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ABSTRACT  
 

Structural topology optimization is increasingly being used to remove the 

guesswork in identifying natural force flow paths for reinforced concrete and 

prestressed concrete, particularly for complex 3D design domains. Tension 

and compressive forces that follow the principle stress trajectories, i.e., ties 

and struts, are automatically identified with topology optimization using a 

formulation that minimizes strain energy, or equivalently that minimize crack 

widths. While a useful alternative to trial-and-error process of generating 

strut-and-tie models (STM), the approach falls short of design objectives as it 

neglects constructability and rebar detailing, which is often the governing 

cost. This paper uses a new advancement in topology optimization for 

addressing constructability issues by considering both material and 

construction costs. By assigning different construction costs for each tension 

tie (rebar or prestressing), the placement of steel can be controlled to a large 

extent by the designer, thus it is capable of generating practical designs that 

also perform well in service.  A hybrid truss-continuum FE model with 

bilinear orthotropic material properties is used to generate the optimized 

strut-and-tie models that can be used directly for design and detailing. Results 

demonstrate that the designer gains the ability to explore tradeoffs between 

material and labor cost while maintaining reinforcement layouts that ensure 

structural integrity at service and ultimate limit states. 
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INTRODUCTION 

 

It is common practice in structural concrete design to divide structural components 

into two regions, one where stress can be computed from elastic bending theory, often 

referred as B-regions, and the other where the strain distribution is significantly nonlinear 

(e.g., near concentrated loads, supports, openings, etc.) known as discontinuous-regions, or 

D-regions. A common approach to designing B-regions under shear is to assume the flow of 

forces can be represented as a truss. This truss analogy, first proposed by Ritter 
1
, assumes 

that the cracked concrete structure acts as a truss with top and bottom longitudinal chords and 

an inclined web at 45 degrees. Mörsch 
2 

later suggested the use of diagonals different from 45 

degrees and introduced the use of this truss model for torsion. D-regions, on the other hand, 

have been designed using rules of thumb or past experience for many years. The landmark 

paper by Jörg Schlaich and his colleagues at the University of Stuttgart (Schlaich et al. 
3
) 

proposed generalizing the truss analogy to apply it in the form of strut-and-tie-models (STM) 

to all parts of the structure including both B-regions and D-regions. STM is a generalized 

truss model that consists concrete compression struts, steel tension ties, and nodal zones. It 

has been introduced into many design specifications and widely used in practical design for 

the past two decades.  

STMs are also particularly suitable for the design of anchorage zones of prestressed 

concrete structures. It deals with the design of the transverse reinforcement that resists the 

tensile force induced by prestressed tendons. Since each prestressing tendon and support 

reaction is modeled as a concentrated load at the beam end, the anchorage zone is highly 

discontinuous when the number of prestressing tendons is large and/or the support reaction 

cannot be neglected. For these cases, the use of STMs is of great importance. 

 Generating an effective STM becomes more challenging when the geometry of the 

problem becomes complicated, such as beams with cutouts, or the applied load and boundary 

conditions leads to complicated stress states.  Additionally there are, theoretically, an infinite 

number of STM possibilities for a given problem. Navigating these possibilities with a trial-

and-error approach can dramatically increase design time and costs. Topology optimization, 

on the other hand, is an automated design process where an optimization algorithm is used to 

distribute material (struts and ties) through the concrete domain.  Design specifications are 

posed as constraints that the optimizer must not violate.  

Topology optimization is gaining momentum in the structural engineering community, 

with several firms using it to generate concepts for tall buildings (e.g., Baker et al. 
4
; 

Sarkisian et al. 
5
).Several works have considered using topology optimization to design STM 

(Kumar 
6
, Ali 

7
, Biondini et al. 

8, 9
, Ali and White 

10
, Moen and Guest 

11,
 Kim and Baker 

12,
, 
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Guan 
13

, Liang 
14,

, Nagarajan and Madhavan Pillai 
15

, Bruggi 
16,

). An example from Moen 

and Guest 
11

, given in Fig. 1, is used to illustrate how truss topology optimization can be used 

to visualize force paths and to develop strut-and-tie models. The STM, based on the 

traditional method, is developed for a reinforced concrete deep beam in Fig. 1a and 

superposed over experimental results from Nagarajan and Pillai 
17

. The steel reinforcement is 

orthogonal to cracks at midspan, but loses efficiency near the supports where cracks are 

diagonal. Fig. 1b shows an alternative STM developed by minimum compliance topology 

optimization method. The optimizer here places steel orthogonal to the compression struts, 

creating a steel reinforcement layout that orthogonally bridges cracks (indicated in the 

background experimental images), thereby increasing flexural capacity.  

