
 
 
 
 

FINITE ELEMENT MODELING A FULL SCALE ADJACENT PRESTRESSED 
CONCRETE BOX BEAM BRIDGE SPAN 

 
Jonathan Huffman, MS, Grad. Research Assistant, Civil Engineering, Ohio University, Athens, OH 

Eric Steinberg, PhD, PE, Associate Professor, Civil Engineering, Ohio University, Athens, OH 
Shad Sargand, PhD, Professor, Civil Engineering, Ohio University, Athens, OH 

 

 

ABSTRACT 

A finite element model (FEM) was constructed for a 43 year old adjacent prestressed 
concrete box beam bridge span. The model was used to validate results acquired during the 
full-scale destructive testing of a damaged span. Damage to the actual span was created to 
simulate three extremely deteriorated interior beams within the span. 

The model of the bridge span consisted of adjacent reinforced concrete box beams, 
shear keys, and appropriate boundary conditions to model the effects of the transverse tie 
rods and supports. The behavior of the concrete was modeled using non-linear material 
properties. The damage of the span was modeled by altering the input parameters for the 
concrete of the damaged sections. 

Once the model was constructed, loadings similar to those applied during the 
destructive test were placed on the model. The strains and deflections found using the FEM 
yielded similar results relative to the actual testing conducted on the span. The damage was 
removed from the model and results from static truck testing conducted prior to the bridge 
being damaged were also simulated. This modeling assisted in determining load distribution 
factors for the span, and will assist in the evaluation of other bridges with varying degrees of 
damage.  
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INTRODUCTION 
During analysis of the results obtained from a full-scale destructive test of a 43 year 

old damaged prestressed adjacent box beam bridge span, unusual trends between the strain 
and deflections results on the damaged beams were observed1,2. To help explain the unusual 
behavior and validate the results of the testing a non-linear finite element model (FEM) was 
created using Abaqus/CAE 6.10 to simulate the response of the damaged bridge span during 
testing. 

 
The FEM created for the damaged bridge span was a full-scale three-dimensional 

model with no geometric or symmetric simplifications to the bridge span cross-section. The 
model consisted of nine adjacent box beams with all longitudinal reinforcement and eight 
shear keys. The abutment and pier supports were modeled by using a combination of 
boundary conditions and axial springs. Similarly, the transverse tie rods connecting the 
beams together were also modeled through the use of axial springs. The concrete components 
of the bridge span were modeled using non-linear material properties to account for the post-
cracking behavior of the concrete. 

The damage induced on the actual bridge span consisted of two cuts into the bottom 
flanges of three interior beams at 23.7 ft and 27 ft from the end of the beams. The cuts 
severed the entire bottom row of prestressed reinforcement of the beams. The damage was 
created to simulate severe deterioration of the interior beams. The damaged sections of the 
three interior beams were modeled in the FEM by substituting the material properties of the 
damaged cross-sections with an elastic material, of relatively low stiffness. The bottom row 
of longitudinal reinforcement was also removed from the damaged sections of the concrete. 

 
Figure 1 – Damaged created on 3 interior beams 

The loading procedure completed during the destructive testing of the actual bridge 
span was simulated in the FEM by placing a group of point loads at the locations used during 
the field testing. These locations consisted of three loading regions each approximately 4 ft x 

2” cuts into the bottom 
flanges of Beams 4, 5, & 6 
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1 ft, which represented the field loading on the bridge span by hydraulic cylinders. The 
cylinders were labeled by which beam was directly beneath the cylinder spreader beams.  

Once the FEM was assembled, it was then calibrated to match the behavior of the 
results from the destructive testing conducted on the actual bridge span while the three 
damaged interior beams were subjected to loading. To justify these results, the model was 
then loaded at the other two loading locations at the same magnitudes as recorded during 
field testing. Then minor modifications to the FEM were made to further calibrate the model 
to better simulate the behavior of the span when loaded at any location. Once fully calibrated, 
all three loading conditions were repeated and the results recorded. The results were then 
compared to results from the destructive testing of the damaged bridge span. 

