
Chuang and Ulm  2003 ISHPC 

 
 
 
 

STRUCTURAL EFFECT OF UHPC DUCTILITY 
 

Eugene Chuang, PhD, PE, Dept. of Civil Engineering, Massachusetts Institute of 
Technology, Cambridge, MA 

Hesson Park, Dept. of Civil Engineering, Massachusetts Institute of Technology, 
Cambridge, MA 

Franz-Josef Ulm, PhD, Dept. of Civil Engineering, Massachusetts Institute of Technology, 
Cambridge, MA 

 
 
ABSTRACT 
 

Previous research has proven the suitability of a UHPC model and 
corresponding finite element implementation for predicting the global and 
local behavior of UHPC structures. Using the finite element implementation 
of this UHPC model, the link between UHPC ductility and structural 
performance is elucidated with a sensitivity analysis of UHPC ductility 
parameters - invariants which quantify ductility at the UHPC material level. 
With this sensitivity analysis, one may compare the ductility offered by UHPC 
to that of other materials at a structural level. For instance, by reducing the 
ductility through material parameters, one may predict the structural 
behavior of a less ductile cementitious material. Conversely, by improving 
ductility, the possible structural gains through future material improvements 
can be envisioned. 
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INTRODUCTION 
 
Ultra-high performance concrete (UHPC) is a fiber reinforced cementitious material which 
offers many advantages over normal concrete for prestressed concrete applications, such as 
high compressive strengths, low creep, and negligible autogeneous shrinkage1,2. The elasto-
plastic tensile behavior of UHPC is particularly beneficial as it may allow for the elimination 
of shear reinforcement and passive reinforcement in many UHPC beam applications. 
However, the high cost of UHPC materials renders them economically inefficient for some 
prestressed concrete applications. Therefore, the structural effect of UHPC ductility should 
be evaluated before its employment. 

A previously presented UHPC model and corresponding finite element 
implementation may be utilized for the structural evaluation of UHPC ductility. The UHPC 
model is a two-phase model, one phase representing the cementitious matrix and the other 
representing the reinforcing fibers, which is characterized by 10 material parameters of clear 
physical importance3.  The finite element implementation of the model was shown to provide 
reliable and relevant predictions of load-deflection behavior, local strain behavior, and 
cracking behavior for two structural case studies: a flexural girder and a shear girder which 
have been recently tested by the FHWA4. 

Using finite element (FE) simulations, this paper elucidates the link between UHPC 
ductility and structural performance with a sensitivity analysis of UHPC ductility parameters 
- invariants which quantify ductility at the UHPC material level. With this sensitivity 
analysis, one may compare the ductility offered by UHPC to that of other materials at a 
structural level. For instance, by reducing the ductility through material parameters, one may 
predict the structural behavior of a less ductile cementitious material. Conversely, by 
improving ductility, the possible structural gains through (future) material improvements can 
be envisioned. This examination begins with a review of the UHPC model. 
 
 
MATERIAL MODEL AND INPUT PARAMETERS 
 
THE 1-D UHPC MODEL 
 
Figure 1 displays the typical material response of UHPC materials obtained from a 
displacement driven notched tensile plate test. Following an initial elastic domain (A-B), the 
matrix cracks, which manifests itself as a macroscopic stress drop. However, this stress drop 
is mitigated by the redistribution of the stresses at the level of the composite materials, i.e. 
matrix and fibers. As a consequence, the overall composite material exhibits an apparent 
hardening behavior (B-C) until a macroscopic tensile yield strength is achieved. While the 
application of the tensile strength of cementitious materials is often restricted by the 
uncertainty regarding their tensile values, careful batching and mixing procedures for UHPC 
results in less dispersive tensile values, allowing safe exploitation of the tensile and shear 
capacity of UHPC in structural applications. 

To capture this physically observed UHPC macroscopic behavior, a two-phase model, 
which is displayed in Figure 2, is employed. This model was formulated not only to capture 
physically observed macroscopic behavior, but also micromechanical processes (such as 
elasticity, cracking, and yielding) which occur at a level below. In this model, developed in 
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detail by Chuang and Ulm3, a brittle-plastic composite matrix phase (stiffness CM, brittle 
strength ft, plastic strength ky) is coupled to an elasto-plastic composite fiber phase (stiffness 
CF, strength fy) by means of a composite interface spring (stiffness M). This composite 
interface spring is not activated until cracking occurs in the composite matrix phase. Figure 1 
compares the stress-strain response of the 1-D model with the experimentally determined 
UHPC stress-strain relation. Figure 3 shows the individual evolutions of the composite 
matrix stress σM and the composite fiber stress σF when an external tensile strain E is 
imposed. 
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Fig. 1 Tensile Stress-Strain Curve for the UHPC Specimen (Experimental Data from 
Lafarge) and the Corresponding 1-D UHPC Model 

