2 E, c

The variations of the curvatures due
to the dead load or due to the prestress-
ing are similar to the bending moments
due to the same causes.

It is reasonable to assume parabolic
variation for the prestress loss curva-
ture. The equations included in Fig. 5
may be used to calculate the central
deflection for linear and for parabolic
curvature variations.

EXAMPLE 2
It is required to calculate the axial

shortening and the midspan deflection
of the beam of Example 1.

The dead load moment will cause the
initial .prestressing force immediately
after transfer to be somewhat less at
the beam ends than at midspan. Thus,
a smaller intrinsic relaxation loss Lr is
to be expected. 6 A value L ,. = 17.5 ksi

should be used for the end sections in
this example (based on Magura et al.9).

The axial strain at age th, is calculated
at the ends and at midspan. The axial
shortening is calculated in Fig. 5 as-
suming a parabolic variation of e along
the beam length.

Eqs. (20)-(22) give the curvatures
at the ends and at midspan due to dead
load, prestressing and prestress loss.
The variations of cp are given in Fig. 5.
The deflections due to each of the three
causes are given in the same figure to-
gether with the equations used.

A comparison is made of the axial
shortening and the midspan deflection
of the same beam with and without
non-prestressed steel. The presence of
the non-prestressed steel reduces the
axial strain. Its effect on the instantane-
ous camber is a slight reduction.

However, the downward deflection
caused by prestress Ioss is significantly
increased from 1.342 to 1.778 in. This
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Table 1. Comparison of Abeles and Kung's test
results' with theoretical values.

A,

Aps

(kips) Midspan Deflection (in.)

Experimental Theoretical Experimental Theoretical

1 -5.73 -5.35 -0.454 -0.516

2.67 -9.23 -8.33 -0.475 -0.475

3.90 -9.21 -9.49 -0.398 -0.402

5.22 -9.94 -10.44 -0.340 -0.315

indicates that a designer can adjust the
amounts of An$ and AP$ to control the
camber or the downward deflection.

Comparison With
Test Results

Abeles and Kiingt tested a series of
simple beams with the ratio AB/AP8
varying between 1.00 and 5.22. By
measurement of the strain in the non-
prestressed and the prestressed steel
they derived the loss of prestress in
concrete, OPT at midspan.

The creep coefficient v and the free
shrinkage s are not given in Reference
1; but using the reported concrete com-
position, the member dimensions and
the relative humidity, it is possible to
calculate values v = 2.25 and s = 31.0 x
10- 6 using the recommendations of the
CEB-FIP Committee.10

The method presented was used to
calculate the reduction of the compres-
sive force 1P and the midspan deflec-
tion. Table 1 compares the theoretical
and experimental results.

Effect of Varying
Ans on APc

The method of calculation presented
above is used to study the effect of
varying the non-prestressed steel area
on the loss of compressive prestress
force on the concrete.

Define a parameter X as the ratio of
the values of AP, in the presence and
in the absence of non-prestressed steel.

Fig. 6 shows the variation of X for
the beam in Figs. 4a and 4b as v varies
between 0 and 4 and changing A. L8 such
that A 8/A 8 = 0 to 2.0. The graph in-
dicates that the loss of prestressing in
concrete is substantially increased by
the presence of A, ,,; e.g., with v = 2
and Ai^8 /Ap. = 1.0 the loss is increased
by 36 percent.

Note that this conclusion can also be
reached by noting the increase in loss
with A,$/A8 in Abeles and Kung's re-
sults in Table 1.
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CREEP
T	 COEFFICIENT

v=0

6 v 4

x

3	 X = RATIO OF THE PRESTRESS
LOSS IN CONCRETE TO THE
LOSS WHICH WOULD OCCUR

2	 IF THE NON — PRESTRESSED
STEEL WAS ABSENT

A ps, A ns = CROSS SECTION AREA OF
PRESTRESSED AND NON PRESTRESSED
STEEL

0	 0.5	 1.0	 1.5	 ' 2.0
A ns /Aps

Fig. 6. Effect of the presence of non-prestressed steel on loss of
prestress in concrete (midspan section of beam of Example 1).
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APPENDIX A-NOTATION*

A,, = cross-sectional area of concrete
beam

A,,, = cross-sectional area of non-pre-
stressed steel

A„s = cross-sectional area of prestressed
steel

As = total steel area (As = A„s + A„,,,)

E. = modulus of elasticity of concrete
at age to

E, = modulus of elasticity of steel
e = eccentricity of total steel area

measured downwards from cen-
troid of concrete

e„s = eccentricity of non-prestressed
steel measured downwards from
centroid of concrete

C,,.,, = eccentricity of prestressed steel
measured downwards from cen-
troid of concrete

f" = hypothetical value of concrete
stress [Eqs. (16) and (19) for
pretensioned and post-tensioned
members, respectively]

f00 = compressive stress in concrete at
eccentricity e immediately after
transfer

fps	 tensile stress in prestressed steel
Las = instantaneous change of steel

stress at transfer; value is
equal to the reduction in tension
in prestressed steel (in preten-
sioned members). It is also equal
to the increase in compression in
non-prestressed steel (in both pre-
tensioned and post-tensioned mem-
bers)

