
OPEN FORUM
PROBLEMS AND SOLUTIONS

Continuous Prestressed Concrete Beams

Qi: What is the difference in behavior between a simple
span prestressed concrete beam and a continuous prestressed
concrete beam, under the action of the prestressforce?

Al: When a simple span beam is prestressed eccentri
cally, it is free to deform. In general, there are transverse de
flections, the beam ends rotate and the beam shortens. No
external reactions are set up by prestressing. The prestress
ing moment at any section is simply:

= Pe

where P is the prestressing force and e is the eccentricity of
the resultant prestress force, measured from the centroid of
the section (the c.g.c.).

When a continuous beam is prestressed, it is not free to
deform under the action of the prestressing force. The defor
mations are restrained at the supports and external reactions
are set up. These reactions produce bending moments in the
beam, often called “secondary moments.” The resultant mo
ment at any section of the beam due to prestressing is then
given by:

M = Fe + M

where M is the secondary bending moment.
For example, consider a continuous beam with two equal

spans, prestressed by a group of tendons having constant ec
centricity. If the beam were not attached to the center sup
port (or held in contact with it by gravity), it would deflect
upwards an amount 3:

= Pe(2L)

8E1

If, however, the beam is restrained in contact with the
center support, a downward restraint force, R, sufficient to
cause a deflection —ö must be acting at the center support:

__

R(2L)3

48E1

Equating the two deflections:

Fe(2L)2 — R(2L)3

8E — 48E1

the reaction, R, is found to equal R = 3Pe/L.
For equilibrium, this downward force is counterbalanced

by equal upward forces R/2 acting at each of the end sup
ports. These support reactions, and the secondary bending
moments caused in the beam by them, will be as shown in
Figs. 1 a and lb. The resultant moments caused by prestress
ing (Fe + M) will be as shown in Fig. ic.

Despite the term “secondary,” it should be noted that the
moments and stresses arising from this restraint can be con
siderable. Because the algebraic sum of the secondary reac
tions is zero, for this case, the secondary moment at the inte

nor support is 150 percent of the primary moment and of
opposite sign. It is important to note that because the sec
ondary moment is caused by the induced reactions, the sec
ondary moment always varies linearly between the supports.

The secondary bending moment causes a displacement of
the effective point of application of the prestress force P by
an amount varying linearly from zero at the outer supports,
to a maximum of v (MçIP) at the middle support, as
shown in Fig. id. A similar displacement of the effective
line of pressure occurs in all structures where secondary
bending moments are caused by prestressing. However, it is
possible to design a tendon profile such that no secondary
bending moments are set up, and hence the line of pressure
and the c.g.s. line coincide. Such a profile is called a concor
dant profile, after Guyon’ who first used the term.

Fig. lb. Secondary bending moments caused by restraint
forces.
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Fig. 1 c. Resultant moments due to prestressing.
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Fig. 1 d. Displacement of line of pressure due to secondary
moments.
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Fig. 1 a. Restraint forces due to prestress.
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The magnitude of the prestressing moments M can be
calculated by analyzing the beam under the action of the re
sultant lateral forces produced by the prestressing tendons,
using any method of structural analysis. The secondary mo
ments can be obtained directly if the flexibility method of
analysis is used, making the beam statically determinate by
rotational releases at the supports, as in Example A. This ap
proach lends itself to the design of a c.g.s. line that results in
concrete stresses less than the specified limiting stresses all
along the length of the beam. Also, using this approach, the
c.g,s. line can be any convenient arbitrary shape and varia
tion of the beam cross section and of the prestress force
along the beam can readily be taken into account.

Note that all prestressed concrete beams must be free to
shorten axially due to elastic and creep shortening of the
concrete under the action of the prestress force, otherwise
some of the prestress force will not get into the beam but
will cause axial tension restraint forces at the ends of the
beam. Customary design calculations implicitly assume this
freedom to shorten axially.

EXAMPLE A

Calculate the secondary moments and resultant prestress
ing moments for the tendon profile shown in Fig. Al. The
tendon force is 250 kips (1112 kN).

Make the beam statically determinate by inserting a mo
ment release (i.e., a hinge) at C. Let a moment X1 = 1 act at
C. The distribution of moments due to X1 = 1 will be as
shown in Fig. A2.

