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ABSTRACT

This paper presents an evaluation of a new prestressed concrete bridge type,  spread slab
beam bridges, in terms of performance and provides design guidelines including live load
distribution factors (LLDFs). The new proposed bridge system offers an effective solution
for short span bridges in low clearance areas where standard TxDOT slab beams are spaced
apart, using a similar concept as spread box beam bridges. A challenging geometry with a
wide beam spacing was constructed as a full-scale bridge and tested under static and dynamic
vehicular loads to assess constructability and in-service performance. The measured response
of the bridge during static and dynamic live load tests was used to verify the finite element
method  (FEM) modeling  approach.  Thirty-one  spread slab beam bridge  geometries  were
modeled using FEM to investigate an array of possible bridge geometries. Based on these
FEM models, shear and moment LLDFs were derived for the design of spread slab beam
bridges. The AASHTO Load and Resistance Factor Design (LRFD) spread box beam bridge
LLDFs were also reviewed and they range from being unconservative to very conservative
when applied to spread slab beam bridges. Unique LLDF expressions were developed for
spread slab beam bridges to provide an appropriate estimate of load sharing for girder design.

Keywords: Precast Prestressed Concrete,  Bridge Girder,  Spread Slab Beam Bridge,  Live
Load Distribution Factor



Terzioglu, Hueste, and Mander 2017 PCI/NBC

INTRODUCTION

Slab-on-girder bridges are typically constructed by seating the precast prestressed girders on
bearing pads on the bridge piers or abutments and then casting a concrete deck on top of the
girders. The Texas Department of Transportation (TxDOT) often uses prestressed concrete
slab  beam bridges for  short  span  bridges  up  to  approximately  50  ft,  especially  for  low
clearance areas. The conventional approach consists of placing the slab beams side-by-side
and casting a 5 in. thick CIP reinforced concrete deck on top of the slab beams (Fig. 1b).
However, conventional slab beam bridges are more expensive compared to standard I-girder
bridges, which are constructed using PCPs as stay-in-place formwork between girders.

One approach to reduce the number of girder lines is to modify the current short span
bridge design that uses immediately adjacent precast prestressed concrete slab beams. The
proposed solution is to spread out the slab beams and to use a conventional topped panelized
deck as shown in Fig. 1a. It is anticipated that the use of spread slab beam bridges will result
in a possible reduction in the overall bridge cost while providing another design alternative
for short span bridges.

For spread slab beam construction, the moments and shears imposed by eccentrically
located truck loads will  differ in the individual slab beams across the overall bridge deck
cross-section. Appropriate girder live load distribution factor (LLDF) formulas for this case
are not available in the AASHTO Load and Resistance Factor Design (LRFD) Bridge Design
Specifications1 and need to be investigated. While this study aims to evaluate the potential of
the proposed spread slab beam deck configuration, the principal research focus is directed
toward  developing design recommendations for this bridge type, with a particular
emphasis on establishing appropriate LLDFs for this class of spread slab beam bridges. 

A full-scale 46 ft-7 in. long, and 34 ft wide spread slab beam bridge was constructed
and field tested at the Texas A&M University Riverside Campus. The measured response
was then used to validate the finite element method (FEM) and grillage analysis modeling
techniques  to  evaluate  the  accuracy  of  alternative  computational  methods  for  modeling
spread slab beam bridges. Finally various bridge geometries with total bridge spans between
31–51 ft and beam spacings from 6.5 ft to 11 ft (center-to-center) were modeled using the
finite element method, and investigated to evaluate their LLDFs.

(a) Spread slab beam bridge (b) Conventional slab beam bridge

Fig. 1 Prestressed concrete slab beam bridges

The complexity of calculating the design moment and shear actions for an individual
bridge girder under imposed live loads necessitates simplified analysis methods. The design
moment and shear demands for an individual bridge girder depend on various parameters
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such as the position of the load, the girder spacing, the span length, and the relative deck-to-
girder stiffness. In order to simplify the design process, a longstanding methodology has
evolved whereby a multiple girder bridge deck can be simplified to consider the structure to
be one-girder line or beam element for design. Thus, live load distribution factors are applied
to convert the design live load into the forces to design one girder and its associated deck
slab.

