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D espite the wide use of prestressing,
there is no simple practical meth-

od for predicting accurately the time-
dependent losses and deflections of pre-
stressed concrete members. This is part-
ly because of the difficulty in predicting
the coefficients related to the proper-
ties of steel and concrete and the un-
certain environmental conditions in
which the structure will be subjected to
after prestressing. Even when these fac-
tors can be predicted precisely, an ac-
curate analysis which accounts for the
interdependence of the effects of
shrinkage, creep, and relaxation of steel
is too complicated to be widely used in
practice.

A recent paper' by the present au-
thors uses a numerical procedure,
which accounts accurately for the in-
terdependence of the above effects. The
current paper emphasizes practical ap-
plications without deriving the equa-
tions. Rather, the various design steps
are presented and demonstrated with
numerical examples. A brief explana-
tion of the assumptions behind the pro-
posed method is included in a Com-
mentary in the Appendix.

The paper also attempts to answer
two questions which will no doubt oc-
cur to the designer, before adopting the
method:

(a) How do the basic assumptions
and the results of the proposed method
compare with other analytical methods?

(b) Does experimental evidence sup-
port the results of the proposed meth-
od?

In addition, the paper
(a) Shows the difference in comput-

ing prestress losses and deflections in
pretensioned and post-tensioned mem-
bers and

(b) Gives a procedure to find the
loss (or gain) in prestress and the de-
flection caused by superimposed sus-
tained load introduced some time after
prestressing.

A method is presented to
accurately predict the time-
dependent prestress loss,
axial strain, and curvature at
any section in prestressed
concrete beams and frames.
The paper covers=-non-
composite pretensioned and
post-tensioned structures
treating both simple and
continuous members.
Although axial strain and
curvature are not directly
needed in design, these values
are useful in calculating
deflections and, in some
cases, shortening of members.
When the strain and the
curvature are known at
various sections, deflections
can be calculated by well-
established methods.
Equations are given to
calculate midspan deflection
and shortening of each span.
The results of the proposed
method are compared with
existing experimental data
showing good agreement.
Primary emphasis is placed on
practical applications
although an explanation of
the assumptions behind the
method is given in the
Appendix. Two fully-worked
numerical examples are
included and compared with
approximate methods of
analysis.
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14.4"	 CENTROIDAL LINE OF STEEL	 9.15"

66 ft

(a)

CENTROID

CONCRETE SECTION OFE24^' 	 AREA=401in2 AND
RADIUS OF GYRATION

Aps 1.224 in2	=723 in
TOTAL STEEL AREA
(b)

Fig. 1. Pretensioned beam considered in Examples 1 and 2. (a) tendon
profile; (b) midspan cross section.

Problem Statement
The three values are: 
1. The	 free	 shrinkage	 s	 which

Consider a section of a concrete mem- would occur between ages to and
ber	 (pretensioned	 or	 post-tensioned) tie.

prestressed at age to by a force Po at ec- 2. The creep coefficient v which is
centricity e (see for example the beam the ratio of creep at age tk to the
in Fig. 1). At the time of transfer to, a instantaneous strain when a load
bending moment M and an axial force is applied at age to and sustained
N are also introduced, representing for at a constant value, and
example the self weight effect. The ax- 3. The	 "intrinsic"	 stress	 relaxation
ial force N is nonzero only in special L,. This is defined as the reduc-
applications, for example in a statically tion in tension which would oc-
indeterminate post-tensioned frame. Su- cur	 during the period	 (tx-t0) if
perimposed load applied at a later age the	 tendon	 were	 stretched be-
after prestressing produces additional tween two fixed points with ini-
internal forces. (The effect of these is tial stress f so = PO/A S. It is well
discussed separately.) It is required to known that the intrinsic relaxa-
find at this section the prestress loss L, tion L,. depends to a large extent
the axial strain e, and the curvature on the	 stress level in the	 steel
which will occur at age tk (tk > to). which may be expressed as the

For the solution of this	 problem, ratio /3 equals	 f0 , divided by the
three values which depend on the qual- ultimate strength.
ity of the prestressing steel and con- The determination of the values of
crete, the dimensions of the cross sec- s and v may be guided by Reference
tion, and the temperature and relative 2 or 3.
humidity of the air, are assumed to be The value of Lr is usually provided
known, by the steel manufacturer. One of the
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equations to estimate Lr, based on the
work of Magura, Sozen, and Siess, 4 is

Lr = 0.1 fso [fo/fy - 0.55]] log (tn/tr)
(1)

where f ,o/ f y 0.6, and

f, = 0.1 percent offset stress, and

t„ t,, = time at transfer and time at
which the loss is to be obtained,
measured from the time of ini-
tial stressing of the tendons. In
the case of post-tensioned mem-
bers t,, is taken equal to 1 hour.