 
It is important to note that the term �phase� employed here does not necessarily refer 

to micromechanical phases in the material at smaller scales. Rather, one may consider the 
fiber phase as a macroscopic representation of the stiffness (stiffness CF) and yield capacity 
(yield strength fy) that are added to the overall UHPC composite stiffness and strength due to 
the addition of reinforcing fibers, which are activated (via the coupling spring M) upon 
matrix cracking. However, the composite matrix plastic strains ε  which form during 
loading can be directly related to UHPC crack widths which are physically observed in 
loaded specimens, as shown in subsequent sections. 

p
M
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Fig. 2 The 1-D UHPC Model3 
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Fig. 3 Individual Responses of the Composite Matrix and Composite Fiber During Tensile 
Loading 

 
EXTENSION OF THE 1-D MODEL TO 3-D 
 
The extension of the 1-D model to 3-D requires three main components: 
 

• A 3-D stress-strain relationship which is derived from energy considerations for a 
stress-strain expression which is thermodynamically consistent with the 1-D result. 

• Strength domain: unlike the 1-D UHPC strength domain, which is only described by 
the tensile strength limits of the UHPC material, the 3-D strength domain requires 3-
D strength limits, that is tension, compression, shear, etc. 
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• 1-D consistency condition: finally, for consistency with the 1-D UHPC model, the 
uniaxial behavior (stress loading in only one direction) of the 3-D model is calibrated 
with the 1-D UHPC model response (see Fig. 1). In this way, the 3-D model exhibits 
a tensile response which is thermodynamically consistent with that of the 1-D UHPC 
model. 

 
Isotropic stress-strain relationships and strength domains are applied to the 3-D UHPC 
model. While isotropy is selected for the sake of simplicity, validation of the model shows 
this assumption to be quite adequate. The detailed development of the 3-D extension is given 
by Chuang and Ulm4. 
 

Model Parameter Description DUCTALTM Value
CM [ksi (GPa)] Stiffness of the composite matrix 7820 (53.9) 
CF [ksi (GPa)] Stiffness of the composite fiber 0 (0) 
M [ksi (GPa)] Stiffness of the composite interface 240 (1.65) 

νM [1] Poisson's ratio of the composite material 0.17 
ft [ksi (MPa)] Brittle tensile strength of the composite matrix 0.1 (0.7) 
ky [ksi (MPa)] Post-cracking tensile strength of the composite matrix 1 (6.9) 
σMc [ksi (MPa)] Initial compressive strength of the composite matrix 28 (190) 
σMb [ksi (MPa)] Initial biaxial compressive strength of the composite matrix 32 (220) 
fy [ksi (MPa)] Tensile strength of the composite fiber 0.67 (4.6) 
σFc [ksi (MPa)] Compressive strength of the composite fiber 1.5 (10) 

 
Table 1 Parameters of the 3-D UHPC Model and Corresponding Values for DUCTALTM 

 
SUMMARY OF MODEL PARMETERS 
 
In addition to the 1-D model parameters (CM, ft, ky, CF, fy, M), the 3-D UHPC model 
employs four parameters: Poisson's ratio νM, composite matrix compressive strength σMc, 
composite matrix biaxial compressive strength σMb, and composite fiber compressive 
strength σFc. This yields a total of 6 + 4 = 10 model parameters summarized in Table 1 which 
can be determined through a single tensile test, a single compression test, and commonly 
accepted cementitious data4. Also listed in the table are parameter values determined for 
DUCTALTM, a UHPC material produced by Lafarge which is used in the FHWA girders and 
whose ductility parameters are used for the "Base Case" for the sensitivity analysis. 
 
 
VALIDATION OF THE 3-D MODEL: A REVIEW 
 
To validate the UHPC model and its finite element implementation, two tests performed by 
the FHWA were investigated (FHWA, 2002). Both tests involved AASHTO Type II girders 
(see Fig. 4(a)) comprised of DUCTALTM without shear reinforcement: 
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• FHWA flexure test. A prestressed girder with a 78.5 ft (23.9 m) long test span was 
loaded in four point bending with two equal load points (total load P) located 3 ft (0.9 
m) from the midspan (see Fig. 5(Top)). 

• FHWA shear test. A 14 ft (4.3 m) girder was tested in three point bending, as 
illustrated in Fig. 5(Bottom). The load P was applied off-center, 6 ft (1.8 m) from one 
of the supports, in order to induce high shear stresses in the short load span. 

 
For the complete validation of the UHPC model, refer to Chuang and Ulm4. 
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Fig. 4 Cross section of the AASHTO Type II Girder: (a) Actual Beam and (b) Idealized FE 
Simulation 

 
A SIMPLIFIED MODEL OF PRESTRESSING 
 
The AASHTO Type II girder is prestressed with 26 steel tendons, each 0.5 in (1.27 cm) in 
diameter, composed of low relaxation steel with σTu = 270 ksi (1,860 MPa) strength and ET = 
29,000 ksi (200 GPa) stiffness5. Each prestressing tendon was initially loaded to 55% of its 
ultimate strength. Half of the tendons in the bottom flange were debonded for 3 ft (91 cm) 
from each end (FHWA, 2002). As depicted in Fig. 4, the prestressing tendons are not 
explicitly simulated in the finite element model. Instead, the equivalent effect of the tendons 
is modeled, that is (1) the prestressing forces and (2) the contribution of the tendons to the 
stiffness and strength. 

