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ABSTRACT 

 

Shear is one of the topics of fundamental research of reinforced and 

prestressed concrete members where still disagreement remains amongst 

researchers. Therefore, codes of practice often use different approaches to the 

design of concrete structures in shear. This paper presents the results of an 

experimental program consisting of twelve full scale rectangular precast 

beams subjected to a four-point bending test up to failure. The investigated 

parameters were the amount of prestressing force, shear and longitudinal 

reinforcement and effective depth respectively. A comparison is made between 

the predicted shear strength according to the American, European and 

Canadian codes of practice and the experimental results. It was found that all 

considered sectional procedures underestimated the shear strength with an 

average predicted-to-experimental shear strength ratio of 0.60 and an 

average coefficient of variation (COV) of 26%. An alternative design 

procedure, based on the arching effect, is proposed with an average shear 

strength ratio of 0.94 and a COV of 4%.  
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INTRODUCTION 

For more than a century, shear is one of a few areas of fundamental research of concrete 

structures where disagreement remains amongst researchers. Since the early days of concrete 

construction, engineers have sought for models that accurately describe and determine the 

resistance of members in shear. In his publication Die Bauweise Hennebique of 1899, Ritter 

presented steel strips as shear reinforcement and the calculation of the required amount was 

based on a truss model. Mörsch adopted the idea of Ritter and proposed a similar truss model 

for torsion. This methodology is the well-known Ritter-Mörsch truss analogy and is still the 

basis for many codes of practice today. Over the years, shear remained a field of much 

interest and from 1950 on research effort has been growing substantially. Due to the many 

factors that influence the shear capacity, shear is a very complex phenomenon. Many of the 

proposed analytical models are therefore (semi-) empirical and not suitable for the whole 

spectrum of structural concrete members. In the last three decades, focus has shifted to 

theoretical analytical models, thus decoupling themselves as much as possible from empirical 

dependencies. Some of these models are mature enough to be incorporated into codes of 

practice. This paper presents a comparison between test results and predicted shear strengths 

based on the American (ACI 318-08), the European (EN 1992-1-1:2005) and the Canadian 

(CSA A.23-3.04) code of practice respectively. 

 

 

THEORETICAL CONSIDERATIONS AND CODE PROVISIONS 

In order to fully understand the current code provisions for shear in reinforced and 

prestressed concrete structural members, it is necessary to consider the development of shear 

research during the last century. In the early 1900s, truss models were used as conceptual 

tools in the analysis and design of reinforced concrete beams. Ritter
1
 postulated in 1899 that, 

after the web of a beam cracks due to diagonal tension stresses, the internal bearing system 

can be represented as a parallel chord truss with compressive diagonals inclined at 

approximately 45 degrees. These diagonal compressive stresses push apart the top and 

bottom faces of the beam while shear reinforcement is required to pull these faces back 

together. The shear capacity is reached when the stirrups yield and will correspond to a shear 

stress of 

 
v y

v y
w

A f
f

b s
    (1) 

Mörsch
2,3

 adopted the idea of Ritter and introduced the use of truss models for torsion. 

Several researchers
4,5

 pointed out that the use of this truss model gave conservative results. 

Based on numerous test results, two different concepts were introduced to ensure economy in 

the practical design: (1) the so-called ‘concrete contribution’ Vc and later (2) a variable 

compressive strut inclination.  

The concept of concrete contribution refers to the ability of concrete structures without shear 

reinforcement to carry a certain amount of shear force. This concrete contribution is usually 
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attributed to one or more of the following five mechanisms
6
: (1) shear stresses in the 

uncracked concrete, (2) interface shear transfer, often referred to as crack friction or 

aggregate interlock, (3) dowel action of the flexural reinforcement, (4) residual tensile 

stresses transmitted directly across cracks and (5) arch action. Different researchers assign a 

different relative importance to these aforementioned mechanisms, resulting in various 

(semi)-empirical expressions for the concrete contribution. Therefore, the expressions found 

in codes of practice for the concrete contribution differ greatly. The 45 degree truss model 

with an additional concrete contribution term is often referred to as the standard method. 

From the 1960s to the 1980s, the pioneering work of Ritter and Mörsch received new 

impetus. Based on an extensive amount of test results, researchers
7-10

 proposed a truss with 

inclined compressive struts with angles which are allowed to differ from 45 degrees within 

certain limits suggested on the basis of plasticity. This method is often referred to as the 

variable angle truss method. It does not consider a concrete contribution but due to the 

existence of aggregate interlock and dowel forces at the crack faces, a lower inclination of 

the compressive strut is possible and thus further mobilization of the stirrup reinforcement. 

The shear stress at failure in its more general form is thus given by 

 cot cot
v y

v y
w

A f
f

b s
     (2) 

where is the angle of inclination of the compressive struts with respect to the horizontal 

axis. Members with an applied axial compressive load usually exhibit a crack pattern with 

lower inclinations than 45 degrees and thus require less shear reinforcement.  

A combination of the variable angle strut inclination and a concrete contribution has also 

been proposed and has been referred to as the modified truss model approach
11,12

. In this 

approach, in addition to a variable angle of inclination of the compressive struts, the concrete 

contribution diminishes for nonprestressed beams with the level of shear stress. For 

prestressed beams, the concrete contribution does not vary with the level of shear stress and 

is a function of the level of prestress in the extreme tension fiber.  