To further validate the effectiveness of the FEM at simulating the span behavior, the 
simulated damaged sections were removed from the modeled span with no additional 
alterations to the model. The model was then subjected to four separate truck loadings 
equivalent to truck testing preformed on the actual bridge span prior to the damage being 
induced on the span. The FEM results were then compared to the results from the truck 
testing conducted on the bridge span3. 

BACKGROUND 
The concepts behind non-linear finite element analysis and modeling have been 

available for several decades; however the use of finite element analysis has not been a 
plausible solution for large structural systems because of the associated cost of the 
computational resources required to conduct such a large analysis. With the advancement in 
computational technologies, using finite element as an analytical tool to evaluate and model 
large structural systems is now readily available.  

The use of non-linear FEM is frequently used in modeling the behavior of reinforced 
concrete.  The advantages of non-linear FEM are that the linear and non-linear behavior 
concrete can be accurately modeled. Concrete behaves linearly at low stress levels (<30-40% 
of ultimate).  The non-linear behavior at higher stress levels is due to micro cracking at the 
interface of the cement and aggregate4. With non-linear FEM, the effects of micro and macro 
cracking in the concrete are included in the analysis. 

In non-linear FEM there are many variables that influence the accuracy of a 
reinforced concrete model.  In order to correctly evaluate the failure mechanism(s) of a 
particular reinforced concrete structure, element type, mesh size, load step, convergence 
criteria, presence or absence of bond-slip, and material properties should be appropriately 
chosen5. When modeling concrete, several characteristics of the concrete should be 
considered.  This includes cracking criteria, tension stiffening, tension softening, 
compression hardening, compressive ductility, compression softening, multi-directional 
cracking, relation of shear stiffness to cracking, and multi-axial stress conditions5. Modeling 
the concrete using a smeared cracking method is the predominate approach used in three-
dimensional modeling of concrete6.  

In a smeared cracking model the effects of the non-linear compressive and tensile 
behaviors of the concrete are taken into account. Abaqus/CAE uses a smeared cracking 
model that simplifies the compressive and tensile behaviors of the concrete into piece-wise 
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linear stress-strain curves.  These curves account for the compression hardening and 
softening as well as loss of tensile strength upon cracking and tension stiffening.  The actual 
cracking in the concrete is not tracked in a smeared cracking model.  Once the criterion for 
cracking has been met for a particular element, the appropriate material properties are applied 
to the individual element.  The effect of the crack is considered “smeared” throughout the 
element.  The altered material property of the element will also change the stresses in the 
surrounding elements which may cause additional elements to crack, further smearing the 
effect of the crack. 

MODEL CONSTRUCTION 
A full-scale finite element model was constructed to analyze the results of the 

severely damaged span of the field tested bridge.  A non-linear three-dimensional model was 
constructed in Abaqus/CAE 6.10 composed of nine adjacent box beams with longitudinal 
reinforcement and eight shear keys.  The prestressed concrete box beams were modeled using 
a smeared cracking method with the reinforcement modeled as embedded solid elements. 

COMPONENTS 

The cross-sections of the precast concrete box beams, beam solid sections, 
prestressed reinforcement, conventional reinforcement, and shear keys of the bridge span 
were drawn in the Abaqus/CAE to the specifications provided in the bridge design drawings. 
The beam solid sections of the precast beams were drawn separately to make meshing the 
two parts possible in a practical manner. Once the cross-sections were drawn, the box beams, 
prestressed reinforcement, conventional reinforcement, and shear keys were extruded 574 in. 
(47’10”) in the longitudinal direction to match the length of the bridge span. The beam solid 
sections were extruded to yield two solid sections at the location of the transverse tie rods for 
each box beam. The actual length of the solid sections in each beam was not specified in the 
bridge design drawings therefore a value of 18 in. was assumed.  

Each of the components were seeded six inches along the length and then meshed 
independently. This created 7,081 elements for each beam, 2,496 elements per shear key, and 
2976 elements for the reinforcement in each beam. An illustration of the mesh resolution of a 
single box beam can be seen in Figure 2. 