To capture the effect of prestressing forces, an equivalent external pressure is applied 
at the ends of the girder, particularly on the bottom flange, BF1 and BF2, and the upper part 
of the top flange, TF1 (see Fig. 5(Top)). The prestressing pressure p is calculated according 
to: 
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p = 0.55(cTσTu)  (1)

where factor 0.55 refers to the level of prestressing in the tendons. Subscript "T" refers to the 
prestressing tendons; cT is the volume fraction of the tendons in a particular cross sectional 
subdivision i (i.e. cT = AT/Ai where AT is the cross sectional area of the tendons in the 
subdivision and Ai is the total area of the subdivision) and σTu = 270 ksi (1,860 MPa) is the 
strength of the tendons. In BF1, cT = 3.0%, in BF2, cT = 2.2%, and in TF1, cT = 0.6%; cT  = 
0% in the other cross sectional areas. Thus, the magnitude of p varies along the height of the 
girder according to the tendon concentration cT. 
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Fig. 5 Loading Configuration and Strain Gauge Locations for: (Top) The FHWA Flexure 
Test, (Bottom) The FHWA Shear Test 

 
EFFECTIVE STIFFNESS AND STRENGTH OF THE BOTTOM FLANGE 
 
At the structural level, the bottom flange is analogous to a composite material comprised of 
two homogeneous phases, the UHPC and the prestressing tendons. In this case, the stiffness 
of the bottom flange can be assigned an upper bound using the general rule of mixtures. In 
the simulations, the stiffness change due to the tendons is enforced through the stiffness of 
the composite fiber phase in the bottom flange C , while the composite matrix stiffness is 
kept constant: 

B
F

B
FC  = CF + cT (ET - CF)  (2)

The presence of prestressing fibers also affects the composite yield strength of the 
bottom flange. Based on yield design theory, it can be shown that a lower strength bound of a 
uniaxially reinforced composite is simply the lower strength of the two composite 
components6. On the other hand, an upper strength bound as given by yield design theory is 
the weighted average of the composite components6. In the simulations, the upper strength 
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bound is applied to the yield strength of the composite fiber phase in the bottom flange f , 
while the composite matrix strength k

B
y

y is unchanged: 
B
yf  ≤  fy + cT(0.45σTu - fy)  (3)

where the factor 0.45 refers to the reserve strength in the prestressing tendons, i.e. 100%-
55%. 

For each case study, two different sets of material parameters were examined, a lower 
bound set and an upper bound set. Listed in Table 2 ("Base Case") is the lower bound model 
parameter set (which are equivalent to the DUCTALTM values in Table 1); Table 2 also 
highlights the modified upper bound values (in parentheses) in the "Base Case" row. As 
shown in Table 2, the values for σFc are also increased to ensure σFc > fy, which is a 
requirement for stability of the 3-D strength domain (see [4] for details). The new values of 
σFc were chosen to be arbitrarily larger than fy, but since no compressive yielding occurred in 
the bottom flange of the FHWA tests, the exact value of this parameter is irrelevant. 
 

  Modified UHPC Only Model Parameters (with Tendon Effect BF1/BF2) 

Ductility Parameter M / M  0 B
FC /  0M ft/

0
yk yk  / 0

yk B
yf /  0

yk σFc/ k  0
y

Base Case 1 0 (3.6/2.7) 0.1 1 0.67 (4.3/3.3) 1.4 (4.3/4.3) 
RK = .3% 0.1 0 (3.6/2.7) 0.1 1 0.67 (4.3/3.3) 1.4 (4.3/4.3) 
RK = 30% 14 0 (3.6/2.7) 0.14 0.96 0.71 (4.3/3.3) 1.4 (4.3/4.3) 

RD = 1 1 0 (3.6/2.7) 0.55 0.55 1.1 (4.7/3.8) 1.4 (4.8/4.3) 
RD = 10 1 0 (3.6/2.7) 0.01 1.1 0.58 (4.1/3.3) 1.4 (4.3/4.3) 
RS = 1.1 1 0 (3.6/2.7) 0.1 1 0.21 (3.8/2.9) 1.4 (4.3/4.3) 
RS = 3.5 1 0 (3.6/2.7) 0.1 1 2.9 (6.4/5.4) 3.6 (7.2/5.8) 

 
Table 2 Normalized Values of UHPC Model Parameters Used in the FHWA Tests and 
Sensitivity Analyses. Changes from the Base Case Denoted in Bold. M0 = 240 ksi (1.65 

