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ABSTRACT 
 

Inverted-T straddle bent caps are often used in bridge construction to reduce 
the elevation of bridges and/or to improve available clearance beneath the 
beams. The bridge-deck stringers are supported on ledges at the bottom of the 
Inverted-T bent cap, effectively loading the caps at their tension chord. This 
arrangement generates a tension field in the web near loading points, as 
forces are ‘hung’ to the compression chord at the top of the beam. In contrast, 
top- or compression-chord loading does not generate such a tension fields in 
the web. Several recently built Inverted-T caps in Texas have shown 
significant inclined cracking triggering concern about current design 
procedures for such structures. 
 
A study aimed at evaluating the differences between tension- and 
compression-chord loaded members is presented. Results are included from 
an ongoing study on Inverted-T straddle bent cap specimens (TxDOT Project 
0-6416). Test specimens presented in this paper were full scale with overall 
height of 42 inches. Parameters varied in the tests were ledge depth, and 
number of loading points. 
 
Results from a previous study on top- or compression-chord loaded specimens 
with similar dimensions and reinforcing details (TxDOT Project 0-5253) are 
compared with results from the bottom- or tension-chord loaded specimens of 
the current study. Preliminary findings pertaining to the strength and 
serviceability implications of web tension fields are discussed. 

 
 
Keywords:  Research, Inverted-T, Deep Beams, Shear, Straddle Bent Caps, Strut-and-Tie 
Modeling.  
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INTRODUCTION 
 
There are 13 documented cases of Inverted-T straddle bent caps in Texas exhibiting shear 
cracking at early ages.  The present study aims to obtain a better understanding of the 
structural behavior of bottom-chord loaded specimens and to develop new design criteria to 
minimize/eliminate such cracking in the future. 
 
In top-chord loaded specimens loads are applied on top of the web where the force is 
transferred from the point of application directly to the support, via a compression strut. 
Alternatively, in bottom-chord loaded specimens like Inverted-T beams the loads are applied 
indirectly to the bottom of the web through the ledges. The forces are then “hung” up to the 
compression chord via stirrups and then transferred to the supports. The resulting tension 
field is shown in red in Figure 1. 
 
A recent study (TxDOT Project 0-5253, Strength and Serviceability Design of Reinforced 
Concrete Deep Beams) developed design guidelines using Strut-and-Tie modeling for 
strength and serviceability of deep beams. This study focused on top-chord loaded members.  
The design provisions proposed by TxDOT Project 0-5253 were used to estimate ultimate 
strengths of Inverted-T specimens of the current project. A preliminary assessment of the 
applicability of 0-5253 provisions to tension-chord loaded members was performed to 
identify any required modifications. 

 
Figure 1 Top-chord loaded specimen: a) STM and b) CCC Node.  

   Bottom-chord loaded specimen: c) STM and d) CCT Node 
                
 
RESEARCH SIGNIFICANCE 
 
A review of previous literature revealed the scarcity of experimental investigation of 
Inverted-T specimens. Design criteria currently used in practice was based mostly on small-
scale experiments. Therefore it was deemed necessary to investigate specimens of 
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Loads were applied using a 5-million pound capacity double-acting hydraulic ram for the 
beams with one point load and three 2-million pound capacity rams for the beam with 
multiple point loads. A “U” steel frame (Figure 2) was constructed to apply the loads to the 
ledges. The beam originally rested on steel frames at each end and was lifted by the 
application of load until it reacted against the transfer beams. Horizontal displacement and 
rotation was allowed with a 3-in diameter roller between two steel plates of 7 and 5 inches of 
thickness for the beams with one and three point loads respectively. A ¼-in reinforced 
neoprene bearing pad was placed between the steel plate and the concrete beam ensure a 
uniform load distribution avoiding stress concentrations. 
 
Beams were monotonically loaded in 50-kip increments up to the appearance of the first 
diagonal crack, then in 100-kip increments up to failure. Crack comparator cards were used 
to measure the maximum shear crack widths after each load increment on both faces of the 
web by two researchers. 
 
TEST SPECIMENS 
 
Specimens were built using pre-mixed Class C concrete with design strength of 5 ksi. The 
mixture proportions are summarized in Table 1. Concrete cylinders were prepared 
conforming to ASTM C31 and tested according to ASTM C39 at 7 days, 28 days, and when 
the beam was loaded. Steel formwork was used to expedite the construction process and to 
ensure dimensional accuracy. Specimens were cured for 7 days and then stored indoors for at 
least 21 additional days before testing. Grade 60 deformed steel bars meeting the 
requirements of ASTM A615 were used. Coupons of each bar size were tested for each beam 
according to ASTM A370 to find the actual strength of the reinforcement as summarized in 
Table 2. 
 