 
Figure 2 – Mesh resolution of a beam 
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MATERIALS 

The elastic concrete material properties were modeled by defining the Young’s 
modulus and Poisson’s ratio for the concrete.  Several cores taken from the east span of the 
bridge were tested. The tests yielded a compressive concrete strength of 10 ksi, a Poisson’s 
ratio of 0.2, and a unit weight of 147 pcf. These values were used in modeling the material 
properties of the beams and shear keys3. The solid sections of each beam were assigned the 
same material properties as the corresponding beam.  It should be noted that a concrete 
compressive strength of 10 ksi was not used for all of the concrete parts. A complete list of 
the material properties for each part is provided in Table 1. The compressive strength of 
several concrete parts was changed to improve the model behavior to compare with test 
results. 

Table 1 - FEM Material Properties 
  Material Property 

Part f’c (ksi) E (ksi) ν 
Beams 1,2,3,7,9 10 5882 0.2 
Beams 4, 5, 6, 8 14 6959 0.2 

Shear Keys 10 5882 0.2 
 

The plastic concrete material properties were defined using a concrete smeared 
cracking model.  To define the concrete smeared cracking material properties, post-yield 
compressive and tensile stress-strain relations were defined, as were failure ratios for the 
concrete.   

For the compressive stress-strain relationship, a list of compressive stresses and the 
associated plastic strains were input. To define the tensile stress-strain relation, a list of the 
tensile stress after cracking to tensile stress at cracking ratios ( ), and the corresponding 

strain after cracking to strain at cracking ratios ( ) were input. Equations were developed 

that allowed all parameters of the post-yield compressive and tensile stress-strain 
relationships to be defined by setting a single concrete compressive strength. These equations 
were developed by combining equations and relationships discussed in Reinforced Concrete, 
Mechanics and Design4 as well as relationships provided in the Abaqus Analysis User’s 
Manual7. The equations and relationships are listed in Eqs.  1-7:  

Young’s Modulus:                         (Eq.  1) 

    Where:    

 

Factored Compressive Strength:      (Eq.  2) 
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Compressive Strain at Yield:       (Eq.  3) 

Tensile Strength:        (Eq.  4) 

  Where:    

Tensile Strain at Yield:       (Eq.  5) 

Compressive Stress at Failure:     (Eq.  6) 

Compressive Strain at Failure:  

Tensile Strain at Failure:      (Eq.  7) 

The compressive and tensile stress-strain diagrams in Figure 4 represent the limits of 
the concrete smeared cracking material properties. The stress-strain curves shown are based 
on a compressive strength of 10 ksi. The relationships in the stress-strain diagrams were 
derived from relationships discussed in the Abaqus Analysis User’s Manual7. 

 
Figure 4 – Compressive and Tensile stress-strain curve 
 

Four failure ratios were defined for the smeared cracking concrete material method. 
The definitions and default values provided in the Abaqus/CAE User’s Manual8 are listed in 
Table 2. For this model, the default values were used for ratios 1, 3, and 4 because further 
testing of the concrete being modeled was not available.  Ratio 2 was changed from the 
default value of 0.09 to 0.15 to allow for quicker convergence in the full analysis of the 
bridge model.   
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Table 2 – Failure Ratios as defined in Abaqus/CAE User’s Manual8 
Ratio Definition Default Value 

1 Ratio of the ultimate biaxial compressive stress to the uniaxial 
compressive ultimate stress. 1.16 

2 Absolute value of the ratio of uniaxial tensile stress at failure to 
the uniaxial compressive stress at failure.   0.09 

3 
Ratio of the magnitude of a principal component of plastic strain 
at ultimate stress in biaxial compression to the plastic strain at 
ultimate stress in uniaxial compression. 

1.28 

4 

Ratio of the tensile principal stress value at cracking in plane 
stress, when the other nonzero principal stress component is at 
the ultimate compressive stress value, to the tensile cracking 
stress under uniaxial tension. 

0.33 

 
The prestressed and conventional reinforcement material properties were defined 

using the same material properties.  The reinforcement was modeled as an elastic material 
with a Young’s modulus of 29,000 ksi, and a Poisson’s ratio of 0.3. The prestress of the 
strands was not included in this analysis because the results from the destructive testing were 
relative to the behavior after the prestressing.  