GPa);  = 0.1 ksi (0.7 MPa) 0
yk

 
RESULTS OF THE VALIDATION 
 
The FHWA tests were numerically simulated to gauge the accuracy and reliability of the 
UHPC model. The finite element simulation was validated with the experimental data with 
respect to three different criteria: 
 

• Load-deflection curves. The load-deflection curves of the FHWA specimen and the 
FE simulation demonstrated very good correlation (see Fig. 6). As shown in Fig. 6(a), 
the upper bound case accurately replicated the load-deflection behavior of the FHWA 
flexure test as the tendon stiffness and strength was activated. By contrast, Fig. 6(b) 
displays the aptness of the lower bound material parameters to model the FHWA 
shear test, as short tendon bonding lengths did not allow full activation of the stiffness 
and strength of the tendons. The simulated load-deflection curves and the 
experimental load-deflection curves for both FHWA case studies diverge when the 
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actual girders experienced structural failure. For the FHWA flexure test, this was due 
to tendon rupture; for the FHWA shear test, failure occurred as a result of tendon-
UHPC interface failure. 
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Fig. 6 Load-Deflection Results from the FHWA Simulations: (a) The FHWA Flexure Test 
(Deflection Measured at Midspan), (b) The FHWA Shear Test (Deflection Measured under 

Load Point). 
 
• Strain gauge measurements. The FE program provides results for the deflection of the 

nodes in a given mesh during loading. Strain results are calculated as the change in 
distance between two nodes divided by the original distance between the nodes. 
Strain predictions obtained from the FE simulation exhibited excellent agreement 
with strain measurements from strain gauges placed at various locations (see Fig. 5) 
on the FHWA specimens. 

• Cracking patterns. Plastic strains in the composite matrix ε  can be related to 
cracking, which occurs in the cementititous matrix of UHPC. The composite matrix 
plastic strains as given by the FE simulation accurately modeled cracking observed in 
the FHWA specimens. 

p
M
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In this way, the UHPC model was shown to appropriately predict the behavior of UHPC 
structures not only at the global level, i.e. load-deflection behavior, but also the local level, 
i.e. strain and cracking results. 
 
 
SENSITIVITY ANALYSIS OF DUCTILITY PARAMETERS 
 
DETERMINING UHPC STRUCTURAL LIMITS 
 
Two appropriate metrics for evaluating structural performance are the service limit and the 
ultimate limit. The service limit is the load Ps at which an acceptable service state is breached 
in the structure. For UHPC, this service state will be characterized by a maximum crack 
opening u. The ultimate limit is the highest load Pu which a structure can bear. This study is 
restricted to the evaluation of structural performance in terms of the service limit as the 
service limit lends itself to quantifying the structural performance of UHPC in terms of its 
model input parameters. As proven with the model validation, the FE implementation 
appropriately predicts the location and orientation of cracks in the structures. In addition, the 
FE program also provides an accurate numerical prediction of the total strain (plastic and 
elastic strain) for the case studies. Hence, the FE implementation offers a reliable prediction 
of principal composite matrix plastic strain ε  and, as a consequence, crack widthp

I,M
4. 

Cracks can be categorized as unreinforced cracks or reinforced cracks. In the case of 
the FHWA tests, one may consider the shear cracks in the web to be unreinforced. The 
flexure cracks in the bottom of the flange, on the other hand, are reinforced with the 
prestressing tendons. Guidelines provided by the French Association of Civil Engineering 
(AFGC) suggest a limit for cracking in UHPC structures in the absence of reinforcement, 
provided here as a maximum composite matrix plastic strain : un,p

max,Mε 7 

p
I,Mε  ≤  ε  = wun,p

max,M max/lc  (4)

where lc is a characteristic length, generally lc = (2/3)h where h is the height of the girder. w 
is the total cumulative crack opening measured over a length lc; for common UHPC 
applications the maximum value of w for unreinforced cracks suggested by AFGC is wmax = 
1/85 in (0.3 mm). 
    AFGC is less precise about guidelines for reinforced UHPC cracks. However, it is 
proposed that due to the supplemental safety supplied by the prestressing tendons, UHPC 
cracks may be allowed to grow to either a cumulative crack opening (measured over a 
distance lc at which detrimental strain softening begins wsoft: 7 

wsoft = h/100  (5)

or a cumulative crack opening (measured over a distance lc) at which the reinforcing fibers 
(of length Lf) can no longer carry crack bridging stresses wlim: 

wlim = Lf/4  (6)

For the FHWA structures, where Lf = 0.5 in (13 mm) and h = 3 ft (910 mm), wlim (< wsoft) 
provides a safer bound for cumulative crack widths for reinforced UHPC cracks. This 
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cumulative crack limit wlim for reinforced UHPC cracks, rewritten in terms of composite 
matrix plastic strains ε , enforces the following condition: re,p

max,M

p
I,Mε  ≤  ε  = Lre,p

max,M f/4lc  (7)