However, some kinds of steel are
now used for prestressing with less re-
laxation values than that given by the
above equation. 5 Furthermore, test da-
ta6 have indicated that the relaxation
loss is a function of the strand diameter.

Other material properties assumed to
be known are E3 and E,, the modulus
of elasticity of steel and of concrete at
age t,,, respectively.

General Description of
Proposed Method

Table 1 is presented as a design aid. It
was derived using a step-by-step nu-
merical method. The procedure and
derivation of the equations used for the
table as well as a plot of it are given in
Reference 1. The basic assumptions
considered of interest to the designer
are included shortly.

An equation widely used for calcu-
lating the loss due to shrinkage, creep,
and relaxation is

L=sE$ +Lr +vnf,,	 (2)

where f.o is the initial concrete stress at
the level of the centroid of the pre-
stressing steel, and

n = E 8/E8	 (3)

The loss of prestressing force, due to
shrinkage and creep of concrete and
steel relaxation, reduces the concrete
stress and induces elastic strain and
creep recoveries. The reduction in steel
stress due to the shortening of the ten-
don results in a smaller amount of re-
laxation as compared to the intrinsic
relaxation, L,.. For these two reasons
there is an interdependence in the
amount of loss caused by shrinkage,
creep, and relaxation, and it is in fact
not possible to separate the effect of
each cause.

Eq. (2) ignores the very important
aspect of the reduction in concrete
strain resulting from the continuously
reducing concrete stress at the level of
the steel (the recovery effect). It also
ignores the reduction in steel relaxation,
and thus considerably overestimates the
loss. One of the objectives of this pa-
per is to provide a formula for the cal-
culation of L in which the overestima-
tion in Eq. (2) is avoided without ap-
preciably complicating the formula.

The recovery effect can be accurately

Table 1. Recovery parameter µo.

5 10 15 20 25 30 35 40 45 50

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	 - 0.000 0.000

0.5 0.101 0.049 0.037 0.029 0.024 0.020 0.017 0.015 0.014 0.012

1.0 0.239 0.122 0.090 0.070 0.058 0.049 0.042 0.037 0.033 0.030

1.5 0.410 0.217 0.159 0.124 0.102 0.087 0.075 0.066 0.059 0.054

2.0 0.609 0.332 0.243 0.190 0.156 0.133 0.115 0.102 0.091 0.083

3.0 1.084 0.620 0.454 0.357 0.294 0.250 0.217 0.192 -	 0.172 0.156

4.0 1.642 0.976 0.719 0.568 0.469 0.400 0.348 0.308 0.276 0.251
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Table 2. Relaxation reduction factor ,i.

8

1z

0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.05 0.000 0.547 0.729 0.798 0.835 0.857 0.872
0.10 0.000 0.289 0.516 0.627 0.689 0.729 0.756
0.15 0.000 0.172 0.361 0.486 0.564 0.615 0.652

0.20 0.000 0.099 0.262 0.375 0.458 0.516 0.558
0.30 0.000 0.013 0.150 0.238 0.305 0.361 0.406
0.40 0.000 0.000 0.077 0.159 0.216 0.262 0.300
0.50 0.000 0.000 0.029 0.102 0.157 0.197 0.230

accounted for by the use of the recov-
ery parameter u, to be derived from Ta-
ble 1. For the steel relaxation, a reduc-
tion factor J obtained from Table 2 is
used.

The recovery parameter p was der-
ived by a step-by-step procedure. The
period of prestress loss (t0-to) was di-
vided into discrete time intervals and
the creep and elastic strains at the end
of each interval were calculated from
the updated conditions. A further ex-
planation of the derivation of p. is in-
cluded in the Appendix.