Table 1 Mixture proportions 

Material Quantity 
Type I Portland Cement 387 lb/cy 
Fly Ash 94 lb/cy 
CA: 3/4" River Rock 1657 lb/cy 
FA: Sand 1537 lb/cy 
Water 22 gallons/cy
HRWR Admixture 19 oz/cy 
Set Retardant Admixture 7 oz/cy 
Water/Cement Ratio 0.48 
Slump 7 inches 

 
A summary of the details for the four beams analyzed in this paper are presented in Table 2. 
The first two specimens are part of the current study of bottom-chord loaded beams (TxDOT 
0-6416); whereas the last two are top-chord loaded beams that were part of TxDOT Project 
0-5253.  



Fernandez-Gomez, Larson, Garber, Bayrak, and Ghannoum    20011 PCI/NBC 

4 
 

 
Table 2 Specimen summary 

 
1 top-chord loaded specimens from project 0-5253 
Note: Values marked as * are not applicable for rectangular specimens 
All variables are defined in the notation section. 
 
Reinforcement details and cross sections are shown in Figure 3 and Figure 4. The 
nomenclature for the two bottom-chord loaded specimens is as follows: The first character 
refers to the depth of the ledge, Deep (hle = 0.5 h) or Shallow (hle = 0.33 h). The second 
character (S) refers to the length of the ledge; in this case both specimens have short ledges 
(i.e. ledges extend a distance hle beyond the end of the loading plate in the longitudinal 
direction). The third character refers to the number of pairs of point loads applied to the 
specimen. The next two characters refer to the overall depth of the specimens; in this case 
both specimens have a depth of 42 inches. The next number refers to the shear span-to-depth 
ratio (1.85 for the two specimens). The final number represents the ratio of shear 
reinforcement to effective area; in this case both specimens have a ratio of 0.3%. 
 
The four specimens presented in this paper were selected for their similarities to allow for 
better comparisons. The first two specimens have the same characteristics; except that the 
first one has a deep ledge and one load point and the second one has a shallow ledge and 
three point loads.  
 
The last two specimens in Table 2 have the same characteristics as the first two, except that 
they were loaded at the top-chord with slightly different bearing plate sizes. All specimens 
had the same web area and shear reinforcement to effective area ratio (ρv and ρh), achieved 
through slightly different bar sizes and spacing. 

Specimen bw ble h hle d d'le ρ l ρ l' ρv

Size and 
Spacing 

(sv)
ρh

Size and 
Spacing (sh) ρha

Size and 
Spacing 

(sha)

Support 
plate

Load 
plate

a/d

DS1-42-1.85-03 21 42 42 0.5 h 37.6 18.7 0.024 0.006 0.003 # 4 @ 6.5" 0.003 # 4 @ 6.5" 0.012 # 6 @ 3.5 16 x 20 26 x 9 1.96
SS3-42-1.85-03 21 42 42 0.33 h 37.6 11.7 0.024 0.006 0.003 # 4 @ 6.5" 0.003 # 4 @ 6.5" 0.014 # 6 @ 3.0 16 x 20 18 x 9 1.85
I-03-21 21 * 44 * 38.5 * 0.023 0.012 0.003 # 4 @ 6.5" 0.003 # 4 @ 5.75" * * 16 x 21 20 x 21 1.84
III-1.85-03b1 21 * 42 * 38.6 * 0.023 0.012 0.003 # 4 @ 6.0" 0.003 # 5 @ 10.1" * * 16 x 21 20 x 21 1.84
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Figure 3 Specimen details;  

   a) DS1-42-1.85-03, b) SS3-42-1.85-03, c) I-03-21, d) III-1.85-03b1 

a) 

b) 

c) 

d) 
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A summary of the strength and serviceability data collected during the tests is presented in 
Table 3. One of the objectives of the current study was to evaluate the differences between 
top- and bottom-chord loaded members. In order to analyze the implications of the tension 
fields induced near the loading points in bottom-chord loaded specimens the results from the 
present study (first two specimens) were compared with specimens of a previous study1 of 
top-chord loaded members (last two specimens). 
 
Table 3 Summary of experimental results 

 
1 top-chord loaded specimens from project 0-5253 
Note: Values marked as * are not applicable for rectangular specimens 
All variables are defined in the notation section. 
 
Strength values are normalized by the effective area (i.e. bwd) and by the strength of 
concrete, since it is associated with the ultimate capacity of the specimens. For the case of 
serviceability values, they are normalized by the effective area and ඥ݂Ԣ௖ as the first cracking 
of the beam is associated with the tensile strength of the concrete. 
 
STRENGTH RESULTS 
 
The strength of the specimens is reported as Vtest, the shear at the critical section at the 
maximum applied load. The critical section was defined as the midpoint of the shear span, at 
a distance a/2 from the center of the support and the calculations to obtain Vtest are presented 
in Figure 6. 