ACI 318-08  

The shear design expressions found in the current American code of practice
13

 are based on 

the aforementioned 45 degree truss model with an experimentally obtained concrete 

contribution term. An overview of the history of the shear provisions can be found in the 

report of the Joint ACI-ASCE Committee 445
6
. The approach assumes that flexure and shear 

can be handled separately for the worst case of bending moment and shear force. The 

interaction between flexure and shear, i.e. increase of tensile force in the flexural 

reinforcement due to inclined cracking, is addressed by detailing rules for flexural 

reinforcement cutoff points. In addition, specific checks on the level of concrete stresses in 

the member are introduced to ensure ductile behavior and control of diagonal crack widths at 

service load levels. Equations (3)-(13) give an overview of the current ACI design procedure 

where SI-units should be used (note: 1 MPa = 145 psi; 25.4 mm = 1 in.; 1 kip = 4448 N = 1 

kip). 
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 n c sV V V   (3) 
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 concrete contributioncV   (5) 

For nonprestressed beams 

 0.17 'c wf b d  (6) 

where is a factor to account for the use of lightweight concrete. For normal weight concrete 

this factor is equal to 1. When a more detailed calculation is made, the concrete contribution 

is given by 
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For prestressed beams 
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but  
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or the lesser of Vci and Vcw 
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For axial compression and shear 

 0.17 1 '
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For axial tension and shear 
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It is clear that the shear provisions used in the American code of practice are semi-empirical 

expressions. The primary shortcomings of ACI 318-08 are the many empirical equations and 

rules for special cases, and particularly the lack of a clear model that can be extrapolated to 

cases not directly covered.  

EUROCODE 2 

Until recently, one could choose when dealing with shear design between the standard 

method (45 degree truss model with concrete contribution term) and the variable angle truss 

method in Eurocode 2 (EC2). In the latest edition of EC2
14

 however, only the variable angle 

truss method is still valid and thus applicable. The approach uses three different shear 

strengths: (1) VRd,c, (2) VRd,max and (3) VRd,s. The shear strength of members without shear 

reinforcement is given by Eq. (14). 

 ,Rd Rd cV V  (14) 

From Eq. (14) it can be seen that the total shear strength equals the concrete contribution 

defined in Eq. (15). 

    
1

3 1 1, , min100 cp w cp wRd c Rd c l ckV C k f k b d v k b d  
 
 
 
 

    (15) 

where CRd,c equals 0.18/c and k1 can be taken equal to 0.15. Eq. (15) is experimentally 

derived and incorporates the main shear carrying mechanisms of beams without shear 

reinforcement as discussed earlier. The shear capacity of members with shear reinforcement 

is completely determined by the amount of shear reinforcement. 

 cotsw
Rd ywd

A
V zf

s
  (16) 

The limits for the angle of inclination can be found in national application documents. 

Specifically for the Belgian context
15

, the limits are given by 

 
1

max1 cot cot 2 3
cp w

sw ywd

k b ds

A zf


 

 
 
 
 

      (17) 

From Eq. (17) it can be seen that the angle of inclination depends on the level of applied 

axial force by means of cp. When an axial compressive force is applied (e.g. prestressing 

force) the angle becomes lower, whereas the application of an axial tensile force will result in 

higher angles of inclination. Lower angles of inclination result in less shear reinforcement 

according to Eq. (16) which is expected for prestressed members. To prevent the concrete 

struts from crushing, the maximum allowable shear force is given by 

 1
,max

cot tan
cw w cd

Rd

b z f
V

 

 



 (18) 
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In Eq. (18) 1 is a term to account for the compressive strength reduction of cracked concrete 

and can be taken as 0.6 for normal strength concrete (NSC).  

CANADIAN CODE  

The shear design provisions found in the Canadian code of practice can be traced back to a 

rational theoretical model that determines the angle of inclination by considering the 

deformation of the longitudinal and transverse reinforcement and the diagonally stressed 

concrete. Such procedures are known as compressive field approaches. Kupfer
7
 and 

Baumann
16

 presented approaches in the 1960s and 1970s for determining the angle of 

inclination assuming that concrete and reinforcement behave linear elastically. When 

studying ultimate strengths however, it is necessary to also address the nonlinear behavior of 

concrete. Methods for determining the angle  for the full loading range were determined by 

Collins
17

 for members in shear. This procedure is known as the Compression Field Theory 

(CFT). The CFT considers three major sets of equations: (1) equilibrium equations, (2) 

compatibility equations and (3) stress-strain relationships. Fig. 1 summarizes the basic 

relationships of the CFT. When a shear stress v is applied to a reinforced cracked concrete 

panel, it causes tensile stresses in the longitudinal reinforcement fsx and the transverse 

reinforcement fsy and concrete compressive stresses f2 inclined at an angle . Equilibrium 

relationships in combination with Mohr’s circle for stresses (Fig 1(a) and Fig. 1(b)) are given 

by 

 tany sy cyf f v    (19) 

 cotx sx cxf f v    (20) 

 2 (tan cot )f v     (21) 

where x andy are the longitudinal and transverse reinforcement ratios respectively. Under 

the applied stresses, the concrete compressive strut will shorten by a strain equal to 2, the 

longitudinal reinforcement will elongate by a strain x and the transverse reinforcement by a 

strain y. Using Mohr’s circle for strain, the direction of the principal compressive strain and 

the value of the principal tensile strain are then given by 

 2 2

2

tan x

y

 


 





 (22) 

   2
1 2 cotx x        (23) 
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Fig. 1 Compression Field Theory
6
 

Before these equations can be used, stress-strain relationships need to be defined for both the 

concrete in compression and the reinforcing steel. It is assumed that the reinforcement strains 

are related to the reinforcement stresses according to the simple bilinear diagram shown in 

Fig. 1(e) and (f). Thus, after the strain in the reinforcement reaches the yield strain, the stress 

in the reinforcing steel will remain constant with increasing strain. Concrete in compression 

is somewhat more difficult to describe. Based on test results, Collins stated that the behavior 

of diagonally cracked concrete differs greatly from the usual compressive behavior of a 

standard cylinder. It was found that the principal compressive stress f2 is not only dependent 

on the principal compressive strain 2 but also on the perpendicular principal tensile strain 1. 