The concept of live load distribution factors was first developed based on the studies
conducted  by  Westergaard2 and  Newmark3 and  adopted  in  the  first  edition  of  AASHO
Standard Specifications4 in 1931. These early formulas, which are also called S/D equations,
were used by all AASHTO Standard Specifications5 until the 17th edition in 2002 with slight
modification over the years.  Although simple  S/D equations were overly conservative for
many  bridge  geometries,  they  tended  to  generate  reasonably  accurate  results  for  girder
spacings around 6 ft and bridge spans around 60 ft. These equations were valid for normal
bridges  (girders  perpendicular  to  abutments)  and  for  simply  supported  spans6.  After  the
1950s most of the modern highway bridges began to have longer spans, skewed supports,
curved alignments, and continuous interior piers. As the demand for new and challenging
bridge superstructures increased, researchers raised the question about the accuracy of the
S/D equations and have studied their applicability and suggested new equations for many
cases7-10.

The  LLDF  equations  provided  in  AASHTO  LRFD  Specifications1 were  first
introduced in the first edition of the AASHTO LRFD Bridge Design Specifications11 and
have not been updated since then. These LLDF equations were developed by Zokaie et al.  6 as
part  of   NCHRP research  project  1226  and  cover  a  wide  range  of  bridge  types  and
geometries.  While  these  updated  LLDF  equations  are  also  simplified,  they  consistently
provided  conservative  results  for  the  bridges  within  the  specified  range  of  bridge
geometries12, 13. Although the new proposed LLDF expressions provide reasonable results for
many common bridge types and geometries, they have limited ranges of applicability and are
relatively  more  complicated.  Many  researchers  proposed  simplified  expressions,  studied
different ranges of applicability, and included models for dynamic amplification and multiple
presence factors14-16.

The objective of the study described in this paper is the empirical derivation of live
load distribution factors for the interior and exterior girders of spread slab beam bridges for
span lengths within the range of 31 to 51 ft. The proposed LLDF expressions were derived
by  analyzing  31  bridge  models  using  FEM,  with  each  bridge  model  having  different
geometries. Proposed equations were obtained using a methodology similar to that adopted
for  developing  the  LLDF  equations  found  in  the  AASHTO  LRFD  Bridge  Design
Specifications1.  The parameters  for the equations  were chosen based on similar  formulas
used for  spread box beam bridges  in  the  current  AASHTO LRFD Specifications1.  FEM
analyses were used to determine the effect of the chosen parameters, which are span length,
beam spacing, and beam depth. Additional details for this study were documented by Hueste
et al.17 

SUMMARY OF DESIGN APPROACH AND EXPERIMENTAL RESULTS
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The research approach in this study included three major phases: (1) parametric  study to
identify possible benefits of the new spread slab beam bridge system and achievable design
space based on the AASHTO LRFD Bridge Design Specifications1;  (2) construction and
field testing of a full-scale bridge selected from the parametric study; and (3) derivation of
LLDFs to determine moment and shear demands for spread slab beam systems. 

PARAMETRIC STUDY

A  detailed  parametric  study  was  conducted  to  develop  various  designs  for  alternative
parameters and geometries. A total of 44 bridges were designed considering four standard
TxDOT slab beam types (12 in. or 15 in. deep with a 4 ft or 5 ft width), five different bridge
widths (26 ft, 30 ft, 34 ft, 40 ft, and 46 ft) and beam spacings varying from 6.5 ft to 11.5 ft. 

Each slab beam was designed based on a  given number  of strands unlike typical
design procedures where the girders are designed for a given span length. The objective is to
determine the span length design space for each specific bridge geometry for a given number
of strands. This provides a more complete picture in terms of the applicable range of the
considered geometric parameters. Initially, all strand locations were considered to be filled
(44 strands for 4 ft wide slab beams and 56 strands for 5 ft wide slab beams) and then two
strands  were  subtracted  at  each  step  until  the  section  reached  the  cracking  limit.  The
maximum achievable span lengths were determined for eight different AASHTO LRFD limit
states including allowable tension and compression stress limits at release, at the time of deck
placement, and at service; ultimate flexural strength; and the deflection limit at service. The
AASHTO HL-93 live load model was adopted as the vehicle loading and AASHTO LRFD1

spread box beam LLDFs were used for the parametric study.
Fig. 2 shows the achievable span length solutions for all eight limit states for select

