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ABSTRACT: 
In this paper, the experimental work on an innovative hybrid nano-fibered cement/concrete is 
presented.  The hybrid nano-fibered cement/concrete consists of multi-walled carbon nanotubes 
(MWNT) and micro-synthetic fibers.  Four groups of mortar mixtures are prepared, and tests are 
performed on cured cube samples. Group 1 samples are made with ordinary Type I Portland 
cement, Group 2 samples are made by adding MWNT, 0.5% by weight, to the mortar mixture, 
Group 3 samples are made by adding micro-synthetic fibers, 0.05% by weight, to the mortar 
mixture, and Group 4 samples feature both MWNT (0.5%) and micro-synthetic fibers (0.05%) in 
the mortar mixture.  The water-cement ratio used in all samples is 0.485.  The compressive 
stress-strain curves for the samples are obtained by an automatic data collection system.  The 
samples with hybrid nano-fibers (Group 4) show significant increase in compressive strength as 
well as high performance of cracking control.  Scanning Electron Microscope (SEM) images are 
obtained to investigate the micro-structures of the mortar mixtures.  The SEM images verify that 
MWNT form strong braces in the pores and micro- cracks of the mortar mixture, which 
contributes to higher strengths.  The proposed innovative hybrid nano-fibered concrete is proved 
to be a successful combination of nanotechnology and traditional construction materials and has 
very promising applications in bridge and roadway construction and precast/prestressed concrete 
industry due to its high strength and cracking control behavior. 
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INTRODUCTION 
 
Concrete has been the most widely used material in the modern construction industry ranging 
from buildings, water pipes and dams to roads and bridges.  According to national bridge 
inventory data, more than 70 percent of the bridges built today are made of concrete.  Due to its 
durability, versatility and economy, concrete has many advantages over other materials and 
concrete is the material of choice for superior structures.  However, concrete tends to crack due 
to shrinkage and loads.  Synthetic fibers (polypropylene multifilament fibers) have been used in 
concrete to reduce cracking, but such formulations do not enhance the compressive strength of 
concrete.  Carbon nanotubes (CNTs) are proven as the strongest fibers of all known materials 
and are a promising candidate for the next generation of high performance structural composite 
materials1.  CNTs have been reported to enhance the strength and ductility of plastic and 
rubbers5.  Theoretically, CNTs are ideal reinforcing fibers in concrete.  First, CNTs have much 
higher strength than other fibers, which should contribute to overall strength of concrete.  
Second, the aspect ratio of CNTs is much higher than other fibers, which requires higher energy 
for cracking propagation.  Third, the nano size of CNTs is similar to the thickness of calcium 
silicate hydrate layers of hydrated cement, allowing CNTs to be widely distributed into the 
cement matrix with much smaller spacing than traditional fibers.  The mechanical behavior of 
CNTs has generated great interests in their use as a structural material and substantial progress is 
expected in construction and construction material fields5, 6.  Incorporating CNTs into 
conventional cement-based concrete remains in its pre-exploration and fundamental research 
stage.  Nevertheless, the potential of CNTs to improve the mechanical properties of conventional 
concrete is promising. 
 
There are three areas of research that are specially related to the construction industry. These 
include CNTs composites made with existing construction materials such as concrete, CNTs 
ropes for use as structural components and CNTs ropes for use as heat transfer systems2.  Most 
recent research of CNTs in cement-based concrete has focused on the structure and fracture 
mechanisms of the composite materials6.  Advances in imaging technique make it possible to 
observe the microscopic structure at its nano-scale.  Scanning Electron Microscope (SEM) has 
recently been used to investigate the nanoscopic structure of CNTs reinforced concrete1, 2, 7.  The 
SEM can produce very high resolution images of a sample surface, revealing details as small as 1 
nanometer in size.   
 
Ordinary Portland cement (OPC) is the most commonly used cement binder in concrete.  Cement 
powders, when mixed with water, undergo hydration reactions to form the solid cement binder.  
Cement is a porous material and the porosities formed by the cement grains have dimensions on 
the order of 5 to 30 micrometers.  Unreinforced concrete is a brittle material, and is much 
stronger in compression than in tension, and therefore is susceptible to cracking.  Synthetic fibers 
are added into concrete for the purpose of cracking control.  The strength of concrete is affected 
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by many factors including water to cement ratio, pore sizes in cement and the presence of micro-
cracking in the cement binder.  The nanoscale structure of cement itself is complex2.  Some of 
the properties that affect concrete strength are in nanoscale, and the nanostructure of cement 
opens possibilities to use nanotechnology to enhance cement and concrete behavior.  One 
approach to improving the strength of the concrete is the addition of CNTs into the cement 
matrix2. 
 