Specimen bw d f'c fyl fysh fyha a/d Vcrack Vtest

DS1-42-1.85-03 21 37.6 5258 69.2 63.1 63.7 1.96 172 712 0.24 3.0 0.17
SS3-42-1.85-03 21 37.6 5891 68.6 67.3 64.7 1.85 126 523 0.24 2.1 0.11
I-03-21 21 38.5 5240 73 67 * 1.84 144 569 0.25 2.5 0.13
III-1.85-03b1 21 38.6 3300 69 64.5 * 1.84 114 471 0.24 2.4 0.18
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serviceability performance. However, both beams presented approximately the same 
cracking shear and ultimate capacity. 
 
It is also worth noting that for the same crack width, the beam with the shallower ledge is 
closer to failure than the beam with the deeper ledge. This observation holds true up to about 
75% of the ultimate capacity; however, above this value both beams presented similar crack 
widths for the same percentage of ultimate capacity. 
 
APPLICABILITY OF DESIGN PROVISION OF TXDOT PROJECT 0-5253 TO BOTTOM-
CHORD LOADED MEMBERS. 
 
A new Strut-and-Tie Modeling (STM) design procedure was developed by the previous 
TxDOT Project 0-5253 to estimate strength and serviceability performance of deep beams. 
Modifications to ACI 318-08 and AASHTO LRFD (2008) code provisions for STM were 
proposed. 
 
The principal Strut-and-Tie Modeling provisions proposed by TxDOT Project 0-5253 were:  

• Use STM to design sections with shear span-to-depth rations smaller than 2. 
• Bond stresses resulting from the force in a developed tension tie need not to be 

applied as a concentrated force to the back face of the CCT nodes (where C represents 
compression and T tension) 

• Smeared nodes are not as critical as singular nodes and do not need to be checked. 
• Capacities of all faces of CCC and CCT nodal regions can be increased by a factor 

ඨ
ଶܣ

ଵൗܣ when triaxial confinement is present. 

• A minimum of 0.3% of shear reinforcement evenly spaced in each orthogonal 
direction should be provided in the effective strut areas. Maximum spacing should be 
limited to the smaller of d/4 or 12in. 

• Concrete efficiency factors shall be taken as: 
0.85 bearing and back face of CCC nodes 
0.70 bearing and back face of CCT nodes 

0.85 -  ݂Ԣܿ ൗ݅ݏ20݇  at CCC and CCT strut-to-node interfaces. But no more than 

0.65 or less than 0.45. 
0.45 at CCC and CCT strut-to-node interface for structures that do not contain 
crack control reinforcement. 

 
These provisions were calibrated using top-chord loaded members and were used to calculate 
ultimate strength predictions for the bottom-chord loaded specimens reported in this paper in 
order to validate their applicability or to identify any required modifications. A summary of 
the actual to predicted capacity ratios is shown in Figure 12. Ratios larger than or equal to 1.0 
would be considered conservative estimates of the shear capacity of the beam.  
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Figure 12 Actual to predicted capacity ratios 
 
The actual to predicted capacity ratios for the two bottom-chord loaded specimens are greater 
than 1.0, which is indicative of a conservative design. However, we can observe that the 
average of the bottom-chord loaded specimens is lower than the top-chord loaded specimens. 
This indicates that although the design is safe, the conservatism decreased by roughly 20%. 
Additional test results will help to verify these observations.  
 
 
SUMMARY 
 
Several recently built Inverted-T caps in Texas showed significant inclined cracking 
triggering concern about current design procedures for such caps. Some of the objectives of 
the present study are to evaluate the differences between tension- and compression-chord 
loaded members to obtain a better understanding of the structural behavior of Inverted-T 
straddle bent caps, and to develop design recommendations to prevent or minimize such 
cracking in the future.  
 
Findings pertaining to the strength and serviceability implications of web tension fields were 
briefly discussed. A significant difference was observed between specimens loaded at 
midheight and specimens loaded at the bottom third of their height. This observation suggests 
that loading the beam below its middepth decreases its ultimate capacity. 
 
There is a significant decrease in the shear carried at the appearance of first diagonal 
cracking for the beam with shallow ledges compared with the specimen with deep ledges. A 
strong relationship between applied loads and crack widths was observed. For the same crack 
width, the specimens have a difference in applied loads no larger than approximately 15%. 

1.57

1.02

1.32

1.85

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

D
S1

‐4
2‐
1.
85

‐0
3

SS
3‐
42

‐1
.8
5‐
03

I‐
03

‐2

III
‐1
.8
5‐
03
b

Bottom‐chord Loaded 
Average =  1.30

Top‐chord Loaded
Average = 1.59



Fernandez-Gomez, Larson, Garber, Bayrak, and Ghannoum    20011 PCI/NBC 

14 
 

 
A recent study1 of top-chord loaded specimens developed design guidelines using Strut-and-
Tie modeling for strength and serviceability of deep beams; results of the current study are 
compared with those of the previous TxDOT Project 0-5253 to evaluate the applicability of 
the new design provisions to Inverted-T beams or to identify any required modifications. 
 