The (M0),, diagram of the primary prestressing moments
Pe may conveniently be broken up into the components
shown in Fig. A3, for purposes of calculating the displace
ment at the hinge due to the prestressing moments Pe.

The displacement fi 1 at the hinge when moment X1 = 1 is
given by:

AtC:

Secondary moment = X1 = +0.60P kip-ft = +0.60(250)
= +150 kip-ft (203 kN-m)

Shift in center of pressure at C:
v = +0.60 ft (0.18 m)

Therefore, the ordinate of line of pressure at C:
(e + v) = (+0.60 + 0.40) = +1.00 ft (0.30 m) (e,’)

The prestressing moment at C:
(M) = Pe’= 250(1.00) = 250 kip-ft (339 kN-m)

The secondary moment at other locations along the beam
can be found by proportion. The location of the line of pres
sure and the magnitude of the prestressing moments at other
points can be calculated in the same manner as at Point C.
The line of pressure is shown in Fig. A4.

A B C D E

Fig. Al. Tendon profile.
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Fig. A2. M1 diagram.
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Fig. A3. Components of prestressing moment (M0).
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= (—38.4 —36.7 + 26.7 + 8.3) = —40.1 P/

Now if X1 is the restoring moment required for continuity
at C:

X1f11 + = 0

Therefore:

u(—40.1P/EI

+66.7/El

=+0.60P kip-ft (0.81 kN-m) Fig. A4. Displacement of line of pressure from the c.g.s. line.
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Q2: What is meant by “transformation” of the prestress
ing tendon profile (the c.g.s. line) in a continuous pre
stressed concrete beam? Why is transformation useful?

A2: It is necessary to further discuss the effect of the ten
don forces on a continuous prestressed concrete beam. The
following assumptions are made:

1. The eccentricities of the prestressing tendons are small
compared with the length of the member.

2. At any particular location, the prestress force is con
stant (it may vary along the length of the member).

3. The action of the tendon on the concrete will be as
shown in Fig. 2 (vertical scale much exaggerated.)

Forces acting on the concrete are:
1. Forces P acting at each end of the beam, in a direction

tangential to the line of the tendon (the c.g.s. line).
2. Radial forces q normal to the tendon, at any point = Pir

where P and r are, respectively, the resultant prestress force
and the radius of curvature of the tendon at that point.

3. Concentrated forces Q over the supports and F in the
spans, due to angular discontinuities in the shape of the
tendon.

Because the tendon curves are very flat, the radial forces
q and the concentrated forces Q and F can be assumed to act
in a vertical direction, and horizontal components of the ten
don forces at the beam ends P’A and P’B can be taken equal
to the tendon forces A and PB.

The vertical components of the tendon forces at the beam
ends, VA and VB, and the concentrated forces Q are all acting
vertically above the supports. Therefore, they will not pro
duce any moments in the beam, but will merely change the
support reactions.

Thus, moments are produced in the beam by the following
forces only:

1. Tendon forces A and PB acting with eccentricities eA

and eB at A and B, respectively.
2. The radial forces q, which are assumed to act vertically.
3. The concentrated forces F in the spans are also as

sumed to act vertically.

Hence, for a given set of tendon forces, the moments pro
duced in the beam will depend only on the following:

1. The end eccentricities eA and eB.

2. The curvature of the tendon profile.
3. The changes in the slope of the tendon profile at any

angular discontinuity in the spans.
Therefore, if the same tendon forces are used, any two

tendons (such as a and b in Fig. 3) having the same end ec
centricities, the same curvature at any particular location,
and the same angular discontinuities in the spans, will pro
duce the same prestressing moments in the beam and will,
therefore, have the same line of pressure. Only the support
reactions will vary.

Once a tendon profile is designed that gives a suitable line
of pressure, the tendon eccentricities at the interior supports
may be varied without altering the line of pressure, provid
ing the new tendon profile differs from the original profile
by a linear function in each span. (The change of eccentric
ity need not be the same at each interior support.) Modifying
the tendon profile in this way is referred to as “transform
ing” the profile. When a tendon profile is transformed in this

way, its curvature at any point will be unchanged because
the curves are very flat and the curvature can be taken
asd2y/dx2.Similarly, the angular discontinuities will be un
changed because the angles involved are small.