bridge geometries. Each curve represents an upper bound span length solution for the limit
state  considered.  The  release  limit  corresponds  to  the  upper  bound  for  the  allowable
compression  or  tension  stress  limit  (whichever  governs)  at  release  when  no  strands  are
debonded. The debonded release limit is the upper bound when some strands are debonded
up to 6 ft for 15 in. deep slab beams or up to 9 ft (or 0.2L for beams shorter than 45 ft) for 12
in. deep slab beams. For all the analyzed cases, the tension stress limit at service and the
tension  stress  limit  at  release  (with  debonding)  control  the  solution  domain.  The yellow
shaded region shows the feasible solution domain and the red checkmark is the maximum
achievable span. More detailed information about the parametric study, shear design checks,
and the constructability of spread slab beam bridges can be found in Terzioglu et al.  18, 19.

FIELD TESTING OF FULL-SCALE RIVERSIDE BRIDGE

One of the main objectives of this research project was to identify moment and shear LLDFs
for spread slab beam bridges.  The experimental  part  of the research project  consisted of
building a full-scale spread slab beam bridge and testing it under service loads in order to
assess the constructability and serviceability of the bridge, and to study live load distribution
factors. For that purpose, one of the challenging geometries identified during the parametric
study was selected and built at the edge of a runway located at the Texas A&M University
Riverside Campus. The spread slab beam bridge has a 46 ft 7 in. span length, with a total
width of 34 ft. The minimum deck thickness is 8 in. between slab beams.
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Fig.  3 shows  the  photographs  of  the  load  cells  at  the  supports  and  construction
process of the superstructure components. The bridge superstructure is composed of four slab
beam girders spaced at 9 ft 8 in. apart, PCPs that span between girders as stay-in-place forms,
and a CIP reinforced concrete deck that combines all the precast elements and creates the
monolithic bridge superstructure. 
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(d) 40 ft Wide with 6 Beams (e) 30 ft Wide with 4 Beams (f) 34 ft Wide with 4 Beams

5
S
B
1
2
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(j) 34 ft Wide with 5 Beams (k) 40 ft Wide with 5 Beams (l) 46 ft Wide with 5 Beams

Fig. 2 Span length solution domain for select bridge geometries

        
(a) South-end load cell assembly and layout
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(b) Slab beam placement

(c) CIP deck and approach slab

Fig. 3 Construction of the full-scale spread slab beam bridge – Riverside Bridge

All four girders of the bridge were heavily instrumented to capture deflection profiles,
mid-span strains, support reactions, and natural frequencies. A total of 16 load cells were
placed at both ends of each slab beam to determine the load sharing between slab beams
under vehicle loading and the corresponding shear distribution factors. The moments for each
girder were calculated from the deflection profiles of the slab beams as well as from the
strain gage measurements. In order to be able to capture natural frequency and mode shapes
of the girders during dynamic testing, a total of eight accelerometers were attached on the
bottom of the slab beams. Five accelerometers were attached along one of the interior beams,
and the remaining three accelerometers were attached at the midspan locations of each of the
other slab beams.

The bridge was tested under static  and dynamic service loads using two different
trucks, a dump truck and a water tanker, at various transverse and longitudinal positions to
create critical load configurations for shear and moment. Fig. 4 shows a photo taken during a
full speed testing of the bridge using a loaded dump truck.

Fig. 4 Vehicle testing at in-service speeds (around 40 mph)
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Fig. 6 shows the deflection profiles of all four slab beams obtained from the string
potentiometer measurements.  The moments at the midspan of each beam for the moment
critical position of the vehicles were obtained using the deflection profile from seven string
potentiometers that were clustered at the center of the beams. A third-order polynomial was
fit  through the  deflection  curve.  The  moment  at  midspan  was  then  calculated  using  the
curvature at midspan and multiplying it by EI, where E is the modulus of elasticity and I is
the moment of inertia. Moments at midspan were also calculated using strain values obtained
from strain gages. 

Fig.  5 shows  the  four  transverse  positions  of  the  vehicles  during  the  static  and
dynamic testing of the bridge. The maximum deflection of 0.12 in. was observed at Beam 4
when the vehicle was located at the center of Alignment 1. The deflection profiles changed as
the vehicle moved transversely. Maximum deflections were observed for Beam 4 when the
vehicle was at Alignment 1 and Alignment 3.