The problem of calculating loss is
closely related to that of calculating
time-dependent strain and curvature.
Computation of prestress loss is in fact
based on computing the time-depen-
dent strain at the prestress steel level,
which is related to the axial strain E and
the curvature 0. The recovery parame-
ter Ott, of Table 1 is again used to ob-
tain the values of e and 0.

In practice, the prestressing often
produces curvature of comparable mag-
nitude and of opposite sign to the dead
load curvature. Thus, the deflection (or
camber) is the resultant of the differ-
ence of the two effects, and hence no
accurate value of deflection can be pre-
dicted without a rational account of
prestress loss.

The calculations presented here in-
volve the following widely accepted as-
sumptions: (a) plane cross sections re-

main plane after deformation and (b)
the change in strain in the prestressing
steel is the same as the change in strain
in the adjacent concrete.

The following sections explain the
computation steps for calculating L, e,
and 0, and the use of the last two val-
ues to determine the deflection and
shortening of beams. Numerical exam-
ples are provided in which the results
are compared with approximate meth-
ods. Finally, the method is experiment-
ally verified and compared with exist-
ing methods.

Sign convention
Po (and Pi) are always positive; N is
positive when compressive. M is posi-
tive when it produces tension at bot-
tom fibers of a member. Positive E and
4) correspond to positive N and M, re-
spectively. The concrete stress is posi-
tive when compressive.

Design Procedure

The calculation of the loss L, the axial
strain e, and the curvature 0 is done in
three steps.

Step 1
Calculate the concrete stress at tendon
level immediately after transfer

f,o = (a Po + N - Me/r2)/A, (4)

where r is the radius of gyration, e is
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the eccentricity (positive when down- Table 2, which is entered by /3 and the
ward), and	 following parameter

a=1+e2/r2 	 (5)

The net section (less ducts) should
be used for the calculation of A, and r
in post-tensioned sections unless it can
be shown that the gross section does not
induce too many errors. For preten-
sioned sections, the use of the gross
concrete section involves a tolerable er-
ror.

The recovery parameter 1t, is read
from Table 1 which should be entered
by the creep coefficient v and the steel
area parameter.

^ = A,/(anAp)	 (6)

The value µo thus obtained corres-
ponds to the situation when the shrink-
age and relaxation are zero. For the ac-
tual situation, the recovery parameter
Ott is a larger value to be determined in
Step 2.

Step 2
Compute the shrinkage—relaxation
parameter cw defined as follows

co = (sE 8 + t)PLr)/(nfco)	 (7)

At this stage, the relaxation reduc-
tion factor i/i is not known, and a simple
iteration is needed. At first, estimate of
iji (I) is used in the equation. The val-
ue of qr can be between 0.0 and 1.0,
and for most practical cases, a value of
0.7 for the first guess leads to the ac-
curate i/i value after a single iteration.

Now, the recovery parameter is cal-
culated from

µ—µQ+ (1 + 0.6 v)co	 (8)
1+0.6v+e

The time-dependent loss (excluding
the instantaneous loss at transfer) is
given by

fl = (L — Lr)/fso	 (10)

If the value of tf, obtained from the
table is different from the assumed val-
ue, Step 2 is repeated using Ji = tj
(II), the last value obtained from the
table. This repetition if needed, will in
most cases, give accurate values of the
recovery parameter , and prestress loss
L, and no further iteration will be nec-
essary.

Step 3
Calculate the values of the axial strain
e and the curvature 0 at age tk (in-
cluding the instantaneous deformations
occurring at to).

Pa + ','7

crEw

_ M — P 00 e 	 e fco
r2A E  (1 i v) cr2E l (12)

Instantaneous Loss in
Pretensioned Members

In the case of pretensioned beams, the
value of the initial tension immediately
before transfer Pi may be more readily
available than P o used above. The dif-
ference between the two values is
caused by the instantaneous stress loss.

L es = (P2 — P0)/A 3	 (13)

which may be calculated as follows

Les = n fee/(1 + 1/e)	 (14)

where f,j is the concrete stress at the
steel level- which would occur had there
been no instantaneous loss, and is given
by

= (a Pi — M e/r2)/A6 	 (15)

Eq. (14) was derived by equating
L = sE8 ► t!iL, + (v — µ)n f ^o	 (9) the change in strain of steel and con-

The accuracy of the assumed value of crete at the tendon level occuring at
i/r = tJ (I) is now examined by using transfer.
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where positive deflection is measured
downwards.Comments and Applications

Comparison of Eq. (2) with the more
accurate equation for the time-depen-
dent loss [Eq. (9)] , shows clearly how
ignoring the reduction factor /r and the
recovery parameter ,lt, results in overes-
timation of the loss.

