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ABSTRACT 
 

This study presents a selected portion of a detailed experimental program 
performed to investigate the proper and most efficient configuration to apply 
Carbon Fiber Reinforcing Polymers (CFRP) to repair laterally damaged 
Prestressed Concrete (PSC) bridge girders.  The flexural behavior of ten, 20-
feet long, half-scaled AASHTO type II PSC girders is reported.  The simulated 
vehicle collision impact damage was induced by saw cutting the girders’ 
lower concrete corner and slicing through one of the pre-stressing strands.  
Then, to repair the damaged area, epoxy injections and other concrete repair 
materials and methods are used.  Various configurations and multiple layers 
of CFRP (both longitudinal strips on girder soffit and U-wrapping) were 
applied to each girder to constitute the structural repair.  The ten PSC girders 
were then tested in flexure until failure using a four point loading setup at the 
Florida Department of Transportation (FDOT) structures research 
lab.   Measurements of the applied load, the deflection at five different 
locations, strains along the cross-section height at mid-span, and multiple 
strains longitudinally along the bottom soffit were recorded for each test 
performed.  The Analysis of the results provided solid evidence for 
conclusions to the most efficient CFRP design schematic, the best 
configuration to avoid CFRP debonding, and other information that should be 
useful for properly repairing laterally damaged bridge girders. 
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INTRODUCTION 
 
Carbon fiber reinforcing polymers (CFRP) is becoming a more common option for repairing 
structural deficiencies and damaged structural members because of its appealing and unique 
properties.  In the past, traditional repair techniques used have been expensive, labor 
intensive, and usually impede the ability for smooth traffic flow.  CFRP has proven to be a 
more desirable solution providing an inexpensive and rapidly applicable repair method which 
maintains the original configuration and overhead clearance of the structure1.  The 
emergence of CFRP applications as a preferred restoration solution has led to numerous 
studies documenting the behavior and design considerations for strengthening or retrofitting 
reinforced concrete (RC) members.  Yet, in contrast to the abundant information available on 
RC research, data on the behavior of prestressed concrete (PSC) beams strengthened with 
CFRP laminates is limited2.  Furthermore, of the limited studies available concerning PSC 
girders strengthened with CFRP, few address PSC members with pre-existing damaged 
repaired with CFRP3-5.  The two primary sources of damage experienced by PSC bridge 
girders are corrosion and vehicle impacts3.  Additionally, the combination of these two 
effects has been demonstrated to be significantly critical6.   
 
The majority of all bridge impacts are attributed to overheight vehicles colliding with girders 
of an overpass bridge.  These overheight collisions are quite frequent, making efficient and 
cost effective repair options a major concern for transportation departments all over the 
nation.  On average, in the United States between twenty-five and thirty-five bridges are 
damaged by colliding overheight vehicles every year, in each state7.  Most of which are 
impacted multiple times.  For example, in NY State thirty-two bridges have been impacted a 
total of five-hundred-ninety-five times since the mid 1990’s8.  The damaged caused by 
overheight vehicle collisions can be far too catastrophic for superficial repairs, but for less 
severe impacts, classifications for degrees of damage and applicable repair methods are 
available in Kasan, 20099, which was updated from NCHRP Project 12-2110-11.  These 
classifications include acceptable damage for the use of non-prestressed CFRP laminates for 
repair and restoration.  In addition, several field studies have demonstrated that impacted 
PSC bridge girders can be repaired using FRP materials after large losses of concrete cross-
section and the rupture of a small number of prestressing strands12-15.   
 
