Appendix: Numerical Modeling of Inverted-U-Shaped Connectors to Enhance the Performance of Composite Beams

Milad Khatib and Zaher Abou Saleh

This appendix contains additional tables and figures for "Numerical Modeling of Inverted-U-Shaped Connectors to Enhance the Performance of Composite Beams," by Milad Khatib and Zaher Abou Saleh, which appears on pages 72–94 in the May–June 2023 issue of *PCI Journal*.

Table A.1. Concrete properties for solid element model				
Linear, elastic, isotropic				
Modulus of elasticity E_{c} , MPa	20,000			
Poisson's ratio v_c	0.20			
Nonlinear				
Strain	Stress, MPa			
0	0			
0.0001	2.4375			
0.00015	3.6094			
0.0004	9.0000	³⁰ L		
0.0006	12.7500	25 20 WPa 20 10 5		
0.00100	18.7500			
0.00180	24.7500			
0.00200	25.0000			
0.00240	22.3720			
0.00280	19.7430			
0.00300	18.4290			
0.00320	17.1150			
0.00340	15.8000			
0.00360	14.4860	Strain $\varepsilon_{\rm s}$		
0.00380	13.1720			
0.00400	11.8580			
0.00420	10.5440			
0.00440	9.2290			
Nonlinear—inelastic—nonmetal plasticity				
Open shear transfer	0.3	The value for each of these coefficients ranges between 0 and 1.0. The closed shear		
Closed shear trans- fer	1.00	transfer coefficient value should be greater than the open shear transfer coefficient value. These two parameters determine the cracked concrete's stiffness.		
Uniaxial cracking stress, MPa	3.02	$f_t = 0.30 \times 2/3$		
Note: $f' = \text{concrete commute}$	pressive strength: $f = concr$	rete tensile stress. 1 MPa = 0.145 ksi.		

Table A.2. Material data for 140 mm deep steel I-beam (HEB 140)			
Linear—elastic—isotropic			
Modulus of elasticity E_s	2.00 × 10 ⁵ MPa		
Poisson's ratio v_s	0.3		
Note: 1 mm = 0.039 in.; 1 MPa = 0.145 ksi.			

Table A.3. Material data for steel reinforcement model Image: state of the steel reinforcement				
Modulus of elasticity E_s	2.00 × 105 MPa			
Poisson's ratio v_s	0.3			
Nonlinear-inelastic-plasticity				
Yield stress f_y (hard), MPa	410			
Yield stress f_y (mild), MPa	275			
Note: 1 MPa = 0.145 ksi.				

Figure A.1. Experimental load deflection curves for mild (low-stiffness) stud connectors. Source: Reproduced with permission from Daou et al. (2021). Note: R4 M = specimen with four mild stud connector rows; R7 M = specimen with seven mild stud connector rows; R10 M = specimen with ten mild stud connector rows. 1 mm = 0.039 in.; 1 kN = 0.225 kip.

Figure A.2. Experimental load deflection curves for rigid (high-stiffness) stud connectors. Source: Reproduced with permission from Daou et al. (2021). Note: R4 H = specimen with four rigid stud connector rows; R7 H = specimen with seven rigid stud connector rows; R10 H = specimen with ten rigid stud connector rows. 1 mm = 0.039 in.; 1 kN = 0.225 kip.