LP, = total loss of stress in prestressed
steel in period (tk-to) excluding in-
stantaneous loss at transfer

L,. = intrinsic relaxation loss of steel
stress of tendon stretched between
two fixed points

l
	 = span length
Al = axial shortening of member at time

tk

M = bending moment in section due to

This list is intended to comply in general with v
the notation adopted: iin the PCI Design Hand-
book.s

applied loads; positive M produces
tension at bottom fibers of beam

= normal force in section due to ap-
plied loads; positive N denotes
compression

= modular ratio at time to =E0/E,,
= compressive force in concrete

caused by prestressing
= compressive force on concrete

immediately after transfer of pre-
stress

= tensile force in prestressed steel
= tensile force in non-prestressed

steel
= radius of gyration of concrete sec-

tion
= free shrinkage of concrete in peri-

od tk -- to

= age of concrete at prestress trans-
fer, days

= age of concrete at which prestress
loss and displacements are re-
quired, days

= dimensionless coefficient defined
byEq (8)

= dimensionless coefficient defined
by Eq. (6)

= ratio of initial stress in prestressed
steel to ultimate strength = fp,,,/
'PS,

= used as a prefix to indicate an in-
crement of value

= midspan deflection at time tk
= axial strain at time tk

= ratio of prestress loss in concrete
in presence of non-prestressed steel
to prestress loss in absence of non-
prestressed steel

= recovery parameter, equals the
ratio of the instantaneous plus
creep strain caused by the pre-
stress loss to the instantaneous
strain at prestress transfer, both at
eccentricity e [Eq. (10) and Fig. 3]

= steel area parameter defined by
Eq. (7)

= creep coefficient, equals ratio of
creep at age tk to instantaneous
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strain when a constant sustained 	 stressed steel and non-
load is applied at to 	 prestressed steel, respec-

,p	 = relaxation reduction factor (Fig. 2) 	 tively
52	 = dimensionless value [Eq. (11)]
¢ = curvature at time tk	 i, o = value immediately before

and after transfer, respec-
Subscripts	 tively

c, s, ps, ns = concrete, total steel, pre- 	 u	 = ultimate strength

APPENDIX B-DERIVATION OF RECOVERY PARAMETER

Creep of concrete is assumed propor-
tional to the stress and the superposition
of stresses and strains is thus valid.

The service life of the member is di-
vided into m discrete time intervals. A
change in force on the concrete or the
steel, AP (i), in an intermediate interval, is
assumed to occur at the middle of that
interval.

The strain in concrete at the level of
prestressed steel at the end of interval i is:

EeB(i -F-'%z) = fE

LP, (j)	 e"2 o

3 1 E,(i) A, 1 +	 X

[1-1-U(i+1/2,j)]+

3
AP,,.(i)1	 e,.s ep,X

1EC(j)A^`

[1-I- v (i -h 1/2, 7)]	 (23)

interval in the prestressed steel
(value is usually negative)

The time-dependent strain in the con-
crete at the level of steel must be •equal
to that in steel:

ep, (i + 72) _ — EeP (2 + 1/2)	 (24)

where

Ep, (i +	 EsAp,
1/2) = 1 [Pr0 (i + 1/2)—

Proo -I- Asa L r (i -h 1/2)]	 (25)

The term Lr (i -{- 1/2) is the reduced re-
laxation loss occurring between transfer
and the end of interval i.

Two equations similar to Eqs. (23) and
(25) can be written for the strain change
in the non-prestressed steel and in the
concrete at the same level. Solving the
four equations, together with the follow-
ing equilibrium equation:

where:

f"w = stress in concrete at the same level
due to initial prestressing and dead
load;

v (i -{- 1/2, j) = ratio of the creep strain
from the middle of interval
j to the end of i, to the in-
stantaneous strain caused by
a constant sustained stress
introduced at the middle of
interval j;

where
= change in tension during the jth

interval in the non-prestressed
steel (value is usually negative)

.jP ,(j) = change in tension during the jth

i1P„„ (i) + LP,,, (i) = iP, (i) 	 (26)

yields the expression:

P.o^— Pa(i+1/2) =s(i
ERA.