DAMAGE 

The damage was modeled by taking a three inch long cross-section from the beams at 
the location of the induced damage and replacing the concrete material properties with an 
elastic material that had a relatively low Young’s modulus and a relatively high Poisson’s 
ratio.  The Young’s modulus and Poisson’s ratio differed for each damaged section.  Table 3 
presents the material properties used in the damaged sections.  Sections labeled (A) are the 
material properties for the cross-section modeling the cut made 23.7 ft from the bridge 
abutment and sections labeled (B) are the properties for the cross-section modeling the cut 
made 27 ft from the bridge abutment.  These values differ significantly in the damaged cross-
sections to model the behavior observed in the results from the bridge span testing. Also, the 
14 prestressed strands of the bottom row in the damaged beams were cut so that these strands 
were not present in the 3 in. damaged cross-sections.  The material in the damaged sections 
models the formation of a plastic hinge when the load is applied to the bridge model.  
Manipulating these damaged sections allowed the strain discontinuity between the damaged 
and undamaged beams to be accurately modeled. 

Table 3 - Material properties of the damaged sections 
Part Young’s Modulus (ksi) Poisson’s Ratio 

Beam 4 Damage (A) 600 0.30 
Beam 4 Damage (B) 300 0.30 
Beam 5 Damage (A) 40 0.30 
Beam 5 Damage (B) *6959 *0.20 
Beam 6 Damage (A) 10 0.30 
Beam 6 Damage (B) 1400 0.30 

* - Material properties were not changed and were the same as the beam 
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INTERACTIONS 

The interaction between the concrete beam and the reinforcement was modeled as an 
embedment constraint.  Embedding the elements of the reinforcement in the concrete 
elements is an effective computational method to accurately model the effect of the 
reinforcement on the surrounding concrete elements5.  The embedment constraint embeds a 
group of user defined non-host elements into a group of user defined host elements.  The sets 
of steel reinforcement were defined as non-host elements and the individual beams were 
defined as the host elements.  When a group of non-host elements is embedded in a group of 
host elements, the translational degrees of freedom of the non-host elements are taken away 
where the nodes of the non-host elements coincide with the nodes of the host elements.  The 
translations at each degree of freedom of nodes of the host elements are then placed on the 
nodes of non-host elements.  This assumes there is non-slip bonding between the concrete 
and reinforcement.  Slip and non-slip bonding in embedded steel reinforcement was 
investigated by Barzegar and Maddipudi; it was concluded that the global behavior did not 
significantly change when accounting for bond-slip5.  This particular embedment type is 
solid element embedded into solid element.  This will result in a more accurate modeling of 
the concrete-reinforcement interaction as opposed to modeling the reinforcement as shell or 
membrane elements.  However, using shell or membrane elements is more computationally 
economical. 

For the interaction between the beam solid sections and the hollow box beams, the 
outer perimeter surfaces of the beam solid sections were tied to the inner perimeter of the box 
beams using a surface to surface tie constraint.  This constraint bonds the two surfaces 
together absolutely.  This models a perfect bond between the two surfaces, and since the 
actual solid sections of the beams were precast monolithically with the beams this is an 
appropriate method to bond the two surfaces. 

The interaction between the concrete beams and the shear keys was also modeled 
using a surface to surface contact.  The surfaces of the shear keys and beams that come into 
contact were defined as contact pairs.  Both the tangential and normal behaviors of the 
surface contact were defined.  The friction formulation was defined in the tangential behavior 
and a coefficient of friction (μ). The normal behavior was selected to be linear and was given 
a contact stiffness which controls the transfer of normal stresses between the two surfaces of 
the contact. The contact stiffness also restrains the nodes of the two contacting surfaces from 
penetration into one another. The values given for the coefficient of friction and the contact 
stiffness varied to model the distribution of strain and deflection transversely across the 
actual bridge span. The values used for the coefficient of friction and contact stiffness for 
each interaction are listed in Table 4. 
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Table 4 -Varied interaction properties, μ and Kc 
Interaction Coefficient of Friction, μ Contact Stiffness, Kc 

Shear Key 1-2 0.60 35 
Shear Key 2-3 1.00 150 
Shear Key 3-4 0.85 100 
Shear Key 4-5 0.80 100 
Shear Key 5-6 0.80 100 
Shear Key 6-7 1.00 200 
Shear Key 7-8 0.60 10 
Shear Key 8-9 0.60 10 

 
In Figure 4, the assembled interaction between the beams and reinforcement and the 

beams and shear keys can be observed.  