Transformation of tendon profiles is often very useful in
arriving at convenient final locations for the tendons, while
still maintaining the line of pressure in a location that results
in the stresses in the member not exceeding allowable val
ues under all loading conditions. For instance, it may be
found that to satisfy stress limits, the line of pressure must
lie above the top of the beam in the vicinity of interior sup
ports. The actual c.g.s. line can be brought within the beam
by transforming the line of pressure downwards by what
ever amount is necessary to provide adequate cover to the
tendons.

An example of this is seen in Fig. 4, which shows (with
much exaggerated vertical scale) one-half of a continuous
T-beam having three spans of 60 ft (18.3 m) each. The
“Tendon Zone” defines the region within which the line of
pressure must lie if the specified concrete stress limits are
not to be exceeded under all load conditions. The bound
aries of the tendon zone are a function of the section proper
ties, the initial and final prestress forces, and the maximum
and minimum moments acting under service load condi
tions. The final c.g.s. line is a downward transformation of

Fig. 2. Forces from the tendon acting on the concrete.

Fig. 3. Common line of pressure for linearly transformed
tendon profiles.

t

Fig. 4. Example of a continuous beam in which c.g.s. line is
transformed downward from the line of pressure in order to
provide sufficient cover over the tendon.
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the line of pressure, which everywhere lies inside the tendon
zone.

Downward transformation of the tendon profile can be
used to reduce the reactions on the interior support bents of

a continuous prestressed concrete bridge. It can also reduce
the angular discontinuity of the c.g.s. line at interior sup
ports and so reduce the loss of prestress in interior spans due
to friction at the time of prestressing.

Q3: The “Tendon Zone” is the region within which the
line of pressure must lie if the specfied limiting concrete
stresses under service load are not to be exceeded under all
loading conditions. How are the boundaries of the “Tendon
Zone” determined?

A3: The effect of applying a moment M to a prestressed
beam is to produce a resulting stress distribution identical to
that which would occur if the point of application of the pre
stressing force P were moved a distance MIP.

Let M1 be the least (i.e., the minimum positive or maxi
mum negative) and M2 be the greatest (i.e., the maximum
positive or minimum negative) value algebraically of the
moments to which a section is subject. The center of thrust
will, therefore, occupy two extreme positions E1 and E2 cor
responding to displacements M1 IP and M,IP, respectively,
as shown in Fig. 5.

For given stress limits at the top and bottom edges of the
beam section, limiting values for the position of E1 and E2
can be calculated. (For example, for a rectangular section
beam in which no tension is to occur, the limiting positions
for E1 and E2 are the middle third points of the section, i.e.,
the kern points.) Let the upper and lower limits be C and C’,
respectively, and their distances from the centroid of the
section be c and c’, as shown in Fig. 5. The region between
C and C’ is referred to as the “limiting zone.”

On the cross section (shown in Fig. 6), mark off distances
—M2IP and —M1IP from C and C’, respectively, giving
Points B2 and B1. The center of pressure of the prestress act
ing alone (E0) must lie between B1 and B2; if E0 is below B1
then under moment M1, the center of thrust would lie below
C’, and if E0 is above B2 then under moment M2, the center
of thrust would lie above C. In both of these cases, the per
missible stresses would be exceeded.

The distance from the centroid of the section to B1 is

Yi =(—M1/P—c’).
The distance from the centroid of the section to B2 is

Y2 = (—M2/P+ c).
If we mark the lines B1 and B2 at distances Yi and Y2 from

the centroid of the section (see Fig. 4) on the elevation of
the beam, the line of pressure due to prestress only must lie
between these lines if the allowable stresses are not to be ex
ceeded. The region between Lines B1 and B2 is referred to
as the tendon zone. In a statically determinate beam, the
c.g.s. line must always lie in the tendon zone. The concept
of the tendon zone was originated by Guyon.’

The distances c and c’ may be calculated in terms of the
limiting stresses at either the top or the bottom of the sec
tion, whichever is convenient.

If the resultant force acts at the upper boundary of the
limiting zone (Fig. 7a):

cyb’
fafg[1+ and fb=fg(r)

r2,)

r2 f r2(
fbc=— I or c=—I 1——i

Ya[f ] Yb fg)

If the resultant force acts at the lower boundary of the
limiting zone (Fig. 7b):

fa=fg[ and fbfg(14
r2)

Therefore:

Therefore:

r2( fa r2(fb
C =—l l— I or c’=—I ——1

Ya fg) Yb1fg )

M

+1
M1

E\Pf

M M2 M+M2

M ÷

P

-i

Fig. 5. Change in stress distribution due to applied moments.

c.g.c

Fig. 6. Typical section.
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Fig. 7b. Possible stress distributions when the resultant force
acts at the lower boundary of the limiting zone.