 
          (a) Traditional design                                     (b) Minimum compliance design 

Fig. 1. Compare (a) traditional STM and (b) minimum compliance STM derived with 

topology optimization.  Black dashed lines represent compression carried by the concrete, red 

solid lines represent tension carried by the reinforcing steel.  Experimental results provided in 

the background are taken from Nagarajan and Pillai 
17

. 

 

More recently, hybrid truss-continuum approaches have been explored, where the 

continuum represents compression load paths and the truss elements represent straight steel 

members, which are more reasonable representations of steel rebar and more easily 

constructed.  This idea was put forth at a recent Structures Congress (Guest and Moen 
18

), 

and achieved in Gaynor et al. 
19

, Yang et al. 
20

 and Yang et al. 
21 

 using bilinear stress-

dependent material models for the truss and continuum domains, described in 2D and 3D, 

respectively.  Amir and Sigmund 
22

 likewise used a truss-continuum approach, but utilized 

elastoplastic model to differentiate between the tension and compression load paths.  

Although design complexity can be controlled through selection of the truss ground 

structure according to these papers, placement cost of reinforcing steel has not been 
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investigated. The presence of inclined reinforcing steel, for example, may increase labor 

costs and perhaps total costs of a system, over a simpler design of horizontal bars that is less 

efficient and thus uses more steel. Thus, considering construction cost is crucial to make the 

optimized results practical.  Recently, Asadpoure et al. 
23

 addressed a similar problem in the 

design of truss structures by adding a per-element unit cost to the material cost function.  

This cost was meant to represent the cost of placing a truss member into the structural system 

and the labor cost of making two connections. The approach is adapted here to the hybrid 

topology optimization approach and used to penalize, through cost, complex reinforcing 

patterns.   

  

 

 

(a) Design Domain (b) Hybrid Discretization 

 
(c) Detail of Hybrid Discretization (b) 

 

Fig. 2. Design domain and hybrid discretization for topology optimization of simply 

supported beam 

 

 

 

TOPOLOGY OPTIMIZATION FORMULATION CONSIDERING MATERIAL AND 

CONSTRUCTION COSTS 

The first step of topology optimization process is to express the design problem 

formally as an optimization problem. In this paper, a minimum compliance, or equivalently 

maximum stiffness, topology optimization framework is adopted.  This formulation 
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minimizes external work, or equivalently internal strain energy, leading to the design of 

structures where forces follow the stiffest load path.  

The topology optimization process then continues by meshing the design domain, 

which in the hybrid truss-continuum approach consists of a truss ground structure 

representing the steel embedded in a continuum finite element discretization representing the 

concrete (Figure 2).  The goal of the optimizer is then to determine the cross-sectional area t 

of the truss elements and the volume fraction c of the continuum elements, where c = 1 

indicates compression-carrying concrete and c = 0 indicates non-load carrying concrete.  

Truss elements with non-zero cross-sectional area then represent the steel reinforcement 

design (the ties) and continuum elements with c = 1 representing the compression load path 

(the struts). 

 

Let us express the external work as F u
T

, where F are the applied nodal loads and u 

the nodal displacements, with equilibrium as Ku F , where K is the global stiffness matrix, 

which we note is a function of the design variables t and c.  The minimum compliance 

(maximum stiffness) optimization problem can then be stated as: 

,

min

min ( , )
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where the second constraint is the total cost TC constraint, composed of the material cost M 

and construction cost C; the third set of constraints are the design variable bounds on the 

continuum elements in the domain (denoted as c), with min selected as a small positive 

number to maintain positive definiteness of the global stiffness matrix; and the fourth set of 

constraints are the design variables bounds on the truss elements in the domain (denoted as 

t).   

In the total cost constraint, the material cost is computed as 

M (r
c

e ,r
t

e ) = a
c

er
c

e

eÎW
c

å v
c

e + a
s

er
t

e

eÎW
t
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e
                                                                                       (2) 
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where  denotes the element volume for continuum concrete,  the length for steel bars, 

and 
e

c  and 
e

t represent material cost per unit volume for concrete and steel, respectively.   