When concrete is diagonally cracked, compressive stresses need to be transferred by 

aggregate interlock. Increasing principal tensile strain, and thus increasing crack width, will 

result in lower aggregate interlock stresses and thus a lower compressive strength. The 

relationship proposed is depicted in Fig. 1(g) and (h). Cracked concrete is thus considered as 
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an orthotropic material with smeared cracks. For a reinforced concrete panel subjected to 

only shear stresses, Eq. (19)-(23) together with the described stress-strain relationships will 

give the internal stresses, direction of principal compressive stresses and thus the failure 

mode. Note that beams are usually subjected to a varying bending moment along the length 

of the beam and a corresponding shear force. The bending moment increases x and thus 

lowers the shear capacity.  

The Modified Compression Field Theory (MCFT)
18

 proposed by Vecchio and Collins, is a 

further development of the CFT. It accounts for the influence of tensile stresses in the 

cracked concrete. It is also recognized that the concrete and reinforcement stresses vary from 

point to point with high reinforcement and no concrete stresses at crack locations. 

Compatibility relationships and equilibrium equations are therefore defined in terms of 

average strains and average stresses respectively, averaged out over a base length that is 

longer than the crack spacing. Fig. 2 depicts the basic relationships of the MCFT. 

Equilibrium equations in terms of average stresses in combination with Mohr’s circle for 

average stresses and taking into account tensile stresses in the cracked concrete are given by 

 1tany sy cyf f v f     (24) 

 1cotx sx cxf f v f     (25) 

  2 1tan cotf v f     (26) 

In order to use Eq. (24)-(26), the stress-strain relationship of concrete in tension needs to be 

defined. Vecchio and Collins propose a linear elastic behavior until the strain reaches the 

cracking strain. From this point on, tensile stresses will diminish with increasing strain in 

order to model the tension stiffening effect as shown in Fig. 2(e). Equilibrium equations (24)-

(26), together with the earlier discussed strain compatibility relationships (in terms of 

average strains) and the stress-strain relationships for reinforcing steel and concrete 

(compressive and tensile), will enable to determine the angle of compressive stresses, 

average stresses and average strains.  

Failure of the reinforced concrete element may be governed not by average stresses, but 

rather by local stresses that occur at a crack. Therefore, an additional check must be 

performed at the crack face.  In checking the conditions at a crack, the actual complex crack 

pattern is idealized as a series of parallel cracks, all occurring at an angle to the horizontal 

and having a space s between them. From Fig. 2(c), the reinforcement stresses at a crack 

can be determined as 

 tan tany sycr cif v v     (27) 

 cotcotx sxcr cif v v     (28) 

where vci is the shear stress on the crack face due to aggregate interlock. The maximum 

possible value of vci is proposed by Collins and Bhide
19

 based on the work of Walraven
20

 and 
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is taken to be related to the crack width w and the maximum aggregate size ag. It can be 

expressed as 

 
0.18 '

24
0.3

16

c
ci

g

f
v

w

a






 (29) 

 

 

Fig. 2 Modified Compression Field Theory
6
 

The crack width w is taken as the crack spacing times the principal tensile strain 1. By 

limiting the maximum value for vci, the model takes into account the possibility of failing of 

the aggregate interlock mechanism. Eq. (27) and (28) can be satisfied without the term vci if 

the reinforcement does not yield. From yielding on, shear stresses on the crack face are 

needed so that equilibrium remains but they cannot exceed the maximum value given in Eq. 

(29).  

To determine the full load-deformation response of a concrete beam, the member must be 

represented as a two-dimensional array of concrete panels. Solving this system usually 

requires the use of a non-linear finite element computer program
21,22

. If one is only interested 
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in the shear strength of a beam cross-section, then the web of the beam can be represented by 

just one biaxial element located at mid-depth. It is assumed that, at failure, the stirrups will 

yield and that the shear stress in the web can be determined by dividing the actual shear force 

by the effective shear area bwd. Eq. (27) can be rearranged to give 

 cotci y yv v f    (30) 

with fy the yield stress of the reinforcement. In a similar way, Eq. (24) can be rearranged as 

 1 cot cotyv f f     (31) 

Both these equations can be written in following form 

 r c sv v v   (32) 

where vr is the shear strength and consists of a concrete and shear reinforcement component. 

A more general form in terms of forces is given by 

 ,maxr rc s p VV V V V     (33) 

 ,max1 cot cotv v r

v y
r w p V

A f
V f b d d V

s
      (34) 

 ,maxcot' cotv v r

v y
r c w p V

A f
V f b d d V

s
      (35) 

Both  and  depend on the amount of longitudinal strain in the web. The larger this 

longitudinal strain becomes, the smaller the shear stress required to fail the web, as discussed 

earlier. It is conservative to use the highest possible longitudinal strain found in the 

longitudinal reinforcement. It is proposed to use the strain ad mid-depth, given by Eq. (36). 

 
 

0

2

0.5 0.5 cot

s s p ps

u
u u ps p

v
x

E A E A

M
N V A f

d




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  (36) 

The strain in Eq. (36) shall not be taken greater than 0.002. These aforementioned 

expressions can be found in the Canadian code of practice CAN CSA A.23.3-04
23

. 

Expressions for and  are given in Eq. (37) and (38) 

 
0.4 1300

1 1500 1000x xes



 

 
 (37) 

  29 7000 x     (38) 

where sxe is the equivalent crack spacing parameter and equal to 35sx/(ag+16). 
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EXPERIMENTAL INVESTIGATION 

SPECIMEN DESIGN 

The purpose of the experimental campaign was to evaluate the shear strength of precast 

concrete beams and consisted of 12 full-scale rectangular specimens. The main investigated 

parameters were the amount of prestressing force, the amount of longitudinal mild steel and 

shear reinforcement and the effective depth respectively. Table 1 shows an overview of the 

experimental program. All specimens had a total length of 6000 mm (19.7 ft.). Fig. 3 depicts 

the cross section details.  