 
Figure 4 - Assembled cross-section 

LOADS 

In the damaged bridge span model, surface nodes lying on the top surface of the beams 
within the location of the cylinder loadings were defined in sets for each of the three cylinder 
locations.  Defining node sets at the locations of the actual cylinder locations allowed for 
accurate modeling of the behavior of the load applied in the destructive testing of the bridge 
span.  Once the sets were defined for each loading location, the desired magnitude of load to 
be applied to the model was divided by the number of nodes for that cylinder node set and 
concentrated point loads were applied at each node of the node set in the downward vertical 
direction.  Figure 5 provides a plan view of the FEM showing the load applied at the node 
sets for all of the cylinders. 

Embedded 
longitudinal 
reinforcement 

Beam/Shear key 
contact interaction 
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Figure 5 – Cylinder load locations on the damaged bridge span model 

Similar to the cylinder loadings on the damaged bridge span model, the truck loads were 
applied to the undamaged bridge span model by applying concentrated loads to the nodes that 
were located on the top surface of the beams where the tires contacted the bridge span. The 
magnitude of load applied at each tire load location corresponded with the load from each 
tire that was measured during the truck load testing of the bridge span. Figures 6 and 7 shows 
the locations of the tire loads for each of the four truck loadings modeled with the 
undamaged bridge span model. 

 
Figure 6 – Truck loading locations 1 and 2 on the undamaged bridge span model 

 

Cylinder 8 

Cylinder 5 

Cylinder 2 
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Truck Loading 1 Truck Loading 2 
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Figure 7 – Truck loading locations 3 and 4 on the undamaged bridge span model 

BOUNDARY CONDITIONS 

To model the abutment and pier of the damaged bridge span, a combination of support 
conditions and axial springs were used.  For the abutment, a node set was defined 18 in. from 
the end of the beam on the bottom surface of the beam. This node set contained 13 evenly 
spaced nodes per beam, and a complete transverse translational restraint was defined for 
these nodes. The purpose of this restraint was to aid in mathematical convergence of the 
model and had minimal influence on the results of the model.  The effects of the abutment on 
the translations of the span longitudinally and vertically were accounted for using axial 
springs.  Strict support conditions, such as complete translational restraints, were not used 
because this also caused mathematical convergence problems.  These axial springs were 
placed 18 in. from the end of the beam. The stiffness of the axial springs was assigned 
individually for each beam to allow for differences in the influence of the dowel bars in the 
abutment on each beam. 

The effects of the pier on the bridge span were modeled similarly to the abutment.  
However, the location of the node sets for the complete transverse translational restraint and 
axial springs were located 12 in. rather than 18 in. from the end of the beam.   

TRANSVERSE TIE RODS 

The transverse tie rods were modeled in the damaged bridge span with axial springs.  The 
adjacent nodes of adjacent beams at the location of the transverse tie rods were tied together 
using springs.  This axial spring caused the force due to the translations in the transverse, 
vertical, and longitudinal directions of one node to be transferred to the adjacent node on the 
adjacent beam.  The reaction of the axial springs when the span was loaded resulted in a 
concentrated force on the nodes where the axial springs were applied.  This reaction allowed 
for the development of a normal force required for the tangential behavior in the interaction 
between the shear keys and beams. 