The moment reactions and moment distribution factors calculated using two different
measurements (string potentiometers and strain gages) were plotted and are compared in Fig.
7. The critical moment distribution factors are obtained when both lanes are loaded for a two-
lane bridge. Therefore, the results of two different alignments were superimposed to obtain
two-lane-loaded  results.  Alignment  1+2  and  Alignment  3+4  were  already  defined  as
alignment couples that allow two trucks traveling as close as possible to each other. 

Fig. 5 Transverse alignments for static and dynamic testing

(a) Alignment 1 (b) Alignment 2

(c) Alignment 3 (d) Alignment 4

Fig. 6 Deflection profiles for dump truck loading

The  results  indicate  that  the  moment  values  obtained  using  strain  gage  data  are
slightly higher than those calculated using string potentiometer measurements. However, the
moment LLDF values are similar for the two different measurement methods and provide
consistent results. The maximum moment LLDFs recorded due to the dump truck loading are
0.65 for an interior beam and 0.72 for an exterior beam when Alignment 1+2 is loaded.

Fig. 8 shows both static and amplified north support reactions due to dynamic impact.
Reaction data recorded during the dynamic tests were analyzed and compared to the static
data. For the dynamic tests, the dump truck was driven at a speed of 40 mph along the same
four transverse alignments used for the static tests. For all the dynamic tests, vehicles were
driven from south to north. The dynamic amplification at the north support was prominent
when the dump truck was driven along Alignment 2. The amplification was about 37 percent
for Beam 3. This is larger than the standard 33 percent increase for impact specified by the
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AASHTO  LRFD  Specifications.  More  detailed  information  about  experimental  results,
different vehicle loadings, and load distribution factors can be found in 17, Terzioglu et al.  20.

COMPUTATIONAL MODELING OF THE RIVERSIDE BRIDGE

The experimental results obtained from the field testing of the Riverside Bridge were used to
investigate  different  modeling  approaches  including  the  grillage  method  and  the  FEM.
Moment  and  shear  predictions  from  these  computational  models  were  compared  with
experimentally obtained results. The FEM modeling approach providing the best agreement
with the experimental results was used to develop additional FEM models having varying
geometries to investigate the effect of different parameters. These models then utilized for
further investigation in the parametric study for deriving moment and shear LLDF formulas. 

  
(a) Moments for Alignment 1&2 (b) Moment LLDFs for Alignment 1&2

  
(c) Moments for Alignment 3&4 (d) Moment LLDFs for Alignment 3&4

Note: SP = String Potentiometer, SG = Strain Gage

Fig. 7 Midspan moments and moment LLDFs for dump truck loading

  

(a) Reactions for Alignment 1+2 (b) Reactions for Alignment 3+4

Fig. 8 North support reactions for dump truck loading

Grillage  analysis  is  historically  the  most  basic  type  of  computational  modeling
technique  for  analyzing  slab  and  beam  bridges.  This  method  idealizes  the  bridge
superstructure by assuming that it may be represented by a mesh of frame elements in each of
the two orthogonal directions. This assumption reduces the real structure to a 2D plane of
grillage elements where longitudinal members represent composite T-beams, composed of
slab beams with their associated slab width, and transverse members represent the slab only.
Although this method provides sufficiently accurate predictions, it  requires more time for
modeling the elastic parameters and loading arrangement correctly as compared to current
available FEM software with modern user-friendly graphical interfaces.

A 3D finite element model that uses solid brick elements enables representation of the
correct bridge geometry including the vertical  positions of the boundary conditions.  Two
different commercial FEM analysis programs were utilized to compare analysis accuracy: (1)
Abaqus21, a general purpose program for solving a broad range of engineering problems, and
(2) CSiBridge22, a program more specific to bridge engineering.

The experimentally observed deflections were compared to those predicted by the
two commercial FEM programs. Fig. 9 shows the comparison of deflection values for two of
the four truck wheel alignments tested for the Riverside Bridge. It shows that both FEM
models can predict the deflection profiles reasonably well. The maximum difference between
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the measured and predicted deflections is 0.010 in. for Abaqus and 0.012 in. for CSiBridge. It
should be noted that the string potentiometers measurements are within a 0.005 in. resolution.