For the FHWA flexure and shear tests,  = 5×10un,p
max,Mε -4 and ε  = 5×10re,p

max,M
-3. 
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Fig. 7 Normalized UHPC Stress-Strain Behavior with Modified Ductility Parameters: (a) 
Tensile Stress-Strain Curve for "Base Case" UHPC (Data from Lafarge) Along with Modeled 
Response; (b) Modified Stiffness Ratios RK; (b) Modified Ductility Ratios RD; (b) Modified 

Strength Ratios RS. Stresses in (b), (c), and (d) Normalized by  =1.67 ksi (11.5 MPa). 0
2Σ

 
For the ductility parameter sensitivity analysis which follows, the service load Ps is 

the applied load P on the FHWA structures at which either the maximum unreinforced 
composite matrix strain is first achieved Ps = P( ε  = ε ) in the web through shear 

cracking or the maximum reinforced composite matrix strain is first achieved P

p
I,M

un,p
max,M

s = P( ε  = 

) in the bottom flange through flexural cracking. 

p
I,M

re,p
max,Mε
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DUCTILITY PARAMETERS 
 
UHPC, as discussed, exhibits dramatic ductility improvements over normal fiber reinforced 
concretes when loaded in tension. The ductile stress-strain response for the UHPC "Base 
Case" is exhibited in Figure 7(a) along with the best-fit response given by the 3-D UHPC 
model. Here, the material behaves in a linear elastic manner (stiffness K0) until first cracking 
occurs in the composite matrix at a macroscopic stress of Σ . Cracking is characterized by 
the post-cracking strength drop to a stress . Upon further loading, the material strain-
hardens quasi-bilinearly with an initial stiffness K

−
1

+Σ1

1. When a stress of Σ2 is achieved in the 
material, the composite exhibits yielding behavior. 

Ductility parameters are dimensionless combinations of the 3-D UHPC model 
parameters which characterize the post-cracking UHPC material behavior in relation to the 
initial (uncracked) UHPC material behavior as illustrated in Fig. 7(a). By altering the model 
parameters (see Table 2), the ductility parameters related to UHPC are modified to examine 
their effect on structural performance. Three ductility parameters are investigated in this 
chapter: 
 

• Stiffness ratio, the ratio of post-cracking stiffness to initial stiffness (see Fig. 7(a)): 

RK ≡  K1/K0  (8)

The stiffness ratio for the Base Case is RK = 3%. Two variations for the stiffness ratio are 
also studied in this chapter: RK = 0.3% and RK = 30%. Since the effect of ductility is being 
evaluated, the virgin behavior of the material, i.e. the initial stiffness K0, is kept constant. The 
material behavior for UHPC with the modified stiffness ratios is plotted in Figure 7(b). 

• Ductility ratio, the ratio of residual strength to brittle strength during cracking in the 
composite matrix (see Fig. 2): 

RD ≡  ky/ft  (9)

For the Base Case, RD = 10. Other ductility ratios investigated are RD = 1 and RD = 100. The 
first cracking strength Σ  is kept constant, that is k−

1 y + ft = . The UHPC stress-strain 
curves with modified ductility ratios are presented in Fig. 7(c). 

−Σ1

• Strength ratio, the ratio of composite yield strength to the first cracking strength (see 
Fig. 7(a)): 

RS ≡  Σ2/ Σ  −
1

 (10)

 The strength ratio for the Base Case is RS = 1.5. The two variations of the strength ratio 
studied in here are RS = 1.1 and RS = 3.5. The UHPC behavior with altered strength ratios is 
portrayed in Fig. 7(d). 

 
The upper bound FHWA flexure test and the lower bound FHWA shear test were 

simulated with the altered ductility parameters. The assumptions and procedures for the new 
simulations are identical to those previously described except for changes to the material 
parameters (M, ft, ky, and fy) to achieve desired ductility parameter values. The compressive 
strength of the composite fiber was also adjusted in some cases to maintain the stability of 
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the 3-D strength domain. The material parameters for these simulations are listed in Table 2 
with the altered material parameters highlighted in bold font. 
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Fig. 8 Effect of Stiffness Ratio on Normalized Load-Deflection Behavior: (a) Upper Bound 

of the FHWA Flexure Beam. Deflection Measured at Beam Midpoint, Deflection 
Normalized by δu = 20 in (50 cm), Load Normalized by Pu = -180 kips (-800 kN). (b) Lower 

Bound of the FHWA Shear Beam. Deflection Measured at Load Point, Deflection 
Normalized by δu =  0.55 in (14 mm), Load Normalized by Pu = -765 kips (-3400 kN) 
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Fig. 9 Effect of Stiffness Ratio on Normalized Load-Maximum Crack Width Behavior of 
Upper Bound of the FHWA Flexure Beam. Cracking ε  measured in bottom flange, strain 

normalized by  = 5×10

p
I,M

re,p
max,Mε -3, load normalized by Pu = -180 kips (-800 kN) 