Cement based concrete CNTs composites have great potential, and current research is in progress 
to investigate the mechanical performance of cement CNTs composites.  Yakovlev et al. (2006) 
reported that cement based foam concrete reinforced by single walled CNTs shows its 
compressive strength increasing by up to 70%7.  Lab research observed crack bridging in cement 
CNTs composites3.  Rouainia et al. (2008) employed finite element modeling to evaluate the 
Young’s modulus of the single walled CNTs reinforced concrete composites3.  Li et al. (2007) 
investigated the pressure-sensitive properties and microstructure of CNTs reinforced cement 
composites1. Raki et al. (2010) reviewed recent innovative achievements in cement and concrete 
nanoscience and nanotechnology4. 
 

 
Fig. 1 SWNT and MWNT 

 
Most published research results have focused on single walled CNTs (SWNT) reinforced cement 
composites.  The synthetic process of SWNT is much more complex than multi-walled CNTs 
(MWNT), and therefore, the cost of SWNT is much higher than that of MWNT.  Also, 
dispersion of SWNT is more difficult to achieve than that of MWNT.  The mechanical properties 
of MWNT, such as compressive strength and tensile strength, however, are almost identical to 
those of SWNT.  Thus, MWNT have more potential than SWNT in the construction industry due 
to its lower cost and simpler preparation process.  The structures of SWNT and MWNT are 
shown in Fig. 1.  So far, no published records have shown research work on combined use of 
CNTs and synthetic fibers in cement and concrete composites.  In this paper, the research on 
studying the mechanical performance of cement composites reinforced by MWNT/synthetic 
hybrid fibers is presented.  The nanoscopic microstructure of the MWNT/synthetic hybrid 
fibered cement composites is investigated by SEM.  We have discovered that the innovative 
MWNT/synthetic hybrid fibered cement composites show significant enhancement in both 
compressive strength and cracking control behavior.  The new concrete shows promise for 
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applications in precast/prestressed concrete members for bridges, buildings, oil pipes and nuclear 
facilities, where both strength and cracking control are critical.  The strength increase of the new 
concrete will make possible the design of slimmer structural members, which in turn leads to 
savings in materials, labor, and energy.   

 
EXPERIMENT 
 
The cement composites cube specimens were prepared according to ASTM C109 “Standard Test 
Method for Compressive Strength of Hydraulic Cement Mortars.”  The size of the cube 
specimens was 50mm×50mm×50mm.  In order to investigate the effect of different types of 
fibers on compressive strength of cement composites, four groups of cement mortar specimens 
were prepared.  The first group of samples was made with ordinary Type I Portland cement, the 
second group differed from the first by adding multi-walled carbon nanotubes (MWNT), 0.5% 
by weight, to the mortar mixture. The third group of samples was made by adding micro-
synthetic fibers, 0.05% by weight, to the cement mortar mixture, and the fourth group featured 
both MWNT (0.5%) and micro-synthetic fibers (0.05%) in the mortar mixture.  The water-
cement ratio used in all samples was 0.485.  The physical properties of the MWNT used in this 
paper are listed in Table 1, and the chemical and physical properties of the micro-synthetic fibers 
are listed in Table 2. 
 

Table 1: Physical Properties of MWNT 
Description Purity Inside 

Diameter 
(ID) 

Outside 
Diameter

(OD) 

Length Specific 
Surface 

Area 

Bulk 
Density 

True 
Density 

Color 

Industrial 
Grade, 

10-30 nm 
OD 

85% 5-10 nm 10-30 
nm 

10-30 
µm 

> 200 
m2/g 

0.14 
g/cm3 

2.1 
g/cm3 

Black 

 
Table 2: Chemical and Physical Properties of Micro-Synthetic Fibers 

Description Specific 
Gravity 

Fiber 
Length 

Fiber 
Diameter

Acid & 
Salt 

Resistance

Melt 
Point 

Ignition 
Point 

Thermal 
Conductivity 

Polypropylene 
Multifilament 

Fibers 

0.91 10-20 
mm 

1-10 µm  High 162 ºC 593 ºC Low 

 
MWNT need to be homogenously dispersed in water before mixing with cement8. Due to the 
poor compatibility of CNTs and water, it is difficult to disperse CNTs in water without any 
treatment.  In this paper, MWNT were dispersed in 2% Sodium Dodecyl Sulfate (SDS) solution 
and soaked into ultrasonic bath for 25 minutes as shown in Fig. 2. No other treatment for MWNT 
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was needed.  As there are no definitive data on carbon nanotube on toxicity yet, we took 
precautionary approach to use certain type of mask to prevent hazards from breathing in CNTs 
when we prepared the specimens. 
 