These terms typically appear in minimum compliance problem as a material volume usage 

constraint.   The construction cost, recently proposed in Asadpoure et al. 
23

 to represent 

fabrication cost in discrete structures, is computed as 

C(r
t

e ) = a
f

eH e (r
t

e )
eÎW

t

å                                                                                                               (3) 

Where the function H represents the Heaviside step function such that any truss 

element with cross-sectonal area greater than zero counts as an element that must be 

constructed, or placed.  Note that only the truss (steel) elements appear in this function as the 

continuum elements represent the concrete domain.  The variable 
e

f denotes the 

construction cost of placing the element e.  In truss structures, for example, it represented the 

labor cost of member placement (including crane time) and making two connections, one at 

each end of the member.  The magnitude of the element construction cost is ultimately 

dictated by the local market and construction methods, but our goal herein is to show how the 

magnitude of this cost term can be used to influence the constructability of rebar schedules.   

As the step function H is discrete, it must be regularized for use with gradient-based 

optimizers.  We use the regularization function discussed in Asadpoure et al. 
23

, originally 

proposed by Guest et al. 
24

 for projection methods in continuum topology optimization, given 

as follows:  

H e (r
t

e ) =1-e
-b (r

t
e )

+ (r
t

e )e-b
                                                                                                   (4) 

 

Where   is regularization parameter that dictates how aggressively the step function 

approximated (Guest et al. 
25

), set to 10 in this paper.  Note that using this expression, if a 

steel truss member achieves a non-zero cross-sectional area, this function yields a magnitude 

of one, which imposes the element’s unit cost on the total cost function.   

 It is seen that when e e

c s   and 0e

f  , this total cost constraint is equivalent to 

the simple volume constraint used in Yang et al. 
20

. For the sake of comparing the material 

and construction costs and showing the effect of the latter on simplifying the optimized 

placement of reinforcing steel, e

c and e

s are set fixed and equal to unit. Thus changing the 

value of 
e

f will change the ratio of construction and material cost. We want to emphasize 

that the values of these parameters can be determined based on actual cost of concrete and 

steel, and local labor costs of placing steel bars.   

e

cv e

tv
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The Heaviside Projection Method (HPM) (Guest et al. 
24

, Guest 
26

) is used to avoid 

well-known numerical instabilities of checkerboards and mesh dependency associated with 

continuum elements. Sensitivities are calculated using the adjoint method (see Gaynor et al. 
19

 for equations corresponding to the hybrid topology optimization) and the gradient-based 

optimizer is chosen as the Method of Moving Asymptotes (MMA) (Svanberg 
27

), which is 

very efficient for structural optimization. Full algorithmic details for this approach are 

available in Guest et al. 
25

.   

Finally, we note that underlying the hybrid truss-continuum approach is a bilinear, 

stress-dependent mechanics model that is formulated such that the truss (steel) elements carry 

only tension and the continuum (concrete) elements carry only compression.  The details of 

this model were presented at the 2013 PCI Convention and National Bridge Conference 

(Yang et al. 
20

), and briefly summarized in the Appendix for convenience.  The numerical 

examples in this paper assume Young’s modulus for the concrete is 24.9 GPa (3600 ksi) in 

compression and 2.0 GPa (290 ksi) in tension, while Young’s modulus for the steel is 200 

GPa (29000ksi) in tension and zero in compression, to ensure compression load paths are 

carried by the concrete (see Appendix). 

 

NUMERICAL EXAMPLES 

 

The first numerical example is the benchmark simply supported beam problem loaded 

at midspan, as shown in Fig. 3a.  A traditional STM is shown in Fig. 3b along with a 

topology-optimized solution considering only material cost, without construction cost, in Fig. 

3c. It is well-known that minimum strain energy topologies will mimic the principal stress 

trajectories, and so we have enabled a fine structural topology to closely approximate this 

and emphasize the difference when considering constructability.  Of course simpler 

topologies could be achieved by altering the initial ground structure (see Gaynor et al. 
19

 for a 

discussion on this).  Fig. 3d displays the solution when significantly increasing the unit labor 

cost to unit material cost ratio.  The topology clearly contains fewer bars and is a 

significantly simpler topology that would be easier (and cheaper) to construct.  These bars, 

however, have significantly larger cross-sectional area, leading to a much larger total 

material cost than those found Fig. 3c.  The solution in Fig. 3e was found by assigning a high 

cost to the use of inclined rebar relative to the cost of horizontal and vertical rebar.  This led 

the algorithm to avoid using inclined rebar, despite their extreme structural efficiency for this 

design example.  Note that two inclined bars did appear in the final topology, as the cost was 

not high enough to overcome their structural efficiency and corresponding material cost 

savings.   
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(a) Design domain (b) A traditional STM 

  
(c) Optimized STM without considering 

construction cost ( 1e e

c s   ,

0e

f  ) 