It should be noted that Ji and µ, are
interdependent. A subsequent numeri-
cal example will show the difference in
the results of the two equations.

Similarly, the last terms in each of
Eqs. (11) and (12) represent the de-
formations resulting from prestress loss.

For computing the deflection it
may be convenient to separate 4 into
two parts, such that 4) = 4> + 4.
The values 0m, and 4 are the curva-
ture caused by M and Po, and the cur-
vature resulting from prestress loss.

—M—Pae (1
,+ v) 	 (16)

mp r2A,E,

^p1 — a  r E,	 (17)

For simple beams, the variation of
4>mp along the span depends on the
variation of the dead load moment M
and the tendon profile. If Po is assumed
constant along the span, then the in-
stantaneous deflection So can be calcu-
lated using the equations listed on p.
11-10 of Reference 7, and at time tk the
deflection excluding the prestress loss
effect is

8mp= 60 (1-I-V)	 (18)

Thus, it appears that the calculation
of 0m, is not needed in this case.

The deflection caused by the loss of
prestress depends on the form of varia-
tion of 4)pi along the span. If three val-
ues are calculated: 01i 02 , 03 at the
left end, at the center and at the right
end, the deflection at the center, assum-
ing parabolic interpolation is given by

61,1 = (12/96) ((A1 + 10 02 + 0")p1 (.19)

The total deflection is

6 = 6,,, + Spl	 (20)

The axial shortening pl of a mem-
ber of length l may be obtained by
Simpson's rule.

Al = (1/6) (El + 4E3 + E3 )	 (21)

where el , E2 , and e3 are the axial strain
at the left end, at the center and at
the right end of the beam, respectively.

Effect of Superimposed
Sustained Load

When an added load is applied some
time after prestressing and sustained on
the structure up to the time tk , its con-
tribution to the prestress loss, axial
strain, and curvature can be calculated
in a similar manner. Appropriate E 0 and
v values which correspond to the new
age of loading should be used; the age
at loading t0 in this case is the time of
application of the added load. First, the
instantaneous loss (or gain) of prestress
is calculated by Eq. (14), with P i = 0.

The same procedure outlined above
is then employed with a fictitious P o =
— A1)3LC3 [see Eq. (13)] and ui = 0.
The total loss, the axial strain, and the
curvature between transfer and age tk
are then obtained by superposition. The
value of the total loss (excluding in-
stantaneous loss at transfer), should be
used to evaluate the relaxation reduc-
tion factor to check if further iteration
is needed.

An alternative solution suggested by
Huang8 is to assume that the superim-
posed load acts at the same time as the
first loading, i.e., at transfer. This is a
reasonable assumption, particularly for
loss calculation, as long as v and E0 do
not differ appreciably for the two load-
ing ages and the superimposed load is
small as compared to load at transfer.
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Numerical Examples

Example 1
Find the values of the instantaneous
loss and the time dependent loss at mid-
span of the pretensioned beam in Fig.
1, at th = cc. Also find e and 0 at this
age. The prestressing is applied by
strands of ultimate strength 270 ksi.
Other data* for the section are:

A, = 401 sq. in., r = 7.23 in., e = 14.40
in., Aps = 1.224 sq. in., P 1 = 231 kips,
E, = 28,000 ksi, self weight of beam =
0.418 kips per ft.

The prestressing force is applied at
age to = 1 day. The following values
correspond to the two ages t0 and tk and
are used in the analysis: E 0 = 3587
ksi, v=2.0, s=300X 10-6, L,. =13
ksi.

The self weight of the beam gives at
midspan:

M = 0.418 [(66) 2/8] 12 = 2731 in.-kips
and N = 0.