However, research conducted in a laboratory setting to describe the overall behavior of 
impact damaged PSC girders is sparse and the documents present mixed results.  Di 
Ludovico et al. 2005, Green et al. 2004, and Klaiber et al. 1999 all report issues with 
premature debonding failures due to either inadequate transverse CFRP anchors or 
development lengths16.  The common debonding problems reported, which result in early 
failures, is one of the main limiting factors for non-prestressed CFRP laminate repair designs.  
However, the current American reference for designing externally bonded CFRP laminate 
repairs, the ACI 440.2R-08, addresses some debonding behaviors as “areas that still require 
research”17.  It continues to state that “more accurate methods of predicting debonding are 
still needed”17.  It was the lack of reported laboratory testing, the frequency of overheight 
vehicle collisions, and the limitations of available design considerations that invoked this 
study. 
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The intent behind the research project, of which this paper is a portion of, was to conduct an 
extensive experimental analysis investigating the feasibility, performance, and most efficient 
configuration for repairing laterally damaged PSC bridge girders using bonded non-
prestressed fabric CFRP laminates.  Though it has been demonstrated that prestressed and 
post-tensioned CFRP repairs utilize the carbon fiber material more efficiently, the difficulties 
of implementation are more significant than the CFRP material savings3.  The non-
prestressed repair technique can be used for flexural strengthening9-24 and shear 
strengthening17&20-21; though the performances are limited by the ability of the product to 
transfer stresses into the concrete substrate through that bond.  Due to this limiting factor and 
the need to mitigate early debonding failures, specific points of investigation include: the 
effect of the U-wrappings on the strain developed in the longitudinal soffit laminates, the 
optimum configuration of the U-wrappings to mitigate debonding strains, the most beneficial 
level of strengthening (number of CFRP layers), and any design criteria needed for complete 
repair calculations.  The information collected from previous research combined with the 
results from testing provided enough evidence to make beneficial conclusions regarding 
debonding predictions, the most efficient CFRP configuration to mitigate debonding, and the 
optimum number of layers for the level of capacity increased desired. 
 
 
BACKGROUND 
 
This paper presents the behavior and analysis of ten half-scaled AASHTO type II PSC 
girders with imposed simulated lateral damage and CFRP repair applications.  These ten test 
beams represent only a portion of the entire research program.  Prior to the testing of the 
included PSC specimens, a total of thirty-four RC beams with simulate lateral damage were 
also tested with various CFRP configurations and levels of strengthening.  Similarly, 
following the reported ten PSC test girders, three more of identical sizes are being tested 
under fatigue loading to evaluate residual strengths and longevity.  Both the thirty-four RC 
test samples and the thirteen half-scaled PSC serve as preliminary investigations for the 
ultimate testing of eight full-scale AASHTO type II girders; inclusively constituting an 
extensive investigation.   
 
The RC samples previously tested were 8.0ft (2.44m) long with cross-section dimension of 
5.5in by 10.0in (14cm by 25.4cm) and were reinforced using either #3 or #4 (grade 60) steel 
rebar.  The simulated damage was imposed by cutting and bending one of the three 
longitudinal reinforcements at mid-span prior to casting; representing an impacted beam with 
a perfect concrete repair.  They were then wrapped using various CFRP configurations with 
multiple levels of strengthening and tested until failure in flexure.  A number of gages were 
instrumented for testing to measure the applied load, the corresponding deflections at 
multiple locations, the strains developed along the height of the beam, and the strains 
developed along the span of the beams’ extreme bottom fiber.  A detailed report of the 
experiment and basic results is documented in ElSafty and Graeff, 201122.  The RC testing 
and the resulting analysis was used as a stepping stone in order to understand the details of 
the problem and it has led to the following assumptions and considerations implemented 
when designing the repair application reported in this paper. 
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1. The ACI 440.2R-08 document provides adequate to conservative capacity estimations 
for repair designs, provided that transverse U-wrappings are used appropriately to 
mitigate early debonding failures.  

2. The longitudinal CFRP reinforcement should extend as far as possible within the span 
and should terminate no closer than specified in the ACI 440.2R-08 for development 
length requirements. 

3. If CFRP shear enhancements are not needed, the configuration of transverse U-wraps 
with spacings between them has shown to provide the same flexural benefits when 
compared to a fully wrapped beam. 

4. Evenly spaced transverse U-wrappings provide the most efficient configuration for 
CFRP flexural enhancement repairs to mitigate debonding. 

5. Without consideration for shear enhancements, the optimum spacing for transverse 
anchoring is theorized to be between a distance of 2/3d and 2d, where d is the height 
of the AASHTO beam (or ½ to 1½ the height of the entire composite cross-section). 

6. When repairing laterally damaged girders having a loss of steel reinforcements it is 
necessary to cover the damaged section with transverse strips to reduce the crack 
propagation in the critical region which initiates early debonding. 
 