Table 1 Specimen details 

Specimen 
width 

mm (in.) 

height 

mm (in.) 

Prestressed strands 
Longitudinal 

reinforcement 
Shear reinforcement 

12.5 mm 

(1/2 in.) 

9.3 mm 

(3/8 in.) 

Area mm² 

(in.²) 
mm (in.) s mm (in.) 

B1 240 (9.5) 400 (15.8) 4 2 0 0 0 

B2 240 (9.5) 400 (15.8) 8 2 0 0 0 

B3 240 (9.5) 400 (15.8) 0 0 982 (1.5) 0 0 

B4 240 (9.5) 500 (19.7) 4 2 0 0 0 

B5 240 (9.5) 500 (19.7) 8 2 0 0 0 

B6 240 (9.5) 500 (19.7) 0 0 982 (1.5) 0 0 

B7 240 (9.5) 500 (19.7) 8 2 0 6 (0.2) 300 (11.8) 

B8 240 (9.5) 600 (23.6) 4 2 982 (1.5) 0 0 

B9 240 (9.5) 600 (23.6) 8 2 0 0 0 

B10 240 (9.5) 500 (19.7) 4 2 982 (1.5) 0 0 

B11 240 (9.5) 600 (23.6) 4 2 982 (1.5) 6 (0.2) 300 (11.8) 

B12 240 (9.5) 600 (23.6) 8 2 0 6 (0.2) 300 (11.8) 
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Fig. 3 Cross section details 

MATERIALS 

 

Prestressed reinforcement consisted of low-relaxation seven-wire strands with a nominal 

diameter of 12.5 mm (1/2 in.) or 9.3 mm (3/8 in.). The ultimate tensile strength was given by 

the manufacturer and is equal to 1930 MPa (280 ksi). The conventional longitudinal 

reinforcement consisted of hot rolled bars with a diameter of 25 mm (0.98 in.) and an 

ultimate tensile strength of approximately 600 MPa (87 ksi). Concrete was factory-made and 

was designed to have a characteristic cylinder strength of 50 MPa (7250 psi). Cement was 

specified as CEM I 52.5 R whereas the coarse aggregate consisted of 12 mm (0.5 in.) 

maximum-size lime stone gravel. A high-range water reducer was also provided. Table 2 lists 

the mix details. The concrete mixtures had a water-cement ratio of 0.42. 

 

Table 2 Concrete batch weights 
Material amount 

Cement CEM I 52.5 R, kg/m
3
 (lb/yd

3
) 397 (669) 

Lime stone gravel 2/12, kg/m
3
 (lb/yd

3
) 1095 (1846) 

Sand 0/2, kg/m
3
 (lb/yd

3
) 663 (1118) 

Water, kg/m
3
 (lb/yd

3
) 168 (283) 

Filler, kg/m
3
 (lb/yd

3
) 168 (283) 

High-range water reducer l/m
3
 (oz/yd

3
) 7.1 (185) 

 

 

CASTING AND CURING 

 

Concrete mixtures were made in volumes of 2 m
3
 (2.6 yd

3
). Every beam consisted of just one 

mixture. Per mixture three prisms were cast to determine the flexural tensile strength, fct,fl. 

Per beam, three cubes with sides of 150 mm (9.8 in.) were cast to determine the compression 

strenght, fcm,cube. The mechanical properties of the concrete are denoted in Table 3. All beams 

were cast into steel formwork and compacted with an internal vibrator. After setting, the 

beams were covered with plastic sheeting. The steel formwork was removed in less than 24 

hours after casting. The day after casting, demountable mechanical strain gauge points 

(DEMEC-points) were glued to the concrete surface in the zones where shear failure could 

occur. These points had a spacing of 100 mm (4 in.) or 200 mm (8 in.). 
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STRESSING PROCEDURE 

 

The prestressing strands were tensioned the day prior to casting. The strand force was 

measured using a pressure transducer installed on the hydraulic jack. Every strand was given 

an initial prestrain of 7.5 mS or 1488 MPa (216 ksi). The day after casting, with the 

formwork removed and the DEMEC-points attached, a first reference measurement was 

performed. After cutting of all the strands, a second strain measurement followed to 

determine the immediate losses due to the release of the prestressing force. Beams were 

tested at an age of 30-56 days. The effective prestress at the day of testing was calculated 

taking into account the initial prestress loss and additional losses due to the combined 

working of creep, shrinkage and relaxation.  The effective prestress force Fe is also listed in 

Table 3. 

 

TEST SETUP AND PROCEDURE 

 

The test setup consisted of a simply supported beam with two concentrated loads Q applied 

at a distance a from the support, as depicted in Fig. 4. The distance a is 1200 mm (3.8 ft.) for 

beams with a height of 400 (16 in.) or 500 mm (20 in.) and is 1800 mm (5.8 ft.) for beams 

with a height of 600 mm (24 in.). This results in a shear span to depth ratio range between 2.6 

and 3.6. Every specimen was tested with one meter (3.2 ft.) cantilever. This has two reasons; 

the (1) first is to prevent failure due to the loss of anchorage. The (2) second reason is to 

study shear in a zone outside the length needed for the prestressing force to gradually 

develop over the total depth of the member. 