Using Eqs. (5) and (6), a = 4.97 and
= 8.44. Eqs. (14) and (15) give fC1 =

0.987 ksi, n = 7,81, and the instantane-
ous loss Los = 6.89 ksi. Thus, immedi-
ately after transfer, P o = 222.6 kips and

= 181.86 ksi.
The three steps can now be followed.
(1) f,o = 0.883 ksi. For v = 2.0 and

= 8.44, Table 1 gives /_.i,o = 0.418.
(2) For a first estimate, take Ji = l/i (I)

= 0.7, which when used in Eqs. (7)-(9),
gives co (I) = 2.54, .t (I) = 0.944, and
L (I) = 24.78 ksi. Using this value of
the loss to evaluate f by Eq. (10), fl (I)
= 0.06. Corresponding to this value and
)3 = 181.86/270 = 0.67, Table 2 gives,
vi = t/j (II) = 0.78. Repetition of Step 2
with the new value of ip gives to (II) _
2.69, F.c (II) = 0.975, and L (II) = 25.61
ksi. No further iteration is necessary.

° The data used in this example are chosen to
conform to a cross section commonly used in
current practice (see Reference 7).

Thus, the loss occurring after transfer
at time t 1 = cc is 25.61 ksi.

(3) The corresponding axial strain
and curvature calculated by Eqs. (11)
and (12) are: e = 716 X 10 -6 and th _
—5.63 x 10 -6 in. -1.

For use in the example to follow,
separate the value of cp into its two
components using Eqs. (16) and (17):
O„^P = —18.93 X 10 -6 in. -1 and ^ l =
13.30 x 10 -6 in. -1.

Comparison with approximate meth-
od: The use of Eq. (2) for calculating
the loss gives L = 35.19 (37 percent
overestimation).
Example 2
Calculate the midspan deflection im-
mediately after transfer as well as the
midspan deflection and the axial short-
ening at time t 7, _ cc for the beam of
Example 1.

Computations similar to those in Ex-
amnl3 1 for the end sections give:

Po = 217.5 kips, L = 31.80 ksi, e =
696 x 10 -6 , 0^, = —79.41 X 10 -6
in.- 1 and c/ = 10.14 X 10- 6 j1

TheThe approximate Eq. (2) gives a
value of loss, L = 40.42 ksi.

In the computation of the above val-
ues for the end sections, the intrinsic
relaxation loss Lr, was taken equal to
10 ksi. (Note that because of the elastic
loss effect, the initial steel stress at the
end sections is less than that at mid-
span.)

Using an average value for P o =
220.1 kips along the span, the central
deflection at time to computed by well-
known equations (see p. 11-10 of Ref-
erence 7) is S o = —0.531 in. This de-
flection is the sum of a downward de-
flection of 2.373 in. due to self weight
and an upward deflection of —2.904 in.
due to Po.

The deflection at time tk excluding
the effect of prestress loss [Eq. (18)]
is S„gyp = —1.593 in.

Similarly, the prestress loss produces
a deflection [Eq. (19)] of Spi = 1.002
in.
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Table 3. Data of test beams.

Reference
No.

Beam
desig-
nation

R
ft.

Midspan
e

in.
Ac
in

r
in.

Aps
in.2

E co
ksi

E s
ksi

Po
kip

Midspan
moment
kip-in.

to
days

tk
days

U s	 x	 10 6 L /f
r	 so 9

7* Al 15.00 2.00 48.00 2.31 0.218 3680 27000 37.0 13.9 7 187 1.21 546 0.065 0.69

7* A2 15.00 2.00 48.00 2.31 0.173 3680 27000 29.6 13.9 7 187 1.21 546 0.065 0.69

7* A3 15.00 2.00 48.00 2.31 0.138 3680 27000 23.4 13.9 7 187 1.21 546 0.065 0,69

8* MU1 6.00 1.03 23.34 1.72 0.181 2540 30000 22.5 1.3 5 698 2.53 650 0.037 0.57

8* MU2 6.00 1.03 23.34 1.72 0.181 2560 30000 22.6 1.3 5 698 2.10 650 0.037 0.57

9** - 90.55 41.10 1517.00 25.50 10.91 5689 30000tt 1523.0 19876.0 60-68 206 0.66 89 0.0081 0.70

9** - 90.55 41.10 1517.00 25.50 10.91 5689 30000tt 1523.0 19876.0 60-68 416 0.81 16 0.010+ 0.70

* Pretensioned beams, straight tendon.