 
Fig. 2 MWNT Dispersion Using Ultrasonic Bath 

 
The cement mortar cube compressive strength tests were conducted on a MTS 45/G Material 
Testing System and the compressive stress-strain curves were automatically captured by the 
computer connected to the test machine, as shown in Fig. 3.  The peak compressive strength was 
also automatically recorded by the computer. 
 
 

 
Fig. 3 Cube Compression Test on 45/G Test Machine 

 
The digital pictures of the failure samples were taken right after the compression tests in order to 
investigate the macroscopic failure modes of different samples.  Scanning Electron Microscope 
(SEM) images were taken for each sample as shown in Fig. 4 to explore the microstructures of 
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MWNT and micro-synthetic fibers in cement mortar specimens and to investigate how MWNT 
and micro-synthetic fibers might affect the compressive strength of the cement composites. 
 

 
Fig. 4 SEM Imaging System 

 
 
RESULTS 
 
Four groups of cement mortar cubes were tested.  Group 1 samples were made with ordinary 
Type I Portland cement, Group 2 samples were made by adding MWNT, 0.5% by weight, to the 
mortar mixture. Group 3 samples were made by adding micro-synthetic fibers, 0.05% by weight, 
to the mortar mixture, and Group 4 samples featured both carbon nanotubes (0.5%) and micro-
synthetic fibers (0.05%) in the mortar mixture.  The description of the samples is listed in Table 
3.  For each group of the cement composites, three cube specimens were selected and the 
compressive strength of each group was obtained by averaging the ultimate strength of the three 
samples. The cube compression tests were conducted at 1-day, 7-day and 28-day after the cement 
mortar cubes were poured.  The compressive strengths of the four groups are listed in Table 4 
and the plots of compressive strength vs. time are shown in Fig. 5. 
 

Table 3: Cube Specimens Description 

 
 

Table 4: Compressive Strength 

 

Group No. Cube Size Components Water/Cement Ratio
1 50 mm × 50 mm × 50 mm Ordinary Portland Cement, Type I 0.485
2 50 mm × 50 mm × 50 mm Cement + Micro-synthetic Fiber 0.485
3 50 mm × 50 mm × 50 mm Cement + MWNT 0.485
4 50 mm × 50 mm × 50 mm Cement + MWNT + Micro-synthetic Fiber 0.485

Time
(day) (psi) (Mpa) (psi) (Mpa) % change to Group 1 (psi) (Mpa) % change to Group 1 (psi) (Mpa) % change to Group 1

1 1350 9.3 1200 8.3 -11.1 1300 9.0 -3.7 1620 11.2 20.0
7 3200 22.1 2900 20.0 -9.4 3100 21.4 -3.1 3800 26.2 18.8
28 3900 26.9 3550 24.5 -9.0 4000 27.6 2.6 4700 32.4 20.5

Compressive Strength Compressive Strength Compressive Strength Compressive Strength
Group 1 Group 2 Group 3 Group 4
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  Fig. 6: Group 1 Sample at Failure                                       Fig. 7: Group 2 Sample at Failure 

 

                                                
    Fig. 8: Group 3 Sample at Failure                                     Fig. 9: Group 4 Sample at Failure 
 
The pictures tell us: 

1) The failure modes of Group 1 and Group 3 samples were brittle.  The samples 
experienced serious spalling and were crushed at failure.  We can clearly see the hour-
glass shape cores. 

2) The failure modes of Group 2 and Group 4 samples were ductile.  The samples still held 
their cubical shapes.  No spalling and crushing occurred at failure. 