 

Table 3 Mechanical properties of concrete and effective prestress force 

Specimen 
fcm,cube 

MPa (psi) 

fct,fl 

MPa (psi) 

Fe 

kN (kip) 

B1 
64  

(9280) 

7  

(1015) 

645  

(145) 

B2 
72 

 (10440) 

7 

 (1015) 

1030 

 (232) 

B3 
70 

 (10150) 

10 

 (1450) 

0 

(0) 

B4 
69 

 (10000) 

7  

(1015) 

655 

 (147) 

B5 
68 

 (9860) 

7  

(1015) 

1057 

 (238) 

B6 
65  

(9430) 

10 

 (1450) 

0 

(0) 

B7 
65  

(9430) 

6  

(870) 

1063  

(239) 

B8 
70 

 (10150) 

9  

(1305) 

667 

 (150) 

B9 
63 

 (9140) 

6  

(870) 

1075 

 (238) 
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B10 
71 

 (10300) 

9  

(1305) 

662 

 (149) 

B11 
63 

 (9140) 

6  

(870) 

665  

(150) 

B12 
57  

(8270) 

7  

(1015) 

1070 

 (241) 

 

The force was applied by a hydraulic press with a contact surface area of 800x800 mm² 

(32x32 in.²). A steel profile lying on two rollers clamped between steel bearing plates, 

transforms the force from the press to two point loads Q. To avoid stress concentrations, a 

layer of plaster is placed between the concrete top surface and the steel bearing plates. The 

failure load Qu,pred was calculated with all safety factors equal to 1 and loads were applied at 

50%, 75%, 90% and 100% of Qu,pred. Higher loads were applied in increments of 5% or 10%. 

Per loading stage, deformations on the concrete side surfaces were measured with DEMEC, 

the midspan deflection was measured with a deformation gauge and the crack pattern was 

photographed. The ultimate force at failure can be read from the display of the hydraulic 

press.  

 

 

 
 

Fig. 4 Test setup 

 

TEST RESULTS AND DISCUSSION 

 

Table 4 lists the failure load, Qu,test, and mode together with the predicted shear strengths 

according to the Canadian, European and American codes of practice. The load necessary to 

obtain the beam bending capacity is also listed and denoted as Qu,flex. It must be noted that 

specimen B3 is not listed in the aforementioned table. During the testing of B3, a sudden 

stage of unloading occurred. When reapplying the load, the specimen suddenly failed without 

exhibiting a profound cracking pattern. In order to avoid false conclusions, the specimen will 



De Wilder, and Vandewalle          2011 PCI/NBC 

14 
 

be no longer considered. All predicted values for the failure load Qu,pred were obtained by 

using safety factors equal to 1, average compressive strengths instead of characteristic values 

and the yield strength for steel. Even with all safety removed from the equations, it can be 

seen from Table 4 that the considered codes of practice severely underestimate the shear 

strength, and thus the failure load. Only for beam B11 does the Canadian code predict a 

slightly higher strength than actually measured. The average ratio of predicted-to-test failure 

load ratio is 69% for the Canadian code and 56% for EC2 and ACI318-08. This leads to 

highly conservative predictions for the considered test beams when the usual safety factors 

are applied. It can be seen that the variation of the predicted-to-test failure load ratio of ACI 

318-08, expressed as the coefficient of variation (COV), is the smallest: 17%. The Canadian 

code shows a normalized dispersion of 26% whereas EC2 has a COV of 34%.  

 

Table 4 Experimental and predicted strengths 
 CSA A.23.3-04 EN 1992-1-1:2005 ACI 318-08  

Specimen 

Qu,test 

kN 

(kip) 

Qu,pred 

kN 

(kip) 

,

,

u pred

u test

Q

Q
 

Qu,pred 

kN 

(kip) 

,

,

u pred

u test

Q

Q
 

Qu,pred 

kN 

(kip) 

,

,

u pred

u test

Q

Q
 

Qu,flex 

kN 

(kip) 

Failure 

mode 

B1 
196 

 (44) 

147 

(33) 
0.75 

162 

(36) 
0.82 

129 

(29) 
0.66 

172 

 (39) 
B 

B2 
325  

(73) 

221 

(50) 
0.68 

224 

(50) 
0.69 

182 

(41) 
0.56 

325  

(73) 
B 

B4 
259  

(58) 

178 

(40) 
0.69 

175 

(39) 
0.67 

173 

(39) 
0.67 

226  

(51) 
B 

B5 
455 

 (102) 

278 

(63) 
0.61 

245 

(55) 
0.54 

251 

(56) 
0.55 

433  

(97) 
B 

B6 
222 

 (50) 

103 

(23) 
0.47 

119 

(27) 
0.54 

144 

(32) 
0.65 

173 

 (39) 
A 

B7 
446  

(100) 

326 

(73) 
0.73 

102 

(23) 
0.23 

253 

(57) 
0.57 

431  

(97) 
B 

B8 
318  

(72) 

189 

(43) 
0.59 

237 

(53) 
0.74 

155 

(35) 
0.49 

317 

 (71) 
B 

B9 
381 

 (86) 

250 

(56) 
0.66 

262 

(59) 
0.69 

232 

(52) 
0.61 

346 

 (78) 
B 

B10 
413  

(93) 

178 

(40) 
0.43 

221 

(50) 
0.54 

162 

(36) 
0.39 

382  

(86) 
A 

B11 
370  

(83) 

383 

(86) 
1.03 

129 

(29) 
0.35 

155 

(35) 
0.42 

315  

(71) 
B 

B12 
385  

(87) 

363 

(82) 
0.94 

126 

(28) 
0.33 

231 

(52) 
0.60 

355 

 (80) 
B 

 
 

 
 0.69  0.56  0.56   

 
 

 
COV 26%  34%  17%   

B = Bending; A= Anchorage Failure 
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Table 4 also denotes the failure modes. All specimens were designed to fail in shear. 

However, in this experimental program no specimen failed due to shear. Two beams (B6 and 

B10) failed due to the loss of anchorage and the remaining 10 specimens all exhibited failure 

due to bending. All experimental failure loads are higher or equal to the flexural failure load 

Qu,flex. 