E f , A,,, + f,, A,1
A,

v (i 4. l/2' o) -I- SUM (i)	 (27)
Ee

SUM (i) 9I [AP^.(j){A,^s (1 +) +
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A,,,(1+e"ae,,,11+
=Jf

_AP.,(i) fA, (1 + e° r ,sl +

A,., 
\1 + rF/J J \1	 A

z, i))}

(28)

The summation term SUM (i) can be
simplified by assuming that the steel stress
increments AP ,(i)/A„,, and AP,,,,(f)/A,,, are
equal. Therefore:

SUM(i)= ^P^t) " Xi=i E^(1) A,,

[1 + v (i +'/ ,1)]	 (29)

The value of SUM (i) can be calculated
by a step-by-step procedure for i = 1, 2,

, nl, where to is the total number of
time intervals. Rewrite Eq. (29) in the
form:

SUM (m) .- - w f ^• a l E	 (30)

where s is the recovery parameter de-
fined by the equation:

E,, ». pP,,(f) a
f^a j=, E,,(1) A,,><

[1+u(m -l-1/2,1)] (31)
The approximation involved in Eq. (29)

is that the actual time-dependent change
in stress in the prestressed and non-
prestressed steel is replaced by one aver-
age value in evaluating the recovery
parameter u. The error is expected to be
small particularly when the value of e,
is close to that of ep..

A computer program in which the above
approximation is avoided was developed
and used for the following comparisons.
The same beam of Example 1 was ana-
lyzed by the program for two locations of
non-prestressed steel:

(a) in the same location as in Example
1 (e,,, = 19.48), and (b) e,, - 5.98 in. The
latter value corresponds to the case when
the non-prestressed steel is equally divided
between the top and bottom of the sec-
tion.

Table 2 gives the percentage error re-
sulting from the above-mentioned simpli-
fication. It is clear that no great loss in
accuracy is involved even when there is
a large difference in the eccentricities of
the two steel areas (as in Case b consid-
ered).

Table 2. Error resulting from ignoring the spread of steel in a beam example.

Time- Without Position of Non-Prestressed Steel

(a) Bottom (b) Equally Divided BetweenDependent Non-
Top and Bottom

Value Prestressed
Method* Method* Percentage Method* Method* Percentage

Steel 1 2 Error 1 2 Error

o l.ps (ksi) 35.14 32.7 32.9 0.6 34.0 34.8 2.4

o APc (kip) -75.2 -93.0 -93.5 0.5 -98.7 -100.6 1.9

5 EX104 9.70 9.39 9.41 0.2 9.37 9.36 -0.1

$x105 (in. -1 ) - 0.72 - 0.13 - 0.13 0 - 0.56 -	 0.68 21.4

LPs (ksi), 40.6 37.6 37.6 0 39.4 38.8 -1.5

AP c (kip) -86.9 -117.4 -115.0 2.0 -114.9 -116.6 1.5

ex104 9.54 9.04 9.03 -0.1 9.15 9.23 0.9

0xl05	(in.- 1 ) - 4.65. 3.57 -3.58 0.3 -4.43 -4.48 1.1

* Method 1 uses a computer program which accounts for the actual positions of A and Ans in

all computations. Method 2 is detailed in the paper.
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APPENDIX C-PRESTRESS FORCES AT TRANSFER

(a) Pretensioned members
Immediately before transfer, the force

in the prestressed steel is P„e,. Transfer of
prestress corresponds to the application of
this force to a concrete-steel composite
section.

The forces Pp—, P,, and Peu in the
three components of the section, A„e, A..
and Ae, respectively, immediately after
transfer are given by:

P„:e = Pp, i — Les Ava	 (32)

and

P,uo = — Les Au	 (33)

The above involves the assumption that
A„R and A— can be replaced in the com-
posite section by A, = A,,, + A,, at eccen-
tricity e.

From the equilibrium of forces:

Pee = P,,, — L,, (A„, + Au)	 (34)

or

Pee = P,,, — Le, A,	 (35)

The value of Les can be obtained by
equating the strain in concrete and in
steel at eccentricity e:

AeE^(PI,`a—LeeA,a+N—Me/r=)

_.Lu
— E,
The first two terms in Eq. (36) are the

strain caused by Pe,,, which is equal to
P,,, i applied at e,,, minus (LA.) applied

at e. The dead load normal force N and
bending moment M are assumed to come
into effect at transfer.

Solving Eq. (36) for Lee gives Eq. (15).

(b) Post-tensioned members
With post-tensioned members the pre-

stressed steel is not bonded to the concrete
at transfer. It, therefore, does not restrain
the deformation of the concrete. In other
words, the stresses in concrete and non-
prestressed steel at transfer are dependent
only on the force and eccentricity of the
prestressing steel, but not on its area.

The post-tensioning results in the fol-
lowing forces:

Pu,, = — Les Ana	 (37)

Pe e — P„„ e — A,, Les	 (38)

Equating the strain in concrete and in
steel at eccentricity e„e gives:

A^ Ee [(1 + e, e vel PN e _ Lee A,, X

(1+)+
N_s]_es(39) r'	 Ee

from which:

L. x = n 1..! [1 + (1-{- e2,,,) nA - (40)
/ e

where fez is the concrete stress which would
occur at eccentricity e,,, in the absence of
the non-prestressed steel [Eq. (19)] .

Substitution of Eq. (40) in Eq. (38)
gives Eq. (18).

Discussion of this paper is invited.
Please forward your comments to
PCI Headquarters by Sept. 1, 1977.

(36)
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