(a) Transverse positions of the wheel alignments

(b) Deflection profiles – Alignment 1

(c) Deflection profiles – Alignment 3

Fig. 9 Comparison of deflection fields with the experimental results

Maximum moment and shear responses of each slab beam for moment and shear
critical  longitudinal  positions  of  the  dump  truck  used  for  testing  were  estimated  using
grillage and FEM models. The lateral  distribution of live loads between girders was then
calculated from these moment and shear estimates. The maximum of these responses controls
the design of an interior or exterior beam. These maximum values are plotted as bar charts in
Fig. 10 and  Fig. 11 for moment and shear results to visually inspect the accuracy of the
computational methods. It is evident that the grillage model provides slightly conservative
estimates for critical moment results, whereas the FEM model estimates for moments are
slightly unconservative. Shear predictions obtained from both FEM programs and grillage
analysis  are  in  close  agreement  (within  5  percent)  with  the  test  results  for  most  of  the
maximum shear cases.

      (a) Interior Moment   (b) Exterior Moment   (c) Int. Moment LLDFs     (d) Ext. Mom. LLDFs

Fig. 10 Comparison of critical moment results

(a) Interior Shear (b) Exterior Shear (c) Interior Shear LLDFs (d) Ext. Shear LLDFs
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Fig. 11 Comparison of critical north support shear actions

METHODOLOGY FOR DEVELOPING LIVE LOAD DISTRIBUTION FACTORS

LLDF formulas were developed following the same procedure used by Zokaie et al.6 for the
AASHTO LRFD Specifications1. Several assumptions were made to simplify the procedure.

 The effect of each parameter on the LLDF can be modeled using a power function of
the  general  form,  where  x is  the  parameter  under  consideration,   and   are  the
coefficients that are determined by nonlinear least squares regression. 

 The considered parameters were assumed to be independent from each other

After defining the separate effect of each parameter with a power curve, the combined effect
was modeled by multiplying those power terms with a combined coefficient as follows:

 12\* MERGEFORMAT ()
where the coefficient  was determined after all the powers (, , ) were established. All three
power  coefficients  were  determined  by  studying  each  parameter  separately.  Then  the
common coefficient of the final expression () was calculated as:

 34\* MERGEFORMAT ()
The approach outlined below was followed to derive LLDFs for moment and shear in interior
and exterior beams, including one-lane-loaded and multiple-lane-loaded cases

1. A number of bridges were designed and modeled using the FEM, specifically with the
CSiBridge software. The AASHTO LRFD HL-93 design truck loads were placed in
numerous  transverse  and  longitudinal  locations  to  obtain  the  most  adverse
combination  for  maximizing  moment  and  shear  in  the  interior  and  exterior  slab
beams. Thus, for each bridge a matrix of LLDFs was calculated and tabulated by
group types.

2. For each bridge within a specific grouping, all parameters (except one) were held
constant,  and  a  log-log  graph  of  LLDF  versus  the  key  variable  was  plotted.  A
nonlinear  least  square  best  fit  was  found  for  the  form,  where  in  particular  the
parameter  (the slope of the log-log plot) was obtained, plotted, and recorded.

3. Once all results for the power indices were found, the value of  for the ith bridge was
determined using Eqn. (2)

4. Collectively, when all values of were plotted they formed a lognormal distribution for
which the median of allvalues (that is the geometric mean,  or 50 th percentile) gives
the overall “best fit” for all bridges, and the lognormal standard deviation  describes
the dispersion in the load demand actions.

5. Formulas  were  grouped  by  type,  such  as  moments,  shears,  one-lane  cases,  and
multiple-lane cases.

6. A reexamination of the resulting empirical formulas from Step 5 was made and then
rationally  adjusted  to  provide  revised  LLDFs  that  are  more  compatible  with  the
companion AASHTO LRFD LLDF formulas1. The coefficients were adjusted so that
there is approximately a non-exceedance probability of 5 percent (lognormal minus
1.65 lognormal standard deviations), and the final empirical design LLDF formulas
are mostly conservative (i.e., 95 percent likelihood of being conservative).
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REGRESSION MODEL OF EMPIRICAL LLDF RESULTS