 

The influence of all other parameters is investigated for each code of practice separately and 

is depicted in Fig. 5(a)-(i). To assess the influence of the amount of shear reinforcement, the 

sets (B5, B7), (B9, B12) and (B8, B11) can be considered while other parameters are kept 

constant. The influence of the shear span to depth ratio can be investigated by considering 

(B1, B4), (B2, B5, B9), (B7, B12) and (B8, B10). To analyze the impact of the amount of 

prestressing on the shear strength predictions, beams (B1, B2) and (B4, B5, B6) will be 

investigated. 

 

CAN CSA A.23.3-04 

 

From Fig. 5(a) it seems that an increase of shear reinforcement, leads to better predictions of 

the ultimate shear strength. The strength of members without shear reinforcement is strongly 

underestimated whereas the average ratio of predicted to experimental shear strength of the 

equivalent beams with shear reinforcement equals approximately 0.90. Fig. 5(b) shows the 

trend that members with lower shear span to depth ratios will result in lower shear strength 

predictions. The explanation could be that arching action becomes more important in 

members with shear span to depth ratios below 2.5. This mechanism is not accounted for in 

the shear strength provisions of the Canadian code of practice. The influence of the amount 

of prestressing is not clear from Fig. 5(c). The overall shear strength capacity relative to the 

experimentally measured failure load seems to increase (B6 –B4) and decrease (B4 – B5 and 

B1 – B2) with increasing amount of prestressing force. 

 

ACI 318-08 

 

There is no general influence of the amount of shear reinforcement on the shear strength 

predictions as shown in Fig. 5(d). Only when comparing beams B8 and B11 a slight decrease 

in predicted-over-experimental failure load is found with increasing amount of shear 

reinforcement.  Fig. 5(e) also seems to show that the shear span to depth ratio does not have a 

great influence on the ultimate strength prediction. A slight decrease in predicted-over-

experimental failure load is observed with decreasing shear span to depth ratio for beams B8 

and B10 (both 600 mm (23.6 in.) high). However, this trend is not observed for beams (B2, 

B5, B9), (B1, B4) or (B7, B12). When examining the influence of the amount of prestressing 

on the failure load, a pattern similar to the one found in Fig. 5(c) is observed in Fig. 5(f). A 

slight increase (B6-B4) and decrease (B4-B5 and B1-B2) is found with increasing amount of 

prestressing. 
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EN 1992-1-1:2004 

 

It is clear from Fig. 5(g) that the failure load of beams with shear reinforcement is very 

poorly predicted with respect to beams without shear reinforcement. As already mentioned, 

the shear capacity of beams with shear reinforcement is completely determined by the 

amount of stirrups. Beams B7, B11 and B12 were equipped with minimum shear 

reinforcement hence the low predicted shear strength. Fig. 5(h) seems to indicate that 

decreasing values for the shear span to depth ratio result in decreasing predicted-over-

experimental values. Arching action might also here be the reason for this discrepancy. In 

Fig. 5(i) again the same pattern is detected: increasing (B6-B4) and decreasing (B4-B5 and 

B1-B2) predicted-over-experimental failure load ratios with increasing amount of 

prestressing.  

 

 
 

Fig. 5 Parameter analysis 

 

CRACK PATTERN 

 

In Fig. 6, the crack patterns of the 11 considered test specimens are depicted. The dashed 

zones indicate the location where failure was initiated. For the beams that failed in bending, 

the evolution of the crack pattern is the same: first a vertical bending crack initiated in the 

zone with constant moment. When the load Q was increased, new cracks formed. In the zone 
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with constant shear force, the cracks were inclined and had the same height as the vertical 

cracks in between the loading points. Failure occurred in the zone between the loading points 

due to excessive compression in the concrete. Although all beams had a 1 m (3.3 ft.) 

cantilever, beams B6 and B10 failed due to the loss of anchorage. Two main reasons can be 

given: (1) the low inclination of the cracks leads to high tensile forces in the longitudinal 

reinforcement. (2) Circular tensile stresses will be induced in the concrete surrounding the 

longitudinal reinforcement with improved bonding. Cracks will occur when these circular 

tensile stresses reach the concrete tensile strength making the transfer of bond stresses less 

effective. 

 

 
 

Fig. 6 Crack pattern at failure 

 

Beams B1, B4 and B7 exhibited bifurcated cracks. These cracks started as normal vertical 

bending cracks. At high loads Q they started to bifurcate and tend to grow towards each 

other. A similar crack pattern was observed by Minelli
24

 in his research on reinforced shear 

critical beams without stirrups having shear span to depth ratios equal to 2.5. The NSC0 set 

of beams consisted of 4 specimens, constructed with normal strength concrete and having 

comparable geometric properties as the beams described from the aforementioned 

experimental campaign. All specimens had 2 bars with a diameter of 24 mm (0.95 in.). The 

overall span and effective depth were equal to 4350 mm (14.3 ft.) respectively 435 mm (17.1 

in.). Two specimens were loaded with a uniformly distributed load and two with two 

concentrated point loads. Two beams were equipped with bonded longitudinal reinforcement 
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whereas the other two specimens had a smooth plastic tube over the reinforcement to prevent 

bond between reinforcement and concrete. Fig. 7(a) and (b) show the crack pattern for the 

beams with bonded reinforcement at failure. Fig. 7(c) and (d) depict the crack pattern for the 

beams with unbonded reinforcement at failure. 