Note that when substituting numerical values in the above
equations, compression stresses are positive values and ten
sion stresses are negative values.

In order that the limiting stresses are not exceeded at any
time in the life of the structure, the value of the prestress
force used to calculate Yi and Y2 must be that which makes
y a maximum and Y2 a minimum algebraically. (Note: Yi
and Y2 are positive when measured upwards from the c.g.c.)

Consider y when the controlling limiting stress is the lim
iting compression stressfCb at face b:

1. EM1
Yli >)‘ if [____(c )ij is> [_-__(c )f

where subscript i refers to initial conditions, i.e., just after
transfer of prestress, and subscript f (or no subscript) refers
to final conditions, i.e., after all losses of prestress.

Then y is > Ylf if:

M. r2(fcb
1 is>’

———[ Yb fgi [ P Yb fg Jj

P IJ Yb fgi fg)

M1 is
— Ar2Lb

i.e., Yij is> Yif if M > —fcbZb

Similar relationships can be established for Yi when the
controlling limiting stress is the limiting tensile (or mini-

Table 1. Relationships for determining value of prestress force
to be used when calculating Yi and Y2•

(a) If the controlling limiting stress is always (i.e., initially
and finally) the compression stress atfb at face b, use:

P if M1 is> —fbZb, otherwise use P

(b) If the controlling limiting stress is always the tension
(or minimum compression) stressf, at face a, use:

Yi
P if M1 is> otherwise use P

(c) If the controlling limiting stress isf,. initially andf,., fi
nally, y must be calculated using both initial and final
values of the prestress force, and the algebraically larger
value of3’1 is to be used.

(a) If the controlling limiting Stress iS always the
. compressive stress at face a, use:

P if M2 is < otherwise use P

(b) If the controlling limiting stress is always the tension

Y2
(or minimum compression) stressjb at face b, use:

P if M2 is < —f,bZb, otherwise use P

: (c) If the controlling limiting stress isf initially andfb fi
nally, y2 must be calculated using both the initial and

I final values of the prestress force, and the algebraically
smaller value of Y2 is to be used.

mum compression) stress at face a, and for Y2 They may be
utilized as summarized in Table 1 to determine which value
of prestress force should be used when calculating y and Y2

The rules in Table I are general. In the case of a continu
ous T-bearn, the controlling stresses will usually be at the
bottom face of the section; in this case, the rules reduce to:

For Yt’ use P1 if M1 is > —fbZb, otherwise use P.
For Y2 use P1 if M2 is <fbZh, otherwise use P.

EXAMPLE B

The T-beam shown in Fig. B 1 is part of a floor system
continuous over three spans AB, BC and CD of 60 ft (18.3
m) each. It carries a live load of 100 psf (4.79 kPa), which
may act on all spans, alternate spans or any two adjacent
spans. The dead weight of the beam is 435 lbs per ft (647
kg/rn) of span. The allowable stresses are 2250 psi (15.5
MPa) compression and 425 psi (2.93 MPa) tension, both ini
tially and finally. Based on consideration of the range of
moments to be resisted by the section and compensation for
the effects of permanent loads, the initial and final prestress
forces are P, = 345 kips (1535 kN) and P = 299 kips (1330
kN). Determine a suitable location for the c.g.s. along the
length of the beam.

The required section modulus was determined using the
approximate equation proposed by Magnel:2

M
Required Z =

0.775f +

where M is the maximum range of moment, f is the allow
able compressive stress and ft is the allowable tensile stress
at the flexural tensile face under load.

Fig. 7a. Possible stress distributions when the resultant force
acts at the upper boundary of the limiting zone.

Note: When substituting numerical values in the above relationships, compression
limiting stresses are entered as positive values and tension limiting stresses are en

tered as negative values. e.g., iff,5 = 200 psi (1379 kPa) tension,

—f,bZb = —(—200)Z5= 200Z,,. a positive quantity.

Yb
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60” (a)
1

Fig. Bi. Beam cross section.