 

EXPERIMENTAL STUDY 
 
The experimental testing presented in this paper included a total of ten half-scale AASHTO 
type II PSC girders having imposed simulated damage and applied CFRP laminates. The 
repaired girders varied in both CFRP configurations and levels of strengthening; which were 
decided upon based on the preliminary testing of the RC beams.  Two of the ten beams 
represented the control samples, damaged and undamaged, receiving no CFRP.  All ten of 
the PSC girders were tested in flexure until failure under a four point loading arrangement.  
Load measurements, deflection measurements, and strain measurements were recorded for all 
girders during their testing.  Similarly, the modes of failure and observed behaviors were also 
documented during testing, all of which are discussed with the results and analysis.  
 
 
TEST SPECIMENS 
 
MATERIALS  
 
The CFRP product decided upon for the research was a unidirectional carbon fiber fabric. It 
was used in conjunction with the saturant provided, which is an epoxy designed by the 
manufacturer specifically for the CFRP product.  This product was also used for the repair 
applications for the preliminary testing of the RC beams mentioned earlier.  A unidirectional 
fiber was desired for the research because of its affordability and efficiency.  The specific 
unidirectional fiber product chosen was selected based on the properties and outcomes 
reported in previous research documents 9-23 and the local availability of products.  All of the 
design values provided for the reinforcement properties of the materials used in the test 
specimens are listed in Tables 1 and 2.  



ElSafty and Graeff                                                                                               2011 PCI/NBC 

5 
 

Table 1. Properties of CFRP materials utilized in repair methods 
 

CFRP Material 
Properties 

Tensile 
Strength 

Tensile 
Modulus 

Ultimate 
Elongation Density Weight 

per Sq yd. 
Nominal 

Thickness 

Typical Dry 
Fiber 

Properties 

550 ksi    
3.79 GPa 

33.4 x 106 psi   
230 GPa 1.70% 0.063 lbs/in3   

1.74 g/cm3 
19oz.       

644 g/m2 N/A 

*Composite 
Gross Laminate 

Properties 

121 ksi    
834 MPa 

11.9 x 106 psi   
82 GPa 0.85% N/A N/A 0.04 in.     

1.0 mm 

*Gross laminate design properties based on ACI 440 suggested guidelines will vary slightly 
 
 
Table 2.  Properties of steel reinforcements used to design test specimens  
 

Steel 
reinforcements Dia. Bar Area grade Young’s 

Modulus Weight Yield 
Strength 

Ultimate 
Strength 

PS strand 0.4375 in  
11.1 mm 

0.115 in2 

96.9 mm2 270 27.5x106 
psi 

0.367 
lbs/ft 

243,000 psi   
1676 MPa 

270,000 psi   
1862 MPa 

#3 bars 0.375 in  
9.53 mm 

0.11 in2 

71.3 mm2 60 29x106 
psi 

0.376 
lbs/ft 

60,000 psi    
345 N/mm2 

90,000 psi    
621 N/mm2 

#4 bars 0.5 in  
12.7 mm 

0.2 in2 

126 mm2 60 29x106 
psi 

0.683 
lbs/ft 

60,000 psi    
345 N/mm2 

90,000 psi    
621 N/mm2 

 
 
GIRDER DESIGN 
 
The PSC girders tested were twenty feet long and had cross-sectional dimensions 
representing a half-scale model of an AASHTO type II girder.  An additional decking four 
inches thick was also cast on top of the girders to simulate a bridge deck composite with the 
PSC girder. The concrete used for manufacturing the girders ended up having a compressive 
strength of approx. 10,000 psi (68.9 MPa) on the days of testing, though it was specified to 
be designed at 6,500 psi (44.82 MPa). A total of five low-relaxation grade 270 seven-wire 
prestressing strands were used to reinforce each girder.  In addition, three non-prestressed 
rebar were provided in the girder flanges and two rebar in the deck topping.  Half of the steel 
stirrups, provided for shear, extended vertically from the girder to the decking while the other 
half remained entirely in the girder.  They were spaced every six inches alternating between 
the two height sizes, providing nearly the maximum amount of shear reinforcement for the 
cross-section.  The girders were designed to be heavily reinforced in shear in order to avoid 
any premature failures which could jeopardize the test results and the investigations into the 
debonding issues.  Fig. 1 presents a diagram of the cross-section and the reinforcements.  
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TESTING RESULTS & ANALYSIS 
 