 

 
 

Fig. 7(a)-(d) Crack pattern at failure, adopted from Minelli
24

 

 

The two beams with unbonded reinforcement show a similar bifurcated crack pattern 

whereas the two specimens with bonded reinforcement failed due to the combined working 

of shear and flexure. When a beam is cracked, the external applied bending moment is 

resisted by the internal couple C (concrete compressive force) and T (reinforcement tensile 

force) with a lever arm equal to z; i.e. M = T z = Cz. When this relationship is combined with 

the well-known relationship between shear and the rate of change of bending moment along 

the span, V=dM/dx, the shear is expressed as a combination of two components 

 

 
dT dz

V z T
dx dx

   (39) 

The first term in Eq. (39) denotes the ‘beam’ action whereas the second term denotes the 

‘arching’ action. If unbonded reinforcement is used, dT/dx equals zero and only arching 

action remains. This arch splits from the rest of the web resulting in bifurcated cracks. 

Arching action however, is generally believed to be only significant when the shear span to 

depth ratio is less than or equal to 2.5 (deep members)
 25-26

. In those members, forces applied 

at the top are more likely to be transferred to the support by means of direct struts. For 

members with higher a/d-ratios, flexural action will be dominant. In order to avoid 

conservative results, Collins and Mitchell
25

 propose the use of strut-and-tie models for deep 
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members and a sectional approach for more slender members. The shear carried by the 

arching mechanism could explain the discrepancy between the analytical predictions and the 

experimental observations.  

 

ALTERNATIVE STRENGTH PREDICTION MODEL BASED ON ARCH ACTION 

 

Although all beams in this experimental program had shear span to depth ratios between 2.6 

and 3.6, an investigation can be made based on the aforementioned arching action. A 

considerable number of truss models that incorporate the arching mechanism for members 

with shear reinforcement are already presented in the literature
27-29

. An important point of 

discussion is the shape of the arching mechanism. Some researchers such as Kim and Jeong
30

 

propose a simple power law for the path of the compression force as a function of the 

coefficient . This coefficient is equal to the ratio of shear carried by the arch to the total 

amount of shear. If  is equal to 1, the arching mechanism will take the form of a straight 

strut. Muttoni and Fernández Ruiz
31

 propose a straight strut in combination with an elbow 

shaped strut. The latter will be activated when the web of the beam in the shear zone is 

severely cracked. 

 

From Fig. 6 it can be seen that all beams were nearly uncracked in the zone where a direct 

strut could be formed. All 11 beams are idealized as shown in Fig. 8(a). The remaining 

bearing system consists thus of two inclined struts, one horizontal strut and one horizontal 

tension tie at the center of the longitudinal reinforcement. If a prestressing force is applied, it 

is considered as an external applied load and it is converted to an equivalent system of 

horizontal nodal forces (P1,P2), depicted in Fig. 8(b). Both forces can be calculated by 

considering rotational and horizontal equivalency as also proposed by Ramirez
32 

 

 1
2 2

p p e t
c c

P d M F y
   
   
   

     (40) 

 2 1eP F P   (41) 

where dp is the center of the prestressing reinforcement, c is the height of the compression 

zone, yt equals the distance from the top fiber to the neutral axis in uncracked state and Mp is 

the bending moment of the prestressing force around the neutral axis. The internal forces can 

be easily determined by considering the equilibrium of nodes [1] and [2] shown in Fig. 8(c). 

These forces are then given by 

 

 2
sin

Q
F


  (42) 

 1 2 cotF P Q    (43) 
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Fig. 8 Structural idealization  

 

The height of the compression zone c can be determined from the equilibrium equations (44) 

and (45) of an elementary section (Fig. 9(a)) taken in between the two loading points. In the 

calculation, the hypothesis of Bernoulli is assumed to be valid between the loading points 

and the contribution of concrete in tension is neglected.  

 
0

' ' ( )
x

p p p p s s c zA A A b dz        (44) 

        
0

'' ' p

x

c s s s p p p p pGEd x dM bx z dz A d x A d x A           (45) 

Fig. 9(b) depicts the nonlinear stress-strain relationship for concrete in compression, adopted 

from EC2
11

. The analytical expression is given by Eq. (46) 
 
and is based on the work of 

Sargin and Handa
33

. 

 

 
 

2

1 2

c

cm

k

f k

  






 
 (46) 

In Eq. (46), k denotes the plasticity number and is given by Eq. (47). 
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 11.05 c
c

cm

k E
f


  (47) 

The modulus of elasticity is taken equal to 38 GPa (5511 ksi) whereas the peak compressive 

strain c1 is assumed to be equal to 0.0035. The factor  denotes the ratio of the compressive 

strain c to the peak compressive strain. Fig. 9(c) and 9(d) depict the standard bilinear stress-

strain diagram for prestressing and conventional reinforcing steel respectively. 

With the internal forces and geometry known, it is possible to calculate the stress in the 

components of the proposed bearing system. Failure will occur when either the compressive 

strength in the struts reaches the maximum compressive strength or when the tensile stress in 

the reinforcement reaches the ultimate tensile strength. No reduction on the strength of the 

compressive struts is used because these struts are not cracked due to shear. With the 

described geometry, it is possible to predict the bending failure mode. It is however not 

possible to predict the failure mode due to loss of anchorage. Table 5 lists the results from 

this procedure. All specimens are predicted to fail due to crushing of the horizontal strut. It 

can be seen that a good correlation can be found between the predicted failure load and the 

experimentally obtained strength. The average ratio between predicted and experimental 

failure load is equal to 0.94 with a COV of 4%.  