The effect of each chosen key parameter (span length, beam spacing, and beam depth), on
live load distribution  factors  was investigated.  Live load distribution factors for all  eight
formulas (moment and shear in interior and exterior beams for one-lane-loaded and multiple-
lane-loaded cases), for each girder, and for each of the 31 bridge geometries were obtained
from the FEM models and used for developing the empirical LLDFs for design applications.
The maximum moment and shear values for interior and exterior girders were obtained from
the FEM analysis. These moment and shear forces for one-, two-, and three-lane-loaded cases
were multiplied with the AASHTO LRFD multiple presence factors of 1.2, 1.0, and 0.85,
respectively.  Then  the  LLDFs  for  all  eight  formulas  were  calculated  by  dividing  the
maximum moment (or shear value) with the moment (or shear value) of an isolated simply
supported beam having the same span length.

SENSITIVITY OF LLDF TO SPAN LENGTH, L

Fig. 12 presents the variation of LLDFs with respect to span length, , which is one of the
most  important  parameters  influencing  the  load  distribution  between girders.  In  order  to
evaluate the effect of changing span length, all other parameters were kept constant and the
span length was changed between 29 ft 7 in. to 45 ft 7 in. for a total of seven different bridge
spans. The LLDF values were plotted on a log-log graph to provide visual examination of the
effect of the span length on the LLDFs.

     (a) Interior Beam Moment LLDF               (b) Exterior Beam Moment LLDF

        (c) Interior Beam Shear LLDF             (d) Exterior Beam Shear LLDF

Fig. 12 Effect of span length on live load distribution factors

SENSITIVITY OF LLDF TO BEAM SPACING, S

Fig. 13 depicts in log-log space the sensitivity of beam spacing,, on LLDFs. Beam spacing is
the  most  important  parameter  that  effects  the  variation  of  the  LLDFs.  A  total  of  11
superstructure  geometries  were  modeled  to  evaluate  the  variation  of  LLDFs  with  beam
spacing.  The  investigation  of  the  effect  of  beam  spacing  on  LLDFs  revealed  that  the
relationship between beam spacing and LLDFs was more prominent as compared to span
length and beam depth.

          (a) Interior Beam Moment LLDF                (b) Exterior Beam Moment LLDF

         (c) Interior Beam Shear LLDF              (d) Exterior Beam Shear LLDF

Fig. 13 Effect of beam spacing on live load distribution factors
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SENSITIVITY OF LLDF TO BEAM DEPTH,

Fig. 14 shows how variation in beam depth,, affects the LLDFs. Although there are only two
different standard slab beam depths used in practice by TxDOT, 12 in. and 15 in.,  seven
different beam depths were analyzed to develop more data points to fit a power curve and
gain a better understanding of the effect of beam depth. A total of seven hypothetical beam
depths between 12 in. to 21 in. were introduced, and seven bridge superstructure geometries
were modeled for investigating the influence of beam depth on LLDFs. As discussed earlier,
beam depth somewhat affects the LLDFs but is not as prominent as beam spacing and span
length. An investigation of the graphs for the sensitivity of beam depth shows that the LLDF
values for shear in an exterior beam are not sensitive to the beam depth. The slopes of these
curves are almost zero. 

            (a) Interior Beam Moment LLDF               (b) Exterior Beam Moment LLDF

         (c) Interior Beam Shear LLDF               (d) Exterior Beam Shear LLDF

Fig. 14 Effect of beam depth on live load distribution factors

DERIVATION OF LLDF EQUATIONS

Live load distribution factors obtained from each one of the 31 bridge superstructures for all
eight LLDF categories (moment and shear in interior and exterior beams for one-lane-loaded
and multiple-lane-loaded cases) were calculated using the moment and shear results from
FEM  models.  These  FEM  values  were  then  compared  with  those  obtained  from  the
AASHTO LRFD Specifications1 spread box beam formulas,  theoretical  least  square (LS)
best fit LLDF equations, and new proposed LLDF equations. 

For  a  given bridge  superstructure,  the coefficient   was calculated  using Eqn.  (2),
which resulted in 31 different  coefficients that are close but slightly different from each
other. The median (average of values) of these coefficients was used as an initial estimate,
while the lognormal standard deviation,, was used as a measure of scatter of the results. The
final   coefficient  for  that  specific  LLDF case  was calculated  to  minimize  the lognormal
standard deviation,. This procedure was repeated for all eight categories for calculating the
coefficients of the empirical LLDF equations.