The experiments presented in this paper suggest that the Strut-and-Tie Modeling (STM) 
design provisions proposed by the previous TxDOT Project 0-5253 produce safe estimates of 
ultimate strengths of bottom-chord loaded specimens. The conservatism observed in bottom-
chord loaded members was lower than that observed in top-chord loaded members. This is 
especially true for beams with shallow ledges where the tension field is concentrated in a 
narrower area. 
 
This paper contains a small selection of tests from a larger ongoing research study of 
Inverted-T straddle bent caps (TxDOT Project 0-6416). Results show the wide range of 
scatter typical of shear tests due to the natural variability in shear behavior. A larger number 
of tests is required to further validate observations and discover additional trends. The test 
program will be completed with over 20 specimens to complement the results presented in 
this paper before drawing the final conclusions. 
 
 
ACKNOWLEDGEMENTS 
 
The authors are sincerely grateful to the Texas Department of Transportation (TxDOT) for 
providing the funds to conduct this research study. The recommendations of project director 
Jamie Farris and other members of TxDOT, including Jamie Farris, Dean Van Landuyt, 
Courtney Holle, Glenn Yowell, Mike Stroope, Nicholas Nemec, and Roger Lopez and 
Duncan Stewart are deeply appreciated. 
 
 
DISCLAIMER 
 
The contents of this paper reflect the views of the authors, who are responsible for the facts 
and the accuracy of the data presented herein.  The contents do not necessarily reflect the 
official views or policies of the Texas Department of Transportation. 
 
 
 
REFERENCES 
 
1. Birrcher, David, et al. 2009. “Strength and Serviceability Design of Reinforced Concrete 
Deep Beams,” Austin, TX : Center for Transportation Research, The University of Texas at 
Austin. Technical Report. 
2. Garber, David B. 2011. “Shear Cracking in Inverted-T Straddle Bents,” Austin : 
University of Texas at Austin. Master Thesis. 



Fernandez-Gomez, Larson, Garber, Bayrak, and Ghannoum    20011 PCI/NBC 

15 
 

3. Ferguson, Phil M. 1956. “Some Implications of Recent Diagonal Tension Tests”, Journal 
of the American Concrete Institute, V. 53, No. 8, pp. 157-172. 
 
 
NOTATION 
 
a  =  shear span, ft 
a/d  =  shear span-to-depth ratio 
A1 =  loaded area 
A2  =  effective loaded area 
ble  =  ledge width, in 
bw  =  web width, in 
CCC  =  nodes in which only compressive struts intersect 
CCT  =  nodes anchoring one tension tie 
d  =  distance form extreme compression fiber to centroid of tensile reinforcement, 

in 
d’ledge = distance from extreme compression fiber to centroid of tensile reinforcement 

of ledge, in 
fyl = tensile strength of tensile reinforcement, ksi 
fyha = tensile strength of hanger reinforcement, ksi 
fysh = tensile strength of shear reinforcement (Av and Ah), ksi 
f’c = compressive strength of concrete cylinders at the day of the test, psi 
h  =  beam height, in 
hle  =  ledge height, in 
L  =  clear span, in 
LH  =  overhang length, in 
PD = weight of test specimen, kip 
PL = load applied by rams, kip 
PTR = weight of each transfer girder, kip 
PU = ultimate load carried by the specimen, kip 
Ra = Reaction measured by the load cells of support a, ksi 
Rb = Reaction measured by the load cells of support b, ksi 
sv  =  spacing of vertical shear reinforcement, in 
sh  =  spacing of horizontal shear reinforcement, in 
sha  =  spacing of hanger reinforcement, in 
Vcrack  =  shear carried in the test region when the first diagonal crack formed, kip 
Vtest  =  maximum shear carried in test region, including the estimated self-weight of 

the specimen and transfer girders, kip 
ω  =  specimen self-weight, kip/ft 
ρl  =  ratio of longitudinal tensile reinforcement to effective area (As / bwd) 
ρl′  =  ratio of longitudinal compression reinforcement to effective area (A′s / bled) 
ρh  =  ratio of horizontal shear reinforcement to effective area (Ah / bwsh) 
ρha  =  ratio of hanger reinforcement to effective area (Aha / bwsha) 
ρv  =  ratio of vertical shear reinforcement to effective area (Av / bwsv) 
Load Plate  =  dimensions of the load bearing plate measured in the longitudinal 
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and transverse direction of the beam (l x w), in 
Support Plate =  dimensions of the support bearing plate measured in the longitudinal 

and transverse direction of the beam (l x w), in 