LOAD & DEFLECTION 
 
The maximum loads reached, the corresponding deflections, and the increased capacity 
results from testing are listed in table 3.  It is shown that a comparison between the failure 
load of control girder PS-2 (un-strengthened with CFRP) and repaired girders with 2 layers 
of CFRP shows that CFRP repair enhanced the flexural capacity by a range of 27.53% to 
45.66% compared to control girder with one less strand.  Also, for repaired girders with 3 
layers of CFRP, increases in the flexural capacity were reported to range from 60.24% to 
68.74% compared to control girder PS-2.  An increase in the failure load of 24.85% was 
observed for the fully CFRP wrapped repaired girder compared to the un-strengthened 
control beam PS-2.   
 
Table 3: Flexure test results for PSC girders 
 

Girder 
designation 

Max 
Load 
(kips) 

Corresponding 
deflection (in.) 

% increase compared 
to damaged girder 

PS-2 

% increase compared 
to un-damaged girder 

PS-1 
PS-1 75.87 6.94 22.60* N/A 
PS-2 61.88 5.38 0.00 -18.44** 
PS-3 90.14 2.44 45.66 18.81 
PS-4 84.75 2.14 36.94 11.70 
PS-5 78.92 1.61 27.53 4.02 
PS-6 100.91 2.39 63.07 33.01 
PS-7 104.42 2.74 68.74 37.63 
PS-8 99.16 2.29 60.24 30.70 
PS-9 77.26 1.58 24.85 1.83 
PS-10 87.68 2.14 41.69 15.57 

* Increase of flexural capacity of PS-1 compared to that of PS-2 
** Loss of flexural capacity of PS-1 due to strand cutting; a percentage of its original capacity 
 

The load-deflection behaviors for each girder tested are presented in various comparisons in 
Fig. 7 through Fig. 12. 
 

 
Fig. 7: Load vs. deflection for controls and girders with 2 layers of CFRP 
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Fig. 8: Load vs. deflection for controls and girders with 3 layers of CFRP 

 

 
Fig. 9: Load vs. deflection for controls and 36” spacing configurations 

 

 
Fig. 10:  Load vs. deflection for controls and 20” spacing configurations 
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Fig. 11:  Load vs. deflection for controls and 12” spacing configurations 

 
 

 
Fig. 12:  Load vs. deflection for controls and fully wrapped configurations 
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beams, it is understood that overlapping transverse U-wrappings is needed to develop proper 
continuity; even in a direction perpendicular to the direction of the fibers.   
 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

Lo
ad

 (k
ip
s)

Deflection (inches)

12" Spacing

PS‐1 PS‐2

PS‐5 PS‐8

1
2

5

8

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Lo
ad

 (k
ip
s)

Deflection (inches)

Fully Wrapped

PS‐1 PS‐2

PS‐9 PS‐10

1

2

9
10



ElSafty and Graeff                                                                                               2011 PCI/NBC 

13 
 

STRAIN CHARACTERISTICS 
 
The strains measured at a load level of 20 and 70 kips are presented in Fig. 12 & 13.  Half of 
the span lengths of the symmetrical girders were instrumented with a multitude of strain 
gages while the other half of the span length had one strain gage.  Therefore, the profiles 
shown depict much more detailed behavior of the girders’ right side of the center span.   

 

 
Fig. 12: Strain at extreme bottom fiber of girder soffit vs. length for all girders 

 
 

 
Fig. 13: Strain of CFRP at girder soffit vs. length for repaired girders 
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FAILURE MODES 
 
The modes of failure for the girders were also documented and reported.  The control girders 
PS-1 and PS-2 experienced ductile flexural failure with excessive deflection and cracking.  
The repaired girders experienced CFRP rupture or localized debonding followed by rupture 
of CFRP; as shown in Fig. 11 & 12.  Some repaired girders also experienced debonding of 
some of their U-wrappings, as shown in Fig. 11 (right).  
 