In order to derive LLDF formulas that are similar to those in the AASHTO LRFD
Specifications1 for spread box beams, the powers of the parameters were kept the same or as
similar as reasonable to ensure  remained close to the theoretical equation. For the other cases
where using the same power gives higher  values, the powers were chosen based on the
theoretical power values and the format of the AASHTO LRFD Specifications1 spread box
beam formulas. The principal proposed coefficient  was increased by accepting a 5 percent
exceedance criterion, which means that up to 5 percent of the cases analyzed were permitted
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to be unconservative (smaller) compared to the more accurate FEM-based LLDF values. All
eight proposed LLDF formulas for moment and shear are listed in Table 1. 

LLDFs obtained from the FEM analysis were compared with those calculated from
the AASHTO LRFD Specifications1 spread box beam equations, the LS best fit theoretical
equations,  and the  proposed LLDF equations  for  design.  The comparison  of  these  three
LLDF equations versus FEM results is shown in the graphs provided in Fig. 15 and Fig. 16.
These figures provide plots of the moment and shear LLDF comparison with more accurate
FEM values for all 31 bridges. Therefore, the LLDFs obtained from theoretical equations,
new proposed equations, and the AASHTO LRFD Specifications1 spread box beam formulas
are compared to the FEM-based LLDFs. Each data point on the graphs represents an LLDF
for  a  specific  category.  The  cumulative  probabilities  of  the  LLDF  ratios  (Theory/FEM,
Proposed/FEM, and AASHTO/FEM) are plotted to better visualize the distribution of each
data point and their probability of occurrence. The solid red line in these figures represents
the lognormal model curve for the proposed equation. The model curve is a lognormal curve
that has the same lognormal standard deviation and median as the ratios of the proposed
equation. 
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Table 1 Approximate LLDF equations for spread slab beam bridges

No.
AASHTO Spread Box

Beam Formulas
Least Square Best

Fit Relations
Proposed LLDF Design

Equations

Mo
me
nt
LL
DF

Interior
Beam

One Lane
Loaded

1

Multiple
Lanes

Loaded
2

Exterior
Beam

One Lane
Loaded

3 Lever Rule

Multiple
Lanes

Loaded
4

She
ar
LL
DF

Interior
Beam

One Lane
Loaded

5

Multiple
Lanes

Loaded
6

Exterior
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Range of Applicability for Proposed LLDF Design Equations:
31 ft ≤ L ≤ 51 ft,          6.5 ft ≤ S ≤ 11 ft,        12 in. ≤ d ≤ 21 in.

In the case of the one-lane-loaded moment in interior beams (Fig. 15a), a majority of
the  LLDF  results  calculated  using  the  AASHTO  LRFD  Specifications1 formula  are
unconservative when compared to the exact FEM LDFs. Hence a new LLDF equation, which
results  in  a  slightly  conservative  LLDF  values  was  introduced.  Fig.  15b  shows  the
comparative graphs for the multiple-lane-loaded moment in interior beams. The AASHTO
LRFD Specifications1 formulas  are  slightly  higher  than  the  FEM values.  Therefore,  the
spread box beam formula for the multiple-lane-loaded moment in interior beams was kept the
same. 

Fig. 15c and 15d show cumulative probabilities for both one-lane- and multiple-lane-
loaded shear LLDF results in interior beams. The results indicate that the AASHTO LRFD
Specifications1 LLDFs are unconservative for both one-lane-loaded and multiple-lane-loaded
cases. This finding is consistent with LLDFs calculated from the experimentally measured
shear values. Therefore, new shear LLDF equations are introduced that give slightly higher
LLDFs. The parameters in the new shear LLDF equations were rearranged to be similar to
the AASHTO LRFD Specifications1 spread box beam formulas. 
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               (a) One-lane-loaded – moment LLDF          (b) Multiple-lane-loaded – moment LLDF

                 (c) One-lane-loaded – shear LLDF            (d) Multiple-lane-loaded – shear LLDF

Fig. 15 Probability distributions of LLDF ratios (calculated/FEM) for interior beams

Fig.  16a and 16b show the comparative probability distributions  for one-lane and
multiple-lane-loaded moment LLDFs in exterior beams. The proposed equations give slightly
conservative  results  for  all  considered  31  bridge  models.  Whereas,  AASHTO  LRFD
Specifications1 LLDFs results are overly conservative, by more than 50% in some cases. A
new equation having a similar  formulation as for the interior  beam LLDFs is introduced
instead of the lever rule.