 
EFFECT OF STIFFNESS RATIO 
 
The normalized load-deflection curves for the FHWA flexure and shear simulations with 
modified stiffness ratios are plotted in Fig. 8. The total loads P were normalized with the 
ultimate loads Pu as obtained in the FHWA experiments: for the flexure test Pu = -180 kips (-
800 kN) when tendon failure occurred, for the shear test Pu = -765 kips (-3400 kN) when 
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tendon-UHPC bond failure evidently occurred. The deflections were normalized by the 
deflections at the ultimate loads δu = δ(P = Pu): for the flexure test δu = 20 in (50 cm), for the 
shear test δu = 0.55 in (14 mm). As shown in Fig. 8, the stiffness ratios have some effect on 
the load-deflection behavior. In particular, an increase in stiffness ratio produces some 
improvement in the structural behavior of the FHWA flexure beam (Fig. 8(a)); a decrease in 
stiffness ratio has a softening effect on the structural behavior of the FHWA shear beam (Fig. 
8(b)). 
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Fig. 10 Effect of Stiffness Ratio on Normalized Load-Maximum Crack Width Behavior of 
Lower Bound of the FHWA Shear Beam: (a) Flexure Cracking ε  Measured in Bottom 

Flange, Strain Normalized by  = 5×10

p
I,M

re,p
max,Mε -3, Load Normalized by Pu = -765 kips (-3400 

kN); (b) Shear Cracking ε  Measured in Web, Strain Normalized by  = 5×10p
I,M

un,p
max,Mε -4, Load 

Normalized by Pu = -765 kips (-3400 kN) 
 

  Normalized Load Ps/Pu 
Altered Ductility Parameter FHWA Shear FHWA Flexure 

Base Case 0.87 (Web) 0.9 
RK = 0.3% 0.8 (Web) 0.86 
RK = 30% 1 (Flange) 1.02 

RD = 1 0.62 (Web) 0.86 
RD = 100 0.93 (Flange) 0.9 
RS = 1.1 0.85 (Flange) 0.87 
RS = 3.5 0.87 (Web) 1 

 
Table 3 Normalized Loads at Service Limit for Ductility Parameters. Type of Failure for 

FHWA Shear Girder Listed in Parentheses. 
 

By determining the load capacities of these structures at the service limit (maximum 
allowable crack width), these ductility parameter results become applicable on an 
engineering level. In Figs. 9 and 10 the normalized load is plotted against the normalized 

14 



Chuang and Ulm  2003 ISHPC 

maximum principal composite matrix plastic strain  for different stiffness ratios Rp
I,Mε

max

K. 

Flexural cracks in the flange are normalized with ε  = 5×10re,p
,M

-3, shear cracks in the web are 

normalized with ε  = 5×10un,p
max,M

-4. In the case of the FHWA shear girder, significant cracking 
occurs in the reinforced bottom flange and unreinforced web4. Thus, Fig. 10(a) plots the load 
results in terms of flexural cracking in the (reinforced) bottom flange and Fig. 10(b) shows 
the load results in terms of shear cracking in the (unreinforced) web. Table 3 summarizes the 
normalized service loads Ps/Pu (as an example, highlighted with arrows in Fig. 9) which are 
achieved when the normalized composite matrix plastic strain / ε  = 1 (demarcated 
with a vertical line in Figs. 9 and 10) for each structure. In the case of the shear girder, the 
lower service load limit as determined for bottom flange cracking and web cracking is listed 
in Table 3. Table 3 also clarifies the limiting crack type for the FHWA shear test in 
parentheses. 

p
I,Mε p

max,M

The service load limit Ps predicted for the Base Case (RK = 3%, RD = 10, RS = 1.5) is 
lower than the ultimate load for both the FHWA flexure and shear girders, Ps/Pu < 1. In other 
words, although the FE simulations did not predict the ultimate loads, which were dictated by 
tendon or bond failure, the service limits suggested by AFGC are well below the ultimate 
load. Therefore, it appears that the FE simulations are able to provide safe service load limits 
despite neglecting complex tendon behavior. 