** Post-tensioned beam, parabolic tendon, eccentricity at ends - 10.8 In.

t Assumed values based on the formula given In Ref. 4.

'ft Assumed values of E.
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Table 4. Measured and computed prestress loss and deflection.

Prestress	 loss	 L	 (ksi)
Midspan

End section Midspan deflection	 (in.)

Reference Beam

Measured Computed Measured Computed Measured ComputedNo. designation

7 AI 32.40 30.52 30.33 29.77 -0.44 -0.50

7 A2 29.58 29.19 27.57 28.39 -0.35 -0.37

7 A3 27.38 27.92 27.16 27.05 -0.27 -0.28

8 MUI - 59.67 55.80 59.67 -0.20 -0.21

8 MU2 - 55.52 55.80 54.70 -0.20 -0.19

9 - - 7.42 9.98 10.97 -1.46 -1.50

The total deflection at time tk is 8 =
-0.591 in. (upward).

The axial shortening occurring be-
tween time to and time tk [Eq. (21)] is
Al = 0.562 in.

Comparison with approximate meth-
ods: Approximate methods presently
used for long-term deflections apply
the creep coefficient to the initial de-
flection due to self weight and due to
one of the following criteria (a) (P0-
loss), or (b) Po.

When the loss L is taken as the aver-
age of the two values obtained by Eq.
(2) for midspan and end sections, the
deflection by these two criteria will be

8= 2.373 (1 + v) - 2.904

(1 - LAP0/Po) (1 + v)
= 0.238 in. (downwards)

or

5= 2.373 (1 + v) - 2.904 (1 + v)
_ -1.593 in. (upwards)

This above example shows clearly
how the two methods result in wide
variations.

Experimental Verification
The numerical results of the proposed
method are compared with published
experimental values on simple beams.
The data for these beams and the com-

parison are presented in Tables 3 and
4. These experiments represent a wide
variation in material properties and
conditions; they include pretensioned
and post-tensioned beams, made of
both lightweight and of normal weight
concretes, and tested in laboratory and
field conditions. Additional experiment-
al results are available in the literature,
but in many cases the full data required
for the computation are not reported.

The comparison in Table 4 shows
good agreement of the measured and
computed loss and deflection values.

Other Methods of
Calculation

It has been shown above that the pre-
diction of prestress loss by Eq. (2) re-
sults in a large overestimation. Several
authors have suggested more accurate
methods; the most significant of these
are reported in References 5 and 12,
and the following discussion will be
limited to these.

PCI Committee Methods
This is a step-by-step method, in which
the loss period is divided into m time
intervals, and the steel and concrete
stresses are adjusted at the end of each
interval using the following equation:

m

L =17(CR + SH + RET)1 (22)
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The symbols (CR)5, (SH)5, and (RET)J
represent the loss of steel stress due to
creep, shrinkage, and relaxation oc-
curring in the jth interval. For each
interval, the values of these coefficients
depend on the length of the period and
the updated stress in prestressing steel
and in the adjacent concrete.

When appropriate values of coeffi-
cients are chosen, the method gives ac-
curate results, and its only inconve-
nience are the lengthy calculations.

ACI Committee 209 Method12
ACI Committee 209 adopted a method
developed by Branson et al. 9 Essen-
tially, the method gives a simple equa-
tion which can be put in the form:

L=

+v(1— so ) n feo	 (23)

This equation is now compared with
Eq. (9) above. The shrinkage effect in
Branson's equation is accounted for by
the term sE 3/(1 + 1/a), while in Eq.
(9) the shrinkage effect is represented
by the first term and the recovery re-
sulting from shrinkage loss is included
in the last term of the equation. If a
hypothetical case is assumed in which
the creep and relaxation are zero (v =
L,. = 0), Eqs. (9) and (23) give identical
results.

The empirical coefficient 0.75 in
Branson's equation, is replaced in Eq.
(9) by the relaxation reduction factor tji
(which may vary between zero and 1.0)
and a recovery effect included in the
last term.

The inclusion of the term (—n f,,
v L/2 f80) appears to be a recognition
of the effect of the continuous reduc-
tion of the concrete stress as the loss
develops. The recovery effect given by
Eq. (23) may be regarded as that of a
negative prestress force, equal to one-
half the loss, applied at transfer.