Table B 1 summarizes the dead load, live load and total
moments at 6 ft (1.8 m) intervals along the beam, measured
from the center of the middle span BC. (Also shown are the
later entered, calculated ordinates Yi and Y2 of the bound
aries of the tendon zone, within which the line of pressure
must lie if the allowable stresses are not to be exceeded
under any loading condition.)

Section Properties
(Fig. Bi)

Ya = 7.19 in. (183 mm)

Yb = 12.81 in. (325 mm)
A = 418 sq in. (0.27 m2)

Za = 2241 cu in. (0.0367 m3)
Zb = 1258 cu in, (0.021 m3)

= I/A = 38.56 sq in. (0.025 m2)

Fig. B2. Initial and final extreme possible stress distributions.

Typical Calculation of Yi and Y2

Using:
P,=345kips(1535kN)
P=299kips(1330kN)

f = 2250 psi (15.5 MPa)
= —425 psi (—2.93 MPa)

fgi = Ps/A = 345000/418 825 psi (5.69 MPa)

fg = P/A = 299000/418 = 715 psi (4.93 MPa)
Za = 2241 cu in. (0.0367 m3)
Zb = 1258 cu in. (0.02 1 m3)
AtB and C:

= (—367)(12) = —4404 kip-in. (498 kN-m)
M2 = (—157)(12) = —1884 kip-in. (213 kN-m)

yl: Bottom limiting compressive stress can be reached for
both P = P1 and P = P.

—fCbZb = —(2.250)(1258) = —2831 kip-in. (—320 kN-m)

Table Bi. Summary of moments (kip-ft) and values for Yi and Y2 (in.).

Maximum positive Maximum negative
Maximum Maximum or minimum or minimum

Dead load positive LL negative LL negative total positive total
Location x (ft) moment moment moment moment, M2 moment, M1 Y2

Midspan BC 0 +39 +135 —90 +174 —51 —3.43 —2.18

6 +31 +126 —90 +157 —59 —3.14 —1.50

12 +8 +99 —90 +107 —81 —2.38 +0.50

18 —32 +54 —90 +22 —122 —0.95 +3.79

24 —86 0 —114 —86 —200 +1.76 +7.55

BorC 30 —157 0 —210 —157 —367 +8.27 +10.02

36 —70 0 —108 —70 —178 +1.00 +6.99

42 —1 +72 —72 +71 —73 —2.66 I +1.95

48 +55 +126 —63 +181 —8 -4.92 —2.47

54 +94 +162 —54 +256 +40 —6.59 -5,48

60 +118 +180 —45 +298 +73 —7.74 —7.16

66 +125 +180 —36 +305 +89 —8.29 —7.44

72 +118 +162 —27 +280 +91 —8.36 —6.44

78 +94 +126 —18 +220 +76 —7.84 -4.03

84 +55 +72 —9 +127 +46 —6.80 —0.30

A or D 90 0 0 0 0 0 —5.20 +4.56

Note: 1 in. = 25.4 mm; i up-ft = 1.356 kN-m.

‘ 2
Yb I

(b) L I j__

Initial extreme possible
stress distributions

c.g.c.

(b)
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Therefore, M1 (= —4404) is less than —fcbZb.

Hence, the final conditions govern the calculation of Yi
i.e., use P andfg in the calculation of c’ and yi:

c,=.r_11i._1N1= 38.56(2250i
Ybfg J l2.8l715

=6.46 in. (164 mm)

=_M±_’=— —4404
—6.46=14.73—6.46

P 299
= +8.27 in. (210 mm)

y2: Bottom limiting tensile stress can be reached for both
P = P1 and P = P.

—ftbZb = —(—0.425)(1258) = +535 Icip-in. (60.5 lcN-m)
Therefore, M2 (= —1884) is less than —fjbZb.

Hence, the initial conditions govern the calculation of Y2
i.e., use P1 andfgj in the calculation of c and Y2:

.. =rI’i_i2= 38.56( —425

Yb fgi) 12.8fl. 825

=4.56 in. (116 mm)

Table B2. Design of line of pressure.

Y2—+c—— +4.56=5.46+4.56
345}

=10.02 in. (255 mm)

The foregoing calculation was repeated for each of the lo
cations at 6 ft (1.8 m) intervals along the length of the beam.
This process is readily programmed. The ordinates Yi and Y2
are recorded in Table B 1. They were plotted to an exagger
ated vertical scale over the length of the beam and curves
were drawn through them to define the boundaries of the
tendon zone. This is shown to reduced scale in Fig. 4 for
half the length of the beam, which is symmetrical about the
middle of Span BC.