(d) Optimized STM considering 

construction cost ( 1e e

c s   , 2e

f   

for all steel reinforcement) 

 

 

(e) Optimized STM considering 

construction cost ( 1e e

c s   ,a
f

e = 2  

for inclined rebar, a
f

e = 0.5for all others)  

 

Fig. 3. Topology optimization of STM considering construction cost 
 

Another benchmark example is a deep beam with cutouts as shown in Fig. 4a. A 

traditional STM with horizontal and vertical steel ties only is illustrated in Fig. 4b. Fig. 4c 

gives a topology-optimized solution considering only material cost. It has been seen that it 

consists of a large number of steel rebar, which makes the proposed STM less practical. In 

Fig. 4d, the result accounting for both material and construction costs has a much simpler 

STM. In Fig. 4e, a different STM which has less inclined steel reinforcement is obtained by 

increasing the construction cost of these steel rebar.  

While these results should be considered preliminary, they show the potential of 

incorporating labor cost into STM optimization.  Of course one of the key challenges is 

properly quantifying labor costs, which are highly driven by local markets.  In this work, 

however, we simply express these costs as a ratio to material costs to illustrate the idea and 

explore the tradeoffs between material and constriction costs.   
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(a) Design domain (b) A traditional STM 

  
(c) Optimized STM without considering 

construction cost ( 1e e

c s   , 0e

f  ) 

(d) Optimized STM considering 

construction cost ( 1e e

c s   ,

2e

f  ) 

 

 

(e) Optimized STM considering construction 

cost ( 1e e

c s   , 6e

f   for inclined 

rebar, a
f

e = 0.5for all others) 

 

Fig. 4. Topology optimization of STM considering construction cost 

 

 

CONCLUSIONS 

 

Topology optimization has recently been shown as an effective design tool for 

visualizing the flow of forces in concrete and producing efficient STM. This paper take use 

of a hybrid truss-continuum model, following the idea of Gaynor et al. 
19 

and Yang et al. 
20

, 

to focus tensile forces in the steel (truss) and compressive forces in the concrete (continuum). 
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While traditional topology optimization approaches consider only material cost, this paper 

proposes including construction cost, which is also of great importance, into the topology 

optimization of STM.  Following the work of Asadpoure et al. 
23

, construction cost is 

estimated as a unit cost associated with placing a rebar element, with different elements 

potentially having different unit costs depending on their geometry and position.  Although 

this is a simple cost model, results clearly illustrate that the complexity of STM can be 

influenced through this construction cost algorithm.  It is the goal of future work to develop 

more sophisticated, more realistic construction cost models.  
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APPENDIX: HYBRID TRUSS-CONTINUUM STRUT-AND-TIE MODELS 

 

 

   
(a) Truss model (b) Continuum model (c) Hybrid truss-

continuum model 

Fig. 5. Hybrid mesh scheme 

 

A typical group of elements in the hybrid truss-continuum STM developed in Yang et 

al. 
28 

is shown in Fig. 5. In this model, truss members represent steel reinforcement and 

continuum members are used to predict the behavior of the concrete. In order to direct tensile 

forces to the steel and compression forces to the concrete, the approach taken here is to use 

negligible compressive strength and stiffness for the steel, and negligible tensile strength and 

stiffness for the concrete.  In order to achieve the idea that truss members only carry tensile 

forces, we can use a zero Young’ modulus in compression, while use the actual Young’ 

modulus of steel in tension. Continuum members can also be modeled as bimodulus 

materials as following; Young’s modulus and Poisson’s ration are and , respectively, 

when the corresponding principal stress is in tension along certain direction; while Young’s 

modulus and Poisson’s ration are and , respectively, when the corresponding principal 

tE t

cE c



Yang, Guest, and Moen                                                                                       2014 PCI/NBC 

 

10 

 

stress is in compression along certain direction. Mathematically, the improved constitutive 

equation can be shown as follows 
28, 29

:   

  

                                                                                                    (6) 

where,  and denote the stress and 

strain vectors in the principal stress coordinate system, respectively. The constitutive tensor 

can be computed corresponding to principal stresses as follows: 

(a)  if :          (7.1) 

 

(b) if :           (7.2) 

 

 

(c) if ; 

                              (7.3) 

 

(d) if ;  

 

                              (7.4) 

 

The constitutive tensor can be obtained by inverting the flexibility matrix . 

The remaining undetermined terms ,  and can be obtained by assuming the 

following 

 

                                                                            (8) 

 

where  is equal to the ratio of the sum of positive principal stresses and the sum of absolute 

value of all principal stresses, thus . 
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