 

 
 

Truck Loading 3 Truck Loading 4 
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RESULTS 
Once an accurate FEM was produced, the strain and deflection results output by the 

model were compared to the results of three selected loading cases obtained during the 
destructive testing of the bridge span.  The loading cases selected were taken from the single 
cylinder loading of the bridge span.  The first loading case was when Cylinder 2 was 
applying 62.3 kips, the second was when Cylinder 5 was applying 72.7 kips, and the final 
loading case was when Cylinder 8 was applying 51.9 kips. The results from the FEM and 
experimental results are for the strain and deflections recorded at two instrument lines that 
ran transversely across the bridge span. The first instrument line was located 22 ft from the 
end of the beams (Line MS & MD). The second instrument line was located 36.5 ft from the 
end of the beams (Lines QS & QD). The strains were measured at the center of the bottom 
flanges of all applicable beams. The deflections were measured at the center of the top 
flanges of all applicable beams. In some instances the flanges of the exterior beams were too 
severely degraded for instrumentation to be installed.   

The FEM was also used to model the bridge span behavior during truck loading 
conducted on the same bridge span prior to being damaged. To model the truck loadings on 
the undamaged bridge span, the damaged sections were removed from the bridge span model 
and no other changes were made to the model. The bridge span model was then subjected to 
four separate truck loadings that were applied on the actual bridge span. 

STRAIN RESULTS 

Figure 8 shows the comparison of the strain results acquired from the FEM to the 
experimental results of the destructive testing. A strain comparison for the results of both 
instrument lines, MS and QS, while Cylinder 2 was applying 62 kips to the bridge span are 
shown in Figure 8.  It can be seen that the FEM closely simulates the strain distribution 
behavior of the bridge span while loaded with Cylinder 2.  The FEM emulates the higher 
strains on the loaded beams, as well as the significant drop in strain on the damaged beams.  
The behavior of the beams adjacent to the damaged beams and away of from loading, in this 
case Beams 7 and 8, having larger strain than the damaged beams was also emulated with the 
FEM.  The average difference in strain between the FEM and the experimental results for 
instrument lines MB and QB was 9.29 με.   
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Figure 8 - FEM and experimental strain results while loaded by Cylinder 2 

Displayed in Figure 9 is the strain comparison of the FEM to the experimental results for 
instrument lines MS and QS while Cylinder 5 was applying 73 kips to the bridge span.  
Figure 9 shows that the FEM was able to accurately imitate the strain distribution behavior of 
the damaged bridge span when load was applied to the damaged beams of the bridge span.  
This includes the behavior where the loaded damaged beams experienced lower relative 
strain values than the adjacent undamaged beams.  The average difference in strain between 
the FEM and the experimental results for instrument lines MB and QB was 3.10 με. 

 
Figure 9 – FEM and experimental strain results while loaded by Cylinder 5 
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Presented in Figure 10 is the strain comparison of the results from the FEM and the 
experimental testing of the bridge span while 52 kips was applied to the bridge span by 
Cylinder 8.  In this loading case, the FEM was able to mimic the strain behavior of the loaded 
beams.  However, the larger relative strain of the beam adjacent to the damaged beams and 
opposite of the loading was not achieved.  Despite the FEM being unable to model this strain 
distribution, the general strain distribution across the entire span provided by the FEM 
closely resembles the results obtained during destructive testing.  The average difference in 
strain between the FEM and the experimental results for instrument lines MB and QB was 
8.72 με.   

 
Figure 10 - FEM and experimental strain results while loaded by Cylinder 8 

DEFLECTION RESULTS 

Similar to the strain distribution behavior of the bridge span, the deflection profiles 
provided by the FEM were also compared to the corresponding deflection results from the 
experimental testing of the bridge span.   

Figure 11 provides a comparison of the deflection results from the FEM to the results 
from the destructive testing of the bridge span while Cylinder 2 was applying load to the 
span. The deflection results yielded by the FEM were larger relative to the experimental 
deflection results for the beams that were in close proximity to the loading location and the 
opposite was true for the beams away from the loading. This behavior may be explained by 
the assumption made for the model that the material properties of the beams were uniform 
throughout the entire beam.  The model does not take into account any unknown changes in 
the material properties of the beams. The magnitudes of the deflections are also small which 
makes matching the deflection results more difficult.  The average difference between the 
deflection results of the FEM and the experimental results was 0.040 in. while the span was 
loaded by Cylinder 2. 
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Figure 11 - FEM and experimental deflection results while loaded by Cylinder 2 

Similar to when the span was loaded by Cylinder 2, Figure 12 shows that the deflection 
results found using the FEM were larger than the experimental results when Cylinder 5 was 
applying load to the bridge span.  Again, this behavior may be caused by the assumptions 
made when developing the FEM.  The results provided by the FEM offer a reasonable 
approximation of the general deflection profile.  The average difference between the 
deflection results of the FEM and the experimental results while Cylinder 5 was applying 
load to the span was 0.042 in. 