These crack width limits may also propose safe structural service limits for any 
FRCC which is prestressed. In the case of the tendon rupture (as in the FHWA flexure test), 
crack width limits will also limit strains in the tendons. In the case of tendon slip, the crack 
width limits may prevent unsafe strain differentials between the tendon and the UHPC which 
induce tendon slip. In this way, it is inferred that the service limits ensure overall structural 
soundness, i.e. Ps(RK) < Pu(RK). For example, in the case of the RK = 30% for the flexure test, 
Ps/Pu >1 as listed in Table 3. This, however, does signify that the ultimate load Pu for this 
stiffness ratio was achieved. Instead, since the service limit ε / = 1 also implies a safe 
limit on strains in the tendon, it is suggested that the ultimate load for this stiffness ratio is 
higher that the ultimate load of the actual FHWA flexure test P

p
I,M

p
max,Mε

s(RK = 30%) > Pu(RK = 3%). 
Similarly, for the FHWA flexure girder with the lower stiffness ratio RK = 0.3%, the 
normalized service load Ps/Pu = 0.86. This does not indicate that the structure has a reserve 
strength of (1-0.86)Pu. Instead, due to a faster development of flexure cracking  and, as a 
consequence, tendon strains, the tendons will most likely undergo rupture at a lower load, i.e. 
P

p
I,Mε

s(RK = 0.3%) < Pu(RK = 3%). So Ps/Pu in Table 3 does not signify the reserve load capacity 
(or lack of load reserve capacity) in the FHWA tests with the varied ductility parameters. 
Instead Ps/Pu should merely be considered a measure with which to compare the service loads 
of the structures across variations in ductility parameters. 

Table 3 reveals how changes in stiffness ratio affect the FHWA shear test more 
noticeably than the FHWA flexure test. This may be due to a "tendon effect", i.e. the effect of 
the prestressing tendon in the flexure test (the upper bound assumption) which masks flexural 
cracking effects in the flexure girder. Recall that this tendon effect is not as important in the 
shear test due to tendon slippage (hence the lower bound assumption). Also, the stiffness 
ratio seems to particularly affect the shear cracking as demonstrated in Fig. 10(b). This may 
be due to the more brittle cracking behavior in shear than in pure tension, as dictated by the 
larger stress drops in the composite matrix when the loading path is more compressive in 
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nature; a higher stiffness ratio may offset this brittleness. Accordingly, when the stiffness 
ratio is high, RK= 30%, the governing mode of cracking changes from shear cracking in the 
web to flexure cracking in the bottom flange. One may conclude that this brittleness factor in 
shear may be mitigated by a favorable stiffness ratio more than the brittleness in tension. 
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Fig. 11 Effect of Ductility Parameters on Normalized Load-Deflection Behavior: (a) Upper 
Bound of the FHWA Flexure Beam with Varying Ductility Ratios; (b) Lower Bound of the 
FHWA Shear Beam with Varying Ductility Ratios. (c) Upper Bound of the FHWA Flexure 

Beam with Varying Strength Ratios; (d) Lower Bound of the FHWA Shear Beam with 
Varying Strength Ratios. For FHWA Flexure Beam: Deflection Measured at Beam Midpoint, 
Deflection Normalized by δu = 20 in (50 cm), Load Normalized by Pu = -180 kips (-800 kN). 
For FHWA Shear Beam: Deflection Measured at Load Point, Deflection Normalized by δu = 

0.55 in (14 mm), Load Normalized by Pu = -785 kips (-3400 kN) 
 
EFFECT OF DUCTILITY RATIO 
 
Figures 11(a) and (b) display the effect of ductility ratio on the load-deflection behavior of 
the FHWA tests. From these load-deflection curves, it appears that increasing the ductility 
ratio has a negligible effect on the load carrying capacity while decreasing the ductility ratio 
has a significant effect on the load carrying performance of these structures. This may be due 
to the insignificant effects that large enhancements in ductility ratio actually have on the 
stress-strain behavior of UHPC. As shown in Fig. 7(c), an improvement in ductility ratio 
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from RD = 10 to RD = 100 has a small effect on the stress-strain behavior (compare to the 
decrease of ductility ratio from RD = 10 to RD = 1). 

The effect of changes in ductility ratio RD on the service load limit Ps is summarized 
in Table 3. As implied by the results in Table 3, changes in ductility ratio have little effect on 
the FHWA flexure test. As in the case of changes in stiffness ratio, this may be due to the 
overwhelming tendon effect which diminishes flexural cracking in the bottom flange. The 
ductility ratio, on the other hand, has a considerable influence on the service load of the 
FHWA shear girder, particularly with regard to shear cracking (see Fig. 12). As in the case of 
stiffness ratios, it appears that increases in ductility ratio have a substantial mitigating effect 
on the brittleness of UHPC cracking in shear. For this reason, a larger ductility ratio RD 
=100, despite having a small effect on stress-strain behavior, causes a shift in governing 
cracking behavior from shear cracking in the web to flexure cracking in the bottom flange for 
the FHWA shear test. 
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Fig. 12 Effect of Ductility Ratio on Normalized Load-Maximum Crack Width Behavior of 
Lower Bound of the FHWA Shear Beam for Shear Cracking.  Measured in Web, Strain 

Normalized by  = 5×10

p
I,Mε

un,p
max,Mε -4, Load Normalized by Pu = -785 kips (-3400 kN) 