Fig. 16c and d shows the comparative plots of all three LLDF equations for shear in
exterior  beams versus  the FEM results.  The AASHTO LRFD Specifications1 spread box
beam LLDF formulas  are an average of 25 percent  conservative for one-lane-loaded and
more  than 30 percent  conservative  for  multiple-lane-loaded shear  in  exterior  beams.  The
AASHTO LRFD Specifications1 recommend using the lever rule for determining exterior
girder shear for the one-lane-loaded case. However, the lever rule gives overly conservative
shear LLDFs for the considered spread slab beam bridges. For the case of multiple-lane-
loaded shear in exterior beams, the LLDF for shear is calculated by multiplying the interior
beam shear LLDF by a coefficient that is a function of the distance of the exterior beam from
the edge of the bridge. Again this approach gives very conservative results that are up to 50
percent conservative in some cases. Therefore new LLDF expressions were derived for both
one-lane and multiple-lane-loaded categories, which results in slightly conservative LLDFs.

           (a) One-lane-loaded moment LLDF          (b) Multiple-lane-loaded moment LLDF

           (c) One-lane-loaded shear LLDF        (d) Multiple-lane-loaded shear LLDF

Fig. 16 Probability distributions of LLDF ratios (calculated/FEM) for exterior beams
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CONCLUSIONS

An alternative bridge type, a spread slab beam bridge, has been developed as a potentially
more economical option for short span bridges. This research investigated the potential of the
spread slab beam bridge system, evaluated in-service performance,  and developed design
recommendations with a focus on appropriate relationships for live load distribution factors.
Alternative  analytical  modeling approaches  including the FEM and grillage method were
evaluated.  Live  load  distribution  factors  for  spread  slab  beams  were  derived  based  on
computational models representing the design space for this class of simply supported spread
slab beam bridges. The LLDF equations were developed for key parameters including beam
spacing (S), span length (L),  and beam depth (d). The following conclusions were drawn
based on this study.

1. Deflection  predictions  obtained  from  both  commercial  FEM  software  programs
(Abaqus and CSiBridge) show good agreement with the experimental results.

2. Moment and shear LLDFs calculated from the moment and shear predictions of both
FEM  software  programs  were  in  a  good  agreement  with  the  test  results.  When
carefully  developed,  the  grillage  model  also  predicts  moment  and shear  response
quite accurately. 

3. Although  both  grillage  analysis  and  FEM  models  can  be  considered  sufficiently
accurate and could be used for further development of LLDFs, one should use the
best available analysis tools. 

4. Unique LLDF equations were developed for spread slab beam bridges to provide an
appropriate  level  of  conservatism.  The  new  proposed  equations  produce  slightly
conservative results for 95% of the considered models for all LLDF categories when
compared with the LLDFs calculated from FEM analysis.

5. Common TxDOT practice for precast prestressed concrete bridges is to design all the
girders for the same forces as an interior girder in order to take into account possible
future  widening  of  the  bridge.  Therefore,  all  girders  are  designed  based  on  the
maximum interior girder shear and moment demands, unless the exterior demands are
greater. The two governing proposed LLDF equations for an interior girder for the
multiple-lanes-loaded case are:

For moments:  
For shear:  
where 31 ft ≤ L ≤ 51 ft;     6.5 ft ≤ S ≤ 11 ft;      12 in. ≤ d ≤ 21 in.

6. The AASHTO LRFD spread box beam LLDF equations  were reviewed  for  their
applicability to spread slab beam bridges. 

a. The  AASHTO  LRFD  LLDF  expressions  resulted  in  unconservative
predictions  for  interior  beams in spread slab beam bridges;  except  for  the
multiple-lane-loaded moment LLDF, which was kept the same for spread slab
beam bridges. 

b. The AASHTO LRFD LLDF expressions gave overly conservative results for
exterior beams in spread slab beam bridges. 
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