 
Figure 12 – FEM and experimental deflection results while loaded by Cylinder 5 
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Shown in Figure 13 is the comparison of the FEM deflection results to the experimental 
deflection results from the destructive testing of the bridge span.  Similar to the previous 
results presented from the FEM, the FEM yielded results where the loaded beams exhibit 
larger magnitudes of deflection than the experiment results when the span was loaded by 
Cylinder 8.  The deflection results from the FEM for the beams away from the load were 
significantly closer to the deflections from the experimental testing.  The average difference 
between the deflection results of the FEM and the experimental results was 0.033 in. while 
the span was loaded by Cylinder 8. 

 
Figure 13 - FEM and experimental deflection results while loaded by Cylinder 8 

TRUCK LOADING RESULTS 

Presented in Figure 14 is a comparison of the strain results from the FEM and the truck 
testing of the undamaged bridge span. The loading locations and magnitude in truck loadings 
3 and 4 were very similar and therefore the FEM and truck testing results are not provided. 
The undamaged bridge span model was able to emulate the general strain distribution 
behavior of the actual undamaged bridge span. However, the results provided by the FEM 
were generally smaller relative to the strain results from the truck testing. The average 
difference in strain between the FEM and the experimental results was 11.72 με 
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Figure 14 – FEM and experimental strain results for the truck loadings 

Figure 15 displays a comparison of the deflection profiles from the FEM and the truck 
testing of the undamaged bridge span. This comparison demonstrates that the FEM 
accurately emulates the deflection behavior of the undamaged bridge span while being 
loaded at multiple magnitudes and at multiple locations on the span. As seen with the 
cylinder loadings, the beams in the FEM experience relatively higher deflections at the 
locations of the loads and relatively less deflection away from the location of the loading. 
The average difference between the deflections provided by the FEM to the experimental 
deflections from the three truck loadings was 0.029 in.  

Figure 15 - FEM and experimental deflection results for the truck loadings 



Huffman, Steinberg, and Sargand  2012 PCI/NBC 

18 
 

The strain results from the model were also used to develop distribution factors (DF) for 
each truck loading case. The distribution factors were calculated by taking a ratio of the 
largest strain of all of the individual beams to the total measured strain across the entire 
bridge span. Table 5 shows the largest distribution factor and which beam experienced the 
largest strain for each of the four truck loading cases and the three single cylinder loadings on 
the damaged FEM. The AASHTO LRFD distribution factors for the bridge span were also 
calculated for both interior and exterior beams and presented in Table 53. The distribution 
factors calculated using the strain results from the FEM were used to calculate LRFR and 
LFR rating factors3. 

Table 5 – Distribution Factors for the truck loading and single cylinder load cases 
 Truck Loading Cylinder Loading 

Loading Case 1 2 3 4 2 5 8 
Beam 2 8 1 1 1 7 8 

Distribution Factor 0.205 0.120 0.156 0.161 0.341 0.175 0.265 
AASHTO LRFD DF 0.242 0.242 0.254 0.254 - - - 

 
 
CONCLUSIONS  

It has been shown through the use of finite element modeling that the general behavior of 
adjacent prestressed concrete box beam bridges and individual box beams with varying 
degrees of deterioration can be accurately simulated. Most notably, the load distribution 
behavior between adjacent beams can be predicted for both damaged and undamaged bridge 
spans. Given sufficient load transfer mechanisms, adjacent box beam bridge systems 
continue to perform as a system when the bridge possesses degraded beams. However, the 
load distribution between adjacent beams is altered. This change in load distribution can be 
simulated with finite element modeling. This procedure can assist in the evaluation of other 
deteriorating adjacent box beam bridges. 
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