In Eq. (9) the above approximations

are avoided by the use of the coeffi-
cients q and ft.

ACI Committee 209 also proposes12
an equation for the central deflection
based on the work of Branson et al.9
This method involves similar approxi-
mations, which are again avoided in
the method presented here.
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Appendix—Commentary
The basic assumptions needed for de-
riving the equations used in the paper
are here briefly described. The time-
dependent strain of the concrete is
obtained by superposition. The effect
of the reduction in stress due to the loss
is accounted for by considering the loss
as a negative prestress force applied in
steps at the middle of arbitrarily chosen
time intervals. At the middle of each
interval a force (tensile on concrete) is
introduced. These forces result in in-
stantaneous and creep recoveries, and
their total effect is obtained by summa-
tion. The magnitude of each of these
prestress decrements is obtained from
the condition that the strain in the con-
crete at the tendon level is compatible

with the steel strain at the end of each
time interval.

The step-by-step computation de-
scribed above requires that a time-
variation function, of creep, shrinkage,
relaxation, and the modulus of elas-
ticity of concrete be assumed. Studies'
have shown that the final value of strain
(or loss) is sensitive only to the final
values of s, v, and L,. but not to their
time variation, and a negligible error is
involved if E, is assumed constant equal
to the value of the elasticity modulus
at transfer. This makes it possible to
produce a table for the recovery param-
eter fc (Table 1) which represents the
effect of the continuous reduction in
the compressive stress in concrete. The
expressions for the time variation of
creep and shrinkage and stress relaxa-
tion are given in Reference 1. These ex-
pressions are used in producing Table
1 and in deriving the equations given
in this paper.

Appendix—Notation
A,,	 = net cross-sectional area of con-

crete
A,	 = cross-sectional area of prestress-

ing steel
E,	 = modulus of elasticity of con-

crete at age of loading to
E,	 = modulus of elasticity of pre-

stressing steel
e	 = eccentricity of prestressing ten-

don taken positive downward
from centroid of concrete sec-
tion

f,, f,, = concrete compressive stress at
level of centroid of tendons, de-
fined by Eqs. (15) and (4)

f,,, f,, = initial steel tensile stress imme-
diately before and after transfer

L	 = total loss of stress in prestress-
ing steel in period (t, — t,) ex-
cluding instantaneous loss at
transfer

L as	= instantaneous loss of steel stress
at transfer
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L, = intrin-ic relaxation loss of steel
stress of tendon stretched be-
tween two fixed points

1 = span length
zsl = axial shortening of member at

time t:
M, N = bending moment and normal

force in section due to applied
loads; positive N is compressive
and positive M produces ten-
sion at bottom fibers of beam

n = modular ratio at time to = E,/

E^
P,, PO = initial prestressing force imme-

diately before and after transfer
r = radius of gyration of concrete

section
s = free shrinkage of concrete in

period (tk — t0)

t = age of concrete in days, sub-
cripts o and k refer to the age

at loading and age at which
loss and displacements are re-
quired

a — dimensionless	 coefficient = 1 -i-
e°/ r2

(3 = ratio	 of initial steel stress, f s o,

to its ultimate strength
80, S = `.nstantaneous	 midspan	 deflec-

Discussion of this paper is invited.
Please forward your discussion to
PCI Headquarters by October 1, 1975.

tion at time to and total mid-
span deflection at time t:.

L0, &pi = components of S referring to
combined effect of applied loads
and prestress, and to effect of
prestress loss

e = axial strain at time tie; subscripts
1, 2, and 3 refer to left end,
center and right end of member

µ = recovery parameter defined by
Eq. (8). Symbol µo represents
value of µ when shrinkage and
relaxation are zero

= steel area parameter defined by
Eq. (6)

u = creep coefficient equals ratio of
creep at age to to instantaneous
strain when age at loading is t0

= relaxation reduction factor
SZ =dimensionless quantity [Eq.

(10)]
= shrinkage-relaxation	 parameter

defined by Eq. (7)
= curvature at time t„

Oop, op, = components of ¢ due to com-
bined effect of applied load and
prestress, and to effect of pre-
stress loss. Subscripts 1, 2, and
3 refer to values of	 at left
end, center and right end of
member.
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