     
Fig. 11: (left) Rupture of longitudinal CFRP; (right) Debonding of CFRP U-wrapping 

 

      
Fig. 12: (left) Debonding of soffit CFRP; (right) Rupture of longitudinal & transverse CFRP 

 
 

PREDICTION MODEL & ANALYSIS 
 
The model used for design and capacity predictions was the ACI 440.2 R-08 document17.  
The following equations are major design equations from the design model and the resulting 
values for the designed repaired specimen in this research.  This model identifies failure 
modes through the governing strain limitations due to either concrete crushing, FRP rupture, 
FRP debonding or prestressing steel rupture.  The effective design strain for FRP rupture at a 
limit state controlled by concrete crushing can be calculated through Eq. 1. 
 

௙௘ߝ ൌ ௖௨ߝ ቀ
ௗ೑ି௖
௖
ቁ െ ௕௜ߝ ൑  ௙ௗ                                          Eq. 1ߝ
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The values of 0.0173 in/in and 0.0136 in/in are calculated for the test specimen with two 
layers and three layers of longitudinal CFRP laminates respectfully. However, εfd is 
calculated as 0.0079 in/in for two layers and 0.0064 in/in for three layers thereby maintaining 
debonding as the limiting factor. 

 
The ultimate limit state with rupture of the prestressing steel as the governing failure mode 
uses Eq. 2 & 3 for max strain calculations. 
  

௙௘ߝ ൌ ൫ߝ௣௨ െ ௣௜൯ߝ ൬
ௗ೑ି௖
ௗ೛ି௖

൰ െ ௕௜ߝ ൑  ௙ௗ                                   Eq. 2ߝ

 
௣௜ߝ ൌ

௉೐
஺೛ா೛

൅ ௉೐
஺೎ா೎

ቀ1 ൅ ௘మ

௥మ
ቁ                                           Eq. 3 

 
A value of .0356 in/in is calculated here for both repair scenarios since the previous 
equations do not consider the changed design of the fibers.  This value is still greater than 
that of εfd, which will still control failure. 
 
For FRP rupture or debonding as the ultimate limit state of failure, which is the case we have, 
εfe is chosen to be that of εfd thereby resulting in values of 110.17 ksi for two layers of CFRP 
and 89.96 ksi for three layers for ffe in Eq. 4. 
 

௙݂௘ ൌ  ௙௘                                                        Eq. 4ߝ௙ܧ
 
At this point a neutral axis is assumed and calculations proceed. For both cases it is assumed 
to be 1.69 inches.  Yet, after computing Eq. 5 – 10, a new value for “c” of 3.28 inches and 
4.03 inches was determined for the two layered and three layered repairs.    
 

௣௦ߝ ൌ ௣௘ߝ ൅
௉೐
஺೎ா೎

ቀ1 ൅ ௘మ

௥మ
ቁ ൅ ௣௡௘௧ߝ ൑ 0.035                              Eq. 5 

 
௣௡௘௧ߝ ൌ ൫ߝ௙௘ െ ௕௜൯ߝ ൬

ௗ೛ି௖
ௗ೑ି௖

൰                                            Eq. 6 

 

௣݂௦ ൌ ൝
௣௦ߝ ݎ݋݂                      ௣௦ߝ28,500 ൑ 0.0086

270 െ ଴.଴ସ
ఌ೛ೞି଴.଴଴଻

௣௦ߝ ݎ݋݂             ൐ 0.0086       in.-lb units    Eq. 7 

 
ܿ ൌ ஺೛௙೛ೞା஺೑௙೑೐

ఈభ௙ᇱ೎ఉభ௕
                                                     Eq. 8 

 
The final values calculated for Eq. 5-7 were 0.0128 in/in, 0.0066 in/in, and 263.07 ksi 
respectfully for the girders repaired with two layers of CFRP. Similarly, the values of 0.0116 
in/in, 0.0053 in/in, and 261.21 ksi were received for Eq. 5-7 using the three layered repair 
configurations.  These values were all then used to calculate the theoretical ultimate moment 
capacity of each set of repaired girders. 
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The ultimate moment capacity of the repaired beams is calculated with the use of Eq. 9, 
which again was taken from the ACI 440.2 R-08 document.   
 