Design of the Line of Pressure (the c.g.s. line)

A suitable line of pressure can be developed by trial and
error, adjusting the shape of the line until the displacements
u, at the moment releases at Supports B and C are zero. The
secondary moments due to prestress will then be zero. The
final c.g.s. line is arrived at by transforming the line of pres
sure so that the requisite amount of cover is provided for the
tendons at critical sections.

In this case, the displacements u, at the moment releases at
B and C will be equal, due to symmetry, if the line of pres

Summations = 10.27 0.01 —10.26

Note: I in. = 25.4 mm; 1 ft= 0.3048 m; 1 kip-in.2= 2870 kN-mm2.
* Sequals change in [qMi(Mo))IP due to change in ordinate of line of pressure, e5.

(M9)IP = e5 qM1(M0) i p

(in.) P Adjusted adjusted
Location x (ft) M1 q qM first trial (kip-in.2) e (in.) (kip-in.2)

------—---_

C —30 0.00 1 0.00 8.27 0.00 8.27 0.00 0.00

—24 —0.10 4 —0.40 4.70 —1.88 5.50 —2.20 —0.32

—18 —0.20 2 —0.40 1.42 —0.57 2.00 —0.80 —0.23

—12 —0.30 4 —1.20 —0.94 1.13 —0.94 1.13 0.00

—6 —0.40 2 —0.80 —2.55 2.04 —2.55 2.04 0.00

Midspan 0 —0.50 4 —2.00 —3.43 6.86 —3.43 6.86 0.00

6 —0.60 2 —1.20 —2.55 3.06 —2.55 3.06 0.00

12 —0.70 4 —2.80 —0.94 2.63 —0.94 2.63 0.00

18 —0.80 2 —1.60 1.42 —2.27 2.00 —3.20 —0.93

24 —0.90 4 —3.60 4.70 —16.92 5.50 —19.80 —2.88

B 30 —1.00 2 —2.00 8.27 —16.54 8.27 —16.54 0.00

36 —0.90 4 —3.60 4.50 —16.20 5.01 —18.04 —1.84

42 —080 2 —160 —036 058 091 —146 —203

48 —070 4 —280 —330 924 —258 722 —202

54 —0.60 2 —1.20 —5.50 6.60 —5.49 6.59 —0.01

Midspan 60 —0.50 4 —2.00 —7.16 14.32 —7.16 14.32 0.00

66 —0.40 2 —0.80 —7.50 6.00 —7.50 6.00 0.00

72 —0.30 4 —1.20 —7.05 8.46 —7.05 8.46 0.00

78 —020 2 —040 —594 238 —594 238 000

84 -0.10 4 -0.40 —3.39 1.36 —3.39 1.36 0.00

A 90 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00
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sure is made symmetrical about the center of Span BC. It is,
therefore, only necessary to calculate, say, (u)1. The integral
may conveniently be evaluated using Simpson’s Rule. For
this purpose, the spans must be divided into an even number
of parts of length h. In this example, each span is divided
into 10 parts of width h = 6 ft (1.8 m). We may write:

CM1(M0) h qM(M0)
(u)=f

A El 3A El

= h 2PqM1(M0)

3EIA P

where q = Simpson’s Rule coefficient (1,4,2,4,2,4,—
2,4,1).

To make (u)0 equal to zero, it is, therefore, only neces
sary to make:

C (M0)
qM1 °

A P

equal to zero, where (M0)IP = e, the ordinate of the line of
pressure.

The process is readily carried out in tabular form and may
be expedited using a spreadsheet. This is shown in Table B2.

Because:
qM1(M0)

=

A P

then (u)1 0 and by symmetry (u)2 0.
Therefore, the adjusted line is a line of pressure. If the

c.g.s. line coincided with this line, there would be no sec
ondary moments due to prestress. However, the actual c.g.s.
line must be a downward transformation of this line in order
to provide adequate cover for the tendon. The line of pres
sure would remain unchanged and, therefore, the allowable
concrete stresses would not be exceeded along the entire
length of the beam at any time.

To provide adequate cover, the c.g.s. line will be trans
formed downward by 4.39 in. (112 mm) at B and C, and
proportionately at other locations. The c.g.s. line is shown in
Fig. 4. It has eccentricities of —9.36 in. (—238 mm) at
Midspan AB, —7.82 in. (—199 mm) at Midspan BC and
+3.88 in. (99 mm) at Supports B and C.