The microstructures of cement composites are complex and understanding the microstructures is 
critical to explain the macroscopic mechanical properties of the samples.  Since the dimensions 
of MWNT and calcium silicate hydrate layers of hydrated cement are in nano-scale, SEM was 
used to obtain the nanoscopic images of the samples.  The SEM images with scales are shown in 
Fig. 10 through Fig. 13 for the four groups of samples, respectively. 
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cement composites.  From the experimental results, we discovered that the compressive strength 
is dramatically enhanced by the use of the hybrid fibers consisting of MWNT and micro-
synthetic fibers.  The use of the hybrid fibers also significantly improves the cracking control 
behavior of the cement composites.  SEM imaging makes it possible to explore the nanoscale 
microstructures of the cement mortar samples reinforced by MWNT and micro-synthetic fibers.  
The microstructures reveal the reasons of the significant enhancement of the mechanical 
properties of the hybrid fibered cement composites. 

1) MWNT are the strongest and stiffest material yet discovered.  Labs have measured the 
tensile strength of 63 Gpa for MWNT.  The compressive strength of MWNT can reach as 
high as 60 Gpa if no compression buckling occurs.  MWNT are ideal reinforcing material 
due to their unique mechanical properties. 

2) The micro defects, such as micro-voids and micro-cracks in the cement composites, 
affect the strength of the cement composites.  Effectively bridging the micro-voids and 
micro-cracks with high strength material will increase the strength of the cement 
composites. 

3) Using micro-synthetic fibers alone improves the cracking control behavior, but sacrifices 
the compressive strength of the cement composites.  This is because micro-synthetic 
fibers have high tensile strength but can resist little compression.  The experimental data 
verify that while micro-synthetic fibers control cracking, they reduce the compressive 
strength of cement composites. 

4) Using MWNT alone shows no obvious improvement in both compressive strength and 
cracking control behavior.  From the SEM images, we find that many MWNT pull out 
and MWNT are too short to span over the entire cracks and/or voids due to crack 
widening, and the load transfer paths are impossible to pass through the MWNT, and 
therefore using MWNT alone do not contribute to strength increase. 

5) Using MWNT and micro-synthetic fibers together shows significant enhancement in both 
compressive strength and cracking control.  The interaction between MWNT and micro-
synthetic fibers contributes to the improvement of mechanical properties of cement 
composites.  Micro-synthetic fibers control the cracking propagation and restrain the 
width of the cracks.  MWNT effectively bridge the cracks and voids and generate 
continuous load paths through the MWNT in the cracks and voids to transfer loads.  
These additional load paths through the strong MWNT directly contribute the 
compressive strength increase in the cement composites. 

 

CONCLUSIONS 
 
In this paper, an innovative hybrid nano-fibered cement/concrete is proposed.  The hybrid 
nano-fibers consist of 0.5% by weight MWNT and 0.05% by weight micro-synthetic fibers.  
The interaction mechanism of among MWNT, micro-synthetic fibers and hydrated cement is 
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investigated.  Four groups of cement mortal cube compression tests are conducted and 
compared.  The microstructures of the cement composites are revealed by SEM images.  
According to the experimental data and analysis, we can conclude that: 

1) MWNT are ideal reinforcing material in cement/concrete composites due to their high 
strength and stiffness, and the application of MWNT in construction material has great 
potential. 

2) MWNT have many advantages over SWNT in construction material applications, such as 
easier fabrication, lower cost, simpler dispersion technique and higher buckling resistance 
under compression. 

3) The MWNT dispersion procedure proposed in this paper is simple and practical, and no 
additional chemicals such as acids are involved. 

4) Neither compressive strength nor cracking control behavior improves if MWNT alone are 
used as the reinforcing fibers in cement composites. This is because that the length of 
MWNT is only a few microns to a few tens of microns.  When the cracks widen, the 
MWNT are either too short to span over the cracks or do not have enough embedment 
length and pull out, and the MWNT do not play an effective role in load transfer and do 
not contribute to compressive strength. 

5) The combined use of MWNT and micro-synthetic fibers in cement composites both 
dramatically increases compressive strength and controls cracking propagation.  MWNT 
and micro-synthetic fibers work interactively to contribute to the enhancement of 
mechanical properties.  Micro-synthetic fibers control cracks and restrain the cracking 
width while MWNT effectively brace the cracks and voids and transfer the loads. 

6) The proposed innovative hybrid nano-fibered cement/concrete has promising applications 
in bridges, roadways, pipes and precast/prestressed concrete structural members, where 
both strength and cracking control are critical. 
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