௡ܯ ൌ ௣ܣ ௣݂௦ ቀ݀௣ െ
ఉభ௖
ଶ
ቁ ൅ ߰௙ܣ௙ ௙݂௘ ቀ݀௙ െ

ఉభ௖
ଶ
ቁ                       Eq. 9 

 
The resulting theoretical ultimate moment capacities were 295.61 kip-ft for the girders 
having two layers of CFRP applied, and 317.3 kip-ft for the girders having three layers 
applied.  This translates into a predicted debonding failure load of 79.7 kips for two layered 
designs and 85.6 kips for the three layered designs.  However, the intermediate U-wrappings 
used in the repair configurations are not account for in the ACI design provisions and alter 
the outcomes.  Predictions for controls are made based on simple analysis using the Whitney 
stress block approach. 
 
Table 4. Tested Values, Predictions, and Comparisons 

Girder 
designation 

Tested Max 
Load (kips) 

Predicted Max 
Load (kips) 

% increase or decrease 
compared to prediction 

PS-1 75.87 81.9 Decrease 7.3% 
PS-2 61.88 66.5 Decrease 6.9% 
PS-3 90.14 79.7 Increased 13% 
PS-4 84.75 79.7 Increased 6.3% 
PS-5 78.92 79.7 Decreased 0.9% 
PS-6 100.91 85.6 Increased 17.8% 
PS-7 104.42 85.6 Increased 21.9% 
PS-8 99.16 85.6 Increased15.8% 
PS-9 77.26 79.7 Decreased 3.1% 
PS-10 87.68 79.7 Increased 10.0% 

 
 
CONCLUSIONS 
 
Of the ten PSC half-scale AASHTO type II girders, eight were repaired using CFRP repair 
applications and tested under static loading conditions until failure.  After analyzing the 
results and behaviors of the specimens the following conclusions can be made: 

1. The longitudinal CFRP strips applied to the girder soffit along with U-wrapping 
instead of full wrap proved to be an excellent repair alternative for damaged 
girders.   

2. Different U-wrapping configurations with varied spacing have proven to 
significantly enhance the flexural capacity of damaged prestressed concrete 
girders and prevent premature debonding of longitudinal.  

3. A comparison between the failure load of control girder (with cut strand and un-
strengthened with CFRP) and repaired girders with 2 layers of CFRP shows that 
CFRP repair enhanced the flexural capacity by 27.53% to 45.66% compared to 
control girder (with cut strand and un-strengthened with CFRP).   
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4. For repaired girders with 3 layers of CFRP, increases in the flexural capacity were 
reported to range from 60.24% to 68.74% compared to control girder (with cut 
strand and un-strengthened with CFRP).   

5. An increase in the failure load of 24.85% to 41.69% was observed for the fully 
CFRP wrapped repaired girders compared to the un-strengthened control girder.   

6. The damage and cutting of one of the prestressing strands (Girder PS-2) resulted 
in 18.44% loss in flexural capacity compared to the undamaged control girder.   
The CFRP repair of the damaged girder restored its capacity and exceeded the 
capacity of the undamaged intact control girder with no cut strand by up to 
37.63%. 

7. Proper CFRP repair design in terms of the number of CFRP longitudinal layers 
and U-wrapping spacing could result in obtaining significant enhancement for the 
capacity and desired failure modes for the repaired girders.  

8. Favorable failure modes of the repaired girders can be maintained using a CFRP 
repair configuration utilizing spacing between the U-wrappings to prevent 
undesirable modes of failure such as debonding of the longitudinal CFRP strips 
from the girder concrete soffit. If shear improvement is not needed for girders 
after enhancing their flexural capacity, a spacing of close to the depth of the 
composite girder can be applied for the U-wrap configuration design to constitute 
a safe CFRP repair. 

9. Debonding of some U-wraps was experienced at high load levels after restoring 
the girder flexural capacity.  Therefore, it is recommended that a secondary CFRP 
strip be applied in the longitudinal direction to anchor the top end of the U-wraps  
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