The downward transformation will result in secondary
moments as follows:

(a) Throughout Span BC, M = P, = P(4.39) = (299)
(4.39)112 109.4 kip-ft (148 kN-m) after losses.

(b) In the outer Spans AB and CD, M will vary linearly
from zero at the outer supports to 109.4 kip-ft (148 kN-m) at
the interior supports.

These secondary moments must be taken into account at
ultimate, as discussed in the answer to Question 4 and as in
Example C.

Q4: How do secondary moments due to prestress affect
the behavior of a continuous prestressed concrete beam at
ultimate?

A4: As discussed in the answer to QI, secondary mo
ments due to prestress occur in a continuous beam because
the beam is not free to deform due to its statical indetermi
nacy. If the beam were made statically determinate by in
serting hinges at each interior support, the ends of the beams
would rotate relative to one another when the beam was pre
stressed. (An example of this is shown in Fig. 8a, in which
the c.g.s. line for the two-span beam has been transformed
downward from the line of pressure.) The suppression of
these relative end rotations causes the secondary moments.

If full redistribution of moments occurs at ultimate, i.e., if
the full flexural capacity of all critical sections is developed,
then just before failure the beam becomes statically determi
nate due to the inelastic rotations occurring at n critical sec
tions, where n is the degree of indeterminacy. The end rota
tions due to prestressing are no longer suppressed and the
secondary moments as such must disappear. However, the
end rotations due to prestress must be combined with the
end rotations due to gravity loads to obtain the required in
elastic rotations in the hinging regions at interior supports.
In the case of the two-span continuous beam of Figs. 8a and
8b, the required inelastic rotation at the center support will
be reduced from y to (y- 0).

In general, if the tendon profile has been transformed
downward at an interior support, then the relative rotation of
the ends of the beam segments meeting at that support

caused by the prestressing moments is of opposite sign to
the inelastic relative rotation, which must occur if the design
support moment is less than the support moment due to
gravity loads when behavior is completely elastic. The net
amount of inelastic rotation necessary in a hinging region in
order that a particular amount of moment redistribution can
occur is, therefore, reduced by the relative end rotation
caused by transforming the tendon profile downward.

Conversely, if a given amount of inelastic rotational ca
pacity is available in a support hinging region, then the

Fig. 8a. Relative end rotation due to prestress when
continuous beam is made determinate by inserting a hinge at
the interior support.

Fig. 8b. Relative end rotation due to gravity loads at ultimate
just before failure of the midspan sections.
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Fig. 9. Variation of center support moment with applied load
in test of the two-span continuous prestressed concrete T
beam CB1.

amount of moment redistribution possible is increased. The
amount of the increase is equal to the positive secondary
moment due to prestress caused in the elastic continuous
beam. This is because the secondary moment, and the
amount by which the design support moment can be varied
from the elastic theory moment due to gravity loads, are
both related in the same way to the relative end rotations of
the beam segments meeting at the support.

If the flexural strengths of the critical sections of a pre
stressed continuous beam are such that no inelastic rota
tion of the hinging regions occurs before ultimate, the
foregoing discussion leads to the conclusion that, in this
case, the support moments at failure will be the elastic the
ory negative moment due to factored gravity loads plus the
positive secondary moment due to prestressing (assuming
a downwardly transformed tendon profile). An alternative
view of this special case would be that because no inelas
tic rotation of hinging regions occurred before ultimate,
the beam continues to be statically indeterminate up to
failure. Hence, the secondary moments would continue to
exist at ultimate. This leads to the same conclusion as
above regarding the magnitude of the support moments at
failure.

Behavior very similar to this occurred in the test3 of a pre
stressed concrete T-beam (CBI), which was continuous
over two spans of 28 ft (8.53 m) each. Both loads and reac
tions were monitored continuously during the test. It can be
seen in Fig. 9 that the bending moment at the intermediate
support section of Beam CB 1 increased almost linearly with
applied load up to failure. The rate of increase of the support
moment was very close to that predicted by elastic theory,
assuming constant flexural stiffness over the length of the
beam. (Departures from linearity were due to the sequential
occurrence of flexural cracking at various locations along
the beam.)

Fig. 10. Variation of center support moment with applied load
in test of the two-span continuous prestressed concrete T
beam CU1.