Table 5 Predicted strengths obtained from proposed bearing system 

Specimen 

Qu,test 

kN 

(kip) 

Qu,pred 

kN 

(kip) 

,

,

u pred

u test

Q

Q
 

B1 
196 

 (44) 

176 

(40) 
0.90 

B2 
325  

(73) 

307 

(69) 
0.94 

B4 
259  

(58) 

232 

(52) 
0.90 

B5 
455 

 (102) 

419 

(94) 
0.92 

B6 
222 

 (50) 

214 

(48) 
0.96 

B7 
446  

(100) 

419 

(94) 
0.94 

B8 
318  

(72) 

333 

(75) 
1.05 

B9 
381 

 (86) 

353 

(79) 
0.93 

B10 
413  

(93) 

394 

(89) 
0.95 

B11 
370  

(83) 

332 

(75) 
0.90 
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B12 
385  

(87) 

353 

(80) 
0.92 

   0.94 

  COV 4% 

 

 
 

  

 
 

Fig. 9 (a) equilibrium conditions; (b) stress-strain relationship for concrete; (c) stress-strain 

relationship for prestressing steel; (d) stress-strain relationship for reinforcing steel (note: 

1MPa = 145 psi) 

 

 

SUMMARY AND CONCLUSIONS 

 

In this paper an experimental program is presented consisting of 12 full scale rectangular 

(partially) prestressed and reinforced concrete beams. These specimens were subjected to a 

four-point bending test until failure occurred. The main investigated parameters were the 

amount of prestressing, amount of longitudinal and transverse reinforcement and effective 

depth respectively. The experimentally obtained results were compared to shear strength 

predictions according to the American, European and Canadian codes of practice.  

It was found that all building codes severely underestimated the failure load even with all 

safety and strength reduction factors equal to 1. The average predicted-over-experimental 

failure load ratio was equal to 0.60 with a coefficient of variation of 26%.  
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A separate investigation was performed for each code of practice to determine the influence 

of the aforementioned parameters on the shear strength prediction. All three building codes 

showed the trend that decreasing shear span to depth ratios result in decreasing predicted-

over-experimental failure loads. This is due to the fact that the members with the lowest 

shear span to depth ratio, around 2.6, are more likely to transfer vertical forces directly to the 

support via a strut and tie mechanism.  

Concerning the influence of the amount of prestressing, the same pattern is observed for all 

considered codes of practice. An increase of the amount of prestressing results in an increase 

and decrease of the predicted-over-experimental failure load ratio. Based on the obtained test 

results, it seems that current codes of practice do not account for the positive effect of 

increasing amount of prestressing on the shear capacity.  

Beams with shear reinforcement are better predicted by the Canadian code of practice than 

their equivalents without shear reinforcement. The opposite trend is observed for EC2 

whereas the level of safety remains relatively the same when using ACI318-08.  

A possible explanation for the discrepancy between predicted and experimental strengths 

could be the presence of the arching mechanism carrying all the shear force at failure.  

 

NOTATION 

 

Ag = gross area of concrete section [mm²] 

Aps = area of prestressed longitudinal reinforcement on the flexural tension side [mm²] 

As = area of longitudinal reinforcement [mm²] 

Av = area of shear reinforcement [mm²] 

Asw = area of shear reinforcement [mm²] 

bw = width of web [mm] 

d = effective depth [mm] 

dp = distance from extreme compression fiber to center of prestressing reinforcement 

[mm] 

dv = effective shear depth [mm], taken as the flexural lever arm but not less than 0.9d 

Es = elastic modulus of steel [N/mm²] 

Ec = secans elastic modulus of concrete [N/mm²] 

fc’ = specified concrete compression strength [N/mm²] 

fck = characteristic concrete compression strength [N/mm²] 

fcd = design concrete compression strength [N/mm²] 

fp0 = stress in the tendon when the surrounding concrete is at zero stress, wich may be 

taken as 1.1 times the effective stress in the prestressing tendons fse after all lossen 

[N/mm²] 

fpc = compressive stress at center of concrete cross section after allowance of all 

prestress losses and resisting externally applied loads [N/mm²] 

fy = specified yield strength of steel [N/mm²] 

fyt = specified yield strength of transverse reinforcement [N/mm²] 

fywd = design yield strength of transverse reinforcement [N/mm²] 
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k = size effect factor equal to 1+(200/d)
0.5

, with d expressed in [mm] 

Mcre = moment causing flexural cracking due to externally applied loads [Nmm] 

Mmax = maximum factored moment at section due to externally applied loads [Nmm] 

Mu = factored moment at section [Nmm] 

Nu = factored axial force, occurring simultaneously with Vu or Tu [N] 

Tu = factored torsional moment [Nmm] 

s = center-to-center spacing of shear reinforcement [mm] 

Vc = concrete contribution [N] 

Vci = nominal shear strength provided by concrete when diagonal cracking results from 

combined shear and moment [N] 

Vcw = nominal shear strength provided by concrete when diagonal cracking results from 

high principal tensile stress in web [N] 

Vd = shear force at section due to unfactored dead load [N] 

Vi = factored shear force at section occurring simultaneously with Mmax [N] 

vmin = 0.035k
3/2

fck
1/2

 [N/mm²] 

Vn = nominal shear strength [N] 

Vp = vertical component of the tensile force in the prestressing tendons [N] 

Vr = resisting shear strength [N] 

Vr,max = shear force needed to cause crushing of the inclined struts, equal to 

0.25 'p c w v pf b d V   [N] 

VRd = design resisting shear strength [N] 

VRd,c = design shear resistance provided by concrete [N] 

VRd,s = design shear resistance provided by shear reinforcement [N] 

VRd,max = design ultimate shear resistance to web compression [N] 

Vs = contribution of shear reinforcement to total shear strength [N] 

Vu = factored shear force at section [N] 

z = internal lever arm, can be taken as 0.9d [mm] 

 = angle of shear reinforcement [°] 

 = concrete tensile stress factor indicating the ability of diagonally cracked concrete to 

resist shear 

c = safety factor for concrete 

 = angle between compression field and tension chord [°] 

l = ratio of As to bwd 

w = ratio of As to bwd 

cp = average concrete compressive stress due to prestressing force [N/mm²] 

p = strength reduction factor for prestressing steel, in the presented calculations taken 

equal to 1. 
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