 
It is interesting to note how a poor ductility ratio induces unstable shear cracking in 

the FHWA shear beam. Fig. 12 shows how at lower ductility ratios RD = 1, the shear cracks 
propagate in an unstable manner upon achieving a normalized load of Ps/Pu = 0.62. The low 
ductility ratio is characteristic of a strain-softening FRCC. Therefore, while UHPC (Base 
Case) induces post-cracking hardening at a structural level, a shear beam composed of poor 
FRCC would undergo unsafe shear cracking without shear reinforcement. Conversely, in 
general, UHPC girders do not require shear reinforcement due to the high ductility ratio 
inherent in UHPC. 
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EFFECT OF STRENGTH RATIO 
 
The effect of the strength ratio RS on the load-deflection behavior of the FHWA tests is 
exhibited in Figs. 11(c) and (d). For both FHWA tests, the effect of the strength ratio 
manifests itself at higher loads and deflections than the other ductility parameters as the 
maximum material strength of UHPC is untapped at lower post-cracking loads. From the 
load-deflection curves, it appears that the structural behavior of the flexure test is noticeably 
improved with an increase in strength ratio, but is unaffected by a strength ratio reduction. 
Conversely, the shear girder shows insignificant structural improvement with an 
augmentation of the strength ratio, while exhibiting poorer load carrying capacity when the 
strength ratio is decreased. 

The service load limits for both tests are listed in Table 3. As shown for the FHWA 
flexure test, a drop in strength ratio induces, as expected, minor changes to the service load 
limit Ps for the FHWA flexure test. This is most likely due to the tendon effect which makes 
the drop in strength ratio imperceptible at a structural level. Conversely, an increase in the 
strength ratio has a structural strengthening effect on the FHWA flexure girder. Disregarding 
the probability of tendon failure for the moment, Fig. 11(c) implies that an increase in 
strength ratio can significantly enhance the ultimate capacity of the flexure girder. However, 
for a very large increase in the strength ratio (RS = 1.5 to RS = 3.5), there is not a 
commensurate increase in the service load limit (Ps/Pu = 0.9 to Ps/Pu = 1). Moreover, it is the 
service limit, not the ultimate limit, which should govern the design of real world UHPC 
applications. Thus, it appears that the economic cost of achieving higher strength ratios for 
UHPC may be wasted in prestressing applications with large tendon effects. 

For the FHWA shear test, changes in strength ratio have no effect on shear cracking. 
That is, even a sizeable increase in tensile strength will have a small effect on the shear 
strength. Accordingly, in the case of the FHWA shear beam, the large change in strength 
ratio does not have any bearing on structural shear cracking. On the other hand, when the 
strength ratio is reduced, the flexure capacity of the shear girder is diminished to such a 
degree that flexural cracks govern the service load limit. 
 
 
CONCLUSIONS 
 
Using a previously developed UHPC model and finite element implementation, which were 
shown to give accurate prediction of the behavior of UHPC structure, a sensitivity analysis of 
UHPC ductility was presented. The ductility parameter sensitivity analysis outlined in this 
paper provides insight into how UHPC ductility manifests itself at the structural level: 
 

• Changes in stiffness ratio appear to have modest effects on the structural performance 
of UHPC flexure and shear girders. However, a large increase in the stiffness ratio 
may change the mode of cracking failure in shear girders from shear cracking in the 
web to flexural cracking in the bottom flange as shear cracking appears to be 
especially sensitive to changes in the stiffness ratio. 

• Increases in ductility ratio of UHPC will have negligible effects on flexure girders 
due to the tendon effect. However, since shear cracking is highly sensitive to changes 
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in the ductility ratio, the ductility ratio is an important factor in shear girder 
applications. 

• It is the high ductility ratio of UHPC which makes the elimination of the shear 
stirrups in UHPC structural applications possible. As shown, a drop in ductility ratio 
will lead to unstable shear cracking in the shear girder. 

• Increases in strength ratio have positive effects on the performance of the prestressed 
girders, but perhaps not in proportion to the cost of attaining these strength gains. In 
other words, it appears that in the case of prestressed flexure girders, the prestressing 
already masks some of these strength gains. Therefore, possible future improvements 
in tensile strength should also be combined with structural designs which exploit 
these material advantages. 

• In the case of the shear girder, improvements in the strength ratio have little structural 
effect as increases in the strength ratio have muted effects on the shear strength. 
Again, any improvements to the strength ratio may be squandered for certain 
structural applications. 

 
More generally, this sensitivity analysis also suggests ways that UHPC can be used 

more efficiently. For example, in some cases, the service load limit governed by shear 
cracking is much lower than the service load limit governed by flexure cracking. For this 
case, the prestressing tendons are wasted, as their presence does not improve structural 
performance. The most efficient structural design for exploiting UHPC capacity would be for 
instances where the service load limit governed by shear cracking was equivalent to that 
governed by flexure cracking. However, this is only one criterion for efficient use of UHPC 
material advantages, not economic efficiency of the construction of an UHPC structure. 
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