It can be seen from the behavior of this beam that the sec

ondary moment due to prestressing does not change, even

though the force in the prestressed reinforcement increases

when the applied load is increased. This is because the sec

ondary moments result from the suppression of deforma

tions due to prestressing of the tendons. The subsequent in

crease in tendon force is due to deformation of the beam due

to applied loads. The increased tendon force does not pro

duce any additional deformation of the beam and, hence,

there is no increase in secondary moment due to suppression

of additional deformation due to prestress.

In the general case, for a beam in which the tendon profile

has been transformed downwards, the negative support mo

ment at failure is the elastic theory support moment due to

factored dead and live loads, minus the positive secondary

moment due to prestressing, minus the redistribution of mo

ments possible as a result of inelastic behavior of the beam in

the region of the support. This type of behavior was observed3

in the case of the continuous Beam CU1, as shown in Fig. 10.

The behavior described above is the reason for the word

ing of Section 18.10.3 and part of the last paragraph of

R18.l0.3 of the ACT Building Code (ACI 3 18-95) and Com
mentary (ACT 318R-95).4

18.10.3 — Moments to be used to compute required
strength shall be the sum of the moments due to reac
tions induced by prestressing (with a load factor of 1.0)
and the moments due to factored loads. Adjustment of
the sum of these moments shall be permitted as allowed
in 18.10.4.

R18.10.3 — To determine the moments used in design,
the order of calculation should be: (a) determine mo
ments due to dead and live load; (b) modify by alge
braic addition of secondary moments; (c) redistribute as
permitted.

h.
0
0.
0.

C’,

a
C.)

0

a

0

0 5 10 15 20 25 30
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15
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EXAMPLE C

For the beam of Example B, calculate the required
strength at the support sections at B and C.

The service load moments at this section are: due to dead
load, D = —157 kip-ft (—213 kN-m), due to live load, L =
—210 kip-ft (—285 kN-m). The required flexural strength M
according to Section 18.10.3, is therefore given by:

M= 1.4D+ l.7L+M

The secondary moment due to prestress M = +109.4 kip-ft
(148 kN-m).

Hence:

M = 1.4(—157) + 1.7(—210) + (+ 109.4)
= —219.8 —357.0 + 109.4
= —467.4 kip-ft (634 kN-m)

This moment could be further reduced if necessary by
making use of the moment redistribution provisions of
Section 18.10.4.
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NOTATION

A = area of cross section
c = distance from c.g.c. to upper boundary of limiting

zone
c’ = distance from c.g.c. to lower boundary of limiting

zone
c.g.c. = centroid of cross section
c.g.s. = center of action of prestressing force

e = eccentricity of prestress force with respect to cen
troid of section

F = concentrated force acting on concrete within a span,
due to angular discontinuity in tendon

fa = stress at top edge of section

fb = stress at bottom edge of section

fca = allowable compressive stress at top edge of section

fb = allowable compressive stress at bottom edge of
section

fg = compressive stress at centroid of section due to pre
stress after all losses

fgi = compressive stress at centroid of section due to ini
tial prestress

fta = allowable tensile or minimum compressive stress at
top edge of section

ftb = allowable tensile or minimum compressive stress at
bottom edge of section

h = width of element in Simpson’s Rule calculation
I = moment of inertia of cross section about its centroid

L = span length
M = moment

= prestressing moment Pe in beam made statically de
terminate

M = prestressing moment = Fe + M
M = secondary moment due to prestressing
P = prestressing force after losses
P = initial prestressing force

Q = concentrated force acting on concrete over support,
due to angular discontinuity in tendon

q = intensity of radial force on concrete from tendon,
equal to Fir

q = Simpson’s Rule coefficient
R = restraint force at support due to action of prestress

force
r = radius of gyration of cross section
r = radius of curvature of tendon

V vertical component of tendon force at each end of
beam

v = displacement from c.g.s. of effective point of action
of prestressing force due to restraint of deformation
of beam due to prestressing

Yi = distance from c.g.c. to lower boundary of tendon
zone

Y2 = distance from c.g.c. to upper boundary of tendon
zone

Ya = distance from c.g.c. to top edge of cross section

Yb = distance from c.g.c. to bottom edge of cross section
Za = section modulus with respect to top edge of section
Zb = section modulus with respect to